The amount of pollution in the atmosphere that affects the health of humans, wildlife, and ecosystems.

Icon

Improve Diets

Image
Image
Plates of food
Coming Soon
Off
Summary

Agriculture produces about 12 Gt CO₂‑eq/yr, or 21% of total human-caused GHG emissions (Intergovernmental Panel on Climate Change [IPCC], 2023). Animal agriculture contributes more than half of these emissions (Halpern et al., 2022; Poore and Nemecek, 2018). 

Ruminant animals, such as cattle, sheep, and goats produce methane – a GHG with 80 times the warming potential of CO₂ in the near term – in their digestive system (Jackson et al., 2024). Since agriculture is the leading driver of tropical deforestation, particularly for cattle and animal feed production, reducing ruminant meat consumption can avoid additional forest loss and associated GHG emissions.

We define improved diets as a reduction in ruminant meat consumption and a replacement with other protein-rich foods. Such a diet shift can be adopted incrementally through small behavioral changes that together lead to globally significant reductions in GHG emissions.

Description for Social and Search
Improve Diets is a Highly Recommended climate solution. Reducing ruminant meat consumption reduces methane production and pressure to destroy tropical forests.
Overview

Reducing ruminant meat consumption, especially in high-consuming regions, has a globally significant potential for climate change mitigation. Ruminants contribute 30% of food-related emissions but generate only 5% of global dietary calories (Li et al., 2024). 

Ruminant animals have digestive systems with multiple chambers that allow them to ferment grass and leaves. However, this digestion generates methane emissions through a process called enteric fermentation. In addition, clearing forests and grasslands for pastures and cropland to feed livestock emits CO₂, and livestock manure emits methane and nitrous oxide

In 2019, an international team of scientists called the EAT-Lancet Commission developed benchmarks for a healthy, sustainable diet based on peer-reviewed information on human health and environmental sustainability (Willett et al., 2019). The commission estimated that red meat (beef, lamb, and pork) should be limited to 14 grams (30 calories) per day per person, or 5.1 kg/person/yr. Although the EAT-Lancet diet includes pork, our analysis looked specifically at limiting ruminant meat to 5.1 kg/person/yr because it has much higher GHG emissions than pork (Figure 1).

Figure 1. Greenhouse gas emissions associated with the production of protein-rich foods. Beef has the highest emissions per kilogram. These emissions data are from Poore & Nemecek (2018), with the exception of  "Ruminant meat," which was calculated based on the amount of beef and lamb consumed in 2022. 

Poore, J., &  Nemecek, T. (2018). Reducing food’s environmental impacts through producers and consumers. Science, 360(6392), 987–992.

In this solution, we explored reducing ruminant meat consumption in middle- and high-income countries in which consumption exceeds 5.1 kg/person/yr. Furthermore, our analysis assumed ruminant meat is replaced with approximately the same amount of protein-rich plant- or animal-based foods, which are estimated to be about 20% protein by weight (Poore and Nemecek, 2018).

Bai, Y., Alemu, R., Block, S. A., Headey, D., & Masters, W. A. (2021). Cost and affordability of nutritious diets at retail prices: Evidence from 177 countries. Food policy99, Article 101983. Link to source: https://doi.org/10.1016/j.foodpol.2020.101983

Bouvard, V., Loomis, D., Guyton, K. Z., Grosse, Y., Ghissassi, F. E., Benbrahim-Tallaa, L., Guha, N., Mattock, H., & Straif, K. (2015). Carcinogenicity of consumption of red and processed meat. The Lancet Oncology16(16), 1599–1600. https://doi.org/10.1016/S1470-2045(15)00444-1 

Bradbury, K. E., Murphy, N., & Key, T. J. (2020). Diet and colorectal cancer in UK Biobank: A prospective study. International Journal of Epidemiology49(1), 246–258. Link to source: https://doi.org/10.1093/ije/dyz064 

Casey, J. A., Curriero, F. C., Cosgrove, S. E., Nachman, K. E., & Schwartz, B. S. (2013). High-density livestock operations, crop field application of manure, and risk of community-associated methicillin-resistant Staphylococcus aureus infection in Pennsylvania. JAMA Internal Medicine173(21), 1980–1990. Link to source: https://doi.org/10.1001/jamainternmed.2013.10408

Domingo, N. G. G., Balasubramanian, S., Thakrar, S. K., Clark, M. A., Adams, P. J., Marshall, J. D., Muller, N. Z., Pandis, S. N., Polasky, S., Robinson, A. L., Tessum, C. W., & Hill, J. D. (2021). Air quality–related health damages of food. Proceedings of the National Academy of Sciences118(20), Article e2013637118. Link to source: https://doi.org/10.1073/pnas.2013637118

Foley, J. A., Ramankutty, N., Brauman, K. A., Cassidy, E. S., Gerber, J. S., Johnston, M., Mueller, N. D., O’Connell, C., Ray, D. K., West, P. C., Balzer, C., Bennett, E. M., Carpenter, S. R., Hill, J., Monfreda, C., Polasky, S., Rockström, J., Sheehan, J., Siebert, S., ... Zaks, D. P. M. (2011). Solutions for a cultivated planet. Nature478, 337–342. Link to source: https://doi.org/10.1038/nature10452

Food and Agriculture Organization of the United Nations (FAO). (2025). FAO‑FAOSTAT: Food balances (2010-) [Data set]. Food balances for individual countries for the year 2022 (most recent year available). Retrieved March 25, 2025, from Link to source: https://www.fao.org/faostat/en/#data/FBS

Food and Agriculture Organization of the United Nations (FAO). (2023). Low-Income Food-Deficit Countries (LIFDCs) - List updated June 2023. Retrieved March 25, 2025, from Link to source: https://www.fao.org/member-countries/lifdc/en 

Food and Agriculture Organization of the United Nations (FAO). (2017). Livestock solutions for climate change [Technical paper]. Link to source: https://www.fao.org/family-farming/detail/en/c/1634679/

Gerber, P. J., Steinfeld, H., Henderson, B., Mottet, A., Opio, C., Dijkman, J., Falcucci, A., & Tempio, G. (2013). Tackling climate change through livestock: A global assessment of emissions and mitigation opportunities [Report]. Food and Agriculture Organization of the United Nations. Link to source: https://www.fao.org/4/i3437e/i3437e00.htm 

Godfray, H. C. J., Aveyard, P., Garnett, T., Hall, J. W., Key, T. J., Lorimer, J., Pierrehumbert, R. T., Scarborough, P., Springmann, M., & Jebb, S. A. (2018). Meat consumption, health, and the environment. Science361(6399), Article eaam5324. Link to source: https://doi.org/10.1126/science.aam5324

Gupta, S., Vemireddy, V., Singh, D. K., & Pingali, P. (2021). Ground truthing the cost of achieving the EAT lancet recommended diets: Evidence from rural India. Global Food Security28, Article 100498. Link to source: https://doi.org/10.1016/j.gfs.2021.100498

Halpern, B. S., Frazier, M., Verstaen, J., Rayner, P.-E., Clawson, G., Blanchard, J. L., Cottrell, R. S., Froehlich, H. E., Gephart, J. A., Jacobsen, N. S., Kuempel, C. D., McIntyre, P. B., Metian, M., Moran, D., Nash, K. L., Többen, J., & Williams, D. R. (2022). The environmental footprint of global food production. Nature Sustainability, 5, 1027–1039. Link to source: https://doi.org/10.1038/s41893-022-00965-x 

Harter, T., Lund, J. R., Darby, J., Fogg, G. E., Howitt, R., Jessoe, K. K., Pettygrove, G. S., Quinn, J. F., Viers, J. H., Boyle, D. B., Canada, H. E., De La Mora, N., Dzurella, K. N., Fryjoff-Hung, A., Hollander, A. D., Honeycutt, K. L., Jenkins, M. W., Jensen, V. B., King, A. M., ... Rosenstock, T. S. (2012). Addressing nitrate in California’s drinking water with a focus on Tulare Lake Basin and Salinas Valley groundwater [Report]. Center for Watershed Sciences, University of California. Link to source: https://ucanr.edu/sites/default/files/2012-03/138956.pdf 

Heederik, D., Sigsgaard, T., Thorne, P. S., Kline, J. N., Avery, R., Bønløkke, J. H., Chrischilles, E. A., Dosman, J. A., Duchaine, C., Kirkhorn, S. R., Kulhanková, K., & Merchant, J. A. (2007). Health effects of airborne exposures from concentrated animal feeding operations. Environmental Health Perspectives115(2), 298–302. Link to source: https://doi.org/10.1289/ehp.8835

Herrero, M., Henderson, B., Havlík, P., Thornton, P. K., Conant, R. T., Smith, P., Wirsenius, S., Hristov, A. N., Gerber, P., Gill, M., Butterbach-Bahl, K., Valin, H., Garnett, T., & Stehfest, E. (2016). Greenhouse gas mitigation potentials in the livestock sector. Nature Climate Change6(5), 452–461. Link to source: https://doi.org/10.1038/nclimate2925 

Hirvonen, K., Bai, Y., Headey, D., & Masters, W. A. (2020). Affordability of the EAT–Lancet reference diet: A global analysis. The Lancet Global Health8(1), e59–e66. Link to source: https://doi.org/10.1016/S2214-109X(19)30447-4 

Intergovernmental Panel on Climate Change. (2023). Climate change 2023: Synthesis report. Contribution of working groups I, II and III to the sixth assessment report of the intergovernmental panel on climate change [Core Writing Team, H. Lee, & J. Romero (Eds.)]. Link to source: https://doi.org/10.59327/IPCC/AR6-9789291691647 

Jackson, R. B., Saunois, M., Martinez, A., Canadell, J. G., Yu, X., Li, M., Poulter, B., Raymond, P. A., Regnier, P., Ciais, P., Davis, S. J., & Patra, P. K. (2024). Human activities now fuel two-thirds of global methane emissions. Environmental Research Letters19(10), Article 101002. Link to source: https://doi.org/10.1088/1748-9326/ad6463

Kaluza, J., Wolk, A., & Larsson, S. C. (2012). Red meat consumption and risk of stroke: A meta-analysis of prospective studies. Stroke43(10), 2556–2560. Link to source: https://doi.org/10.1161/STROKEAHA.112.663286

Katare, B., Wang, H. H., Lawing, J., Hao, N., Park, T., & Wetzstein, M. (2020). Toward optimal meat consumption. American Journal of Agricultural Economics102(2), 662–680. Link to source: https://doi.org/10.1002/ajae.12016 

Kim, B. F., Santo, R. E., Scatterday, A. P., Fry, J. P., Synk, C. M., Cebron, S. R., Mekonnen, M. M., Hoekstra, A. Y., de Pee, S., Bloem, M. W., Neff, R. A., & Nachman, K. E. (2020). Country-specific dietary shifts to mitigate climate and water crises. Global Environmental Change62, Article 101926. Link to source: https://doi.org/10.1016/j.gloenvcha.2019.05.010 

Li, M., Wang, Y., Zhao, S., Chen, W., Liu, Y., Zheng, H., Sun, Z., He, P., Li, R., Zhang, S., Xing, P., & Li., Q. (2024). Improving the affordability and reducing greenhouse gas emissions of the EAT-Lancet diet in China. Sustainable Production and Consumption52, 445–457. Link to source: https://doi.org/10.1016/j.spc.2024.11.014

Li, Y., He, P., Shan, Y., Li, Y., Hang, Y., Shao, S., Ruzzenenti, F., & Hubacek, K. (2024). Reducing climate change impacts from the global food system through diet shifts. Nature Climate Change14(9), 943–953. Link to source: https://doi.org/10.1038/s41558-024-02084-1

Mariotti, F., & Gardner, C. D. (2019). Dietary protein and amino acids in vegetarian diets—A review. Nutrients11(11), Article 2661. Link to source: https://doi.org/10.3390/nu11112661

Mbow, C., Rosenzweig, C., Barioni, L. G., Benton, T. G., Herrero, M., Krishnapillai, M., Liwenga, E., Pradhan, P., Rivera-Ferre, M. G., Sapkota, T., Tubiello, F. N., & Xu, Y. (2019). Food security. In P. R. Shukla, J. Skea, E. Calvo Buendia, V. Masson-Delmotte, H.-O. Pörtner, D. C. Roberts, P. Zhai, R. Slade, S. Connors, R. van Diemen, M. Ferrat, E. Haughey, S. Luz, S. Neogi, M. Pathak, J. Petzold, J. Portugal Pereira, P. Vyas, E. Huntley, K. Kissick, M. Belkacemi, & J. Malley (Eds.), Climate change and land: An IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems (pp. 437–550). Cambridge University Press. Link to source: https://doi.org/10.1017/9781009157988.007

Meier, T., & Christen, O. (2013). Environmental impacts of dietary recommendations and dietary styles: Germany as an example. Environmental Science & Technology47(2), 877–888. Link to source: https://doi.org/10.1021/es302152v

Nelson, M. E., Hamm, M. W., Hu, F. B., Abrams, S. A., & Griffin, T. S. (2016). Alignment of healthy dietary patterns and environmental sustainability: A systematic review. Advances in Nutrition7(6), 1005–1025. Link to source: https://doi.org/10.3945/an.116.012567

Nijdam, D., Rood, T., & Westhoek, H. (2012). The price of protein: Review of land use and carbon footprints from life cycle assessments of animal food products and their substitutes. Food Policy37(6), 760–770. Link to source: https://doi.org/10.1016/j.foodpol.2012.08.002

Norwood, F. B., & Lusk, J. L. (2011). Compassion, by the pound: The economics of farm animal welfare. Oxford University Press. Link to source: https://global.oup.com/academic/product/compassion-by-the-pound-9780199551163?cc=ca&lang=en& 

Pan, A., Sun, Q., Bernstein, A. M., Schulze, M. B., Manson, J. E., Willett, W. C., & Hu, F. B. (2011). Red meat consumption and risk of type 2 diabetes: 3 cohorts of US adults and an updated meta-analysis. The American Journal of Clinical Nutrition94(4), 1088–1096. Link to source: https://doi.org/10.3945/ajcn.111.018978

Pan, A., Sun, Q., Bernstein, A. M., Schulze, M. B., Manson, J. E., Stampher, M. J., Willett, W. C., & Hu, F. B. (2012). Red meat consumption and mortality: Results from 2 prospective cohort studies. Archives of Internal Medicine172(7), 555–563. Link to source: https://doi.org/10.1001/archinternmed.2011.2287

Pimentel, D., & Pimentel, M. (2003). Sustainability of meat-based and plant-based diets and the environment. The American Journal of Clinical Nutrition78(3), 660S–663S. Link to source: https://doi.org/10.1093/ajcn/78.3.660S

Poore, J., & Nemecek, T. (2018) Reducing food’s environmental impacts through producers and consumers. Science, 360(6392), 987–992. Link to source: https://doi.org/10.1126/science.aaq0216

Porter, S., & Cox, C. (2020, May 28). Manure overload: Manure plus fertilizer overwhelms Minnesota’s land and water. Environmental Working Group. Link to source: https://www.ewg.org/interactive-maps/2020-manure-overload/

Ripple, W. J., Smith, P., Haberl, H., Montzka, S. A., McAlpine, C., & Boucher, D. H. (2014a). Ruminants, climate change and climate policy. Nature Climate Change4(1), 2–5. Link to source: https://doi.org/10.1038/nclimate2081

Ripple, W. J., Estes, J. A., Beschta, R. L., Wilmers, C. C., Ritchie, E. G., Hebblewhite, M., Berger, J., Elmhagen, B., Letnic, M., Nelson, M. P., Schmitz, O. J., Smith, D. W., Wallach, A. D., & Wirsing, A. J. (2014b). Status and ecological effects of the world’s largest carnivores. Science343(6167), Article 1241484. Link to source: https://doi.org/10.1126/science.1241484

Ripple, W. J., Newsome, T. M., Wolf, C., Dirzo, R., Everatt, K. T., Galetti, M., Hayward, M. W., Kerley, G. I. H., Levi, T., Lindsey, P. A., Macdonald, D. W., Malhi, Y., Painter, L. E., Sandom, C. J., Terborgh, J., & Van Valkenburgh, B. (2015). Collapse of the world’s largest herbivores. Science Advances1(4), Article e1400103. Link to source: https://doi.org/10.1126/sciadv.1400103

Searchinger, T., Waite, R., Hanson, C., Ranganathan, J., Dumas, P., Matthews, E., & Klirs, C. (2019). Creating a sustainable food future: A menu of solutions to feed nearly 10 billion people by 2050 [Report]. World Resources Institute. Link to source: https://research.wri.org/wrr-food

Sinha, R., Cross, A. J., Graubard, B. I., Leitzmann, M. F., & Schatzkin, A. (2009). Meat intake and mortality: A prospective study of over half a million people. Archives of Internal Medicine169(6), 562–571. Link to source: https://doi.org/10.1001/archinternmed.2009.6

Springmann, M., Clark, M. A., Rayner, M., Scarborough, P., & Webb, P. (2021). The global and regional costs of healthy and sustainable dietary patterns: A modelling study. The Lancet Planetary Health5(11), e797–e807. Link to source: https://doi.org/10.1016/S2542-5196(21)00251-5 

Steinfeld, H., Gerber, P., Wassenaar, T., Castel, V., Rosales, M., & de Haan, C. (2006). Livestock’s long shadow: Environmental issues and options [Report]. Food and Agriculture Organization of the United Nations. Link to source: https://www.fao.org/4/a0701e/a0701e00.htm 

Sun, J., Liao, X.-P., D’Souza, A. W., Boolchandani, M., Li, S.-H., Cheng, K., Luis Martínez, J., Li, L., Feng, Y.-J., Fang, L.-X., Huang, T., Xia, J., Yu, Y., Zhou, Y.-F., Sun, Y.-X., Deng, X.-B., Zeng, Z.-L., Jiang, H.-X., Fang, B.-H., … Liu, Y.-H. (2020). Environmental remodeling of human gut microbiota and antibiotic resistome in livestock farms. Nature Communications11(1), Article 1427. Link to source: https://doi.org/10.1038/s41467-020-15222-y

Tang, K. L., Caffrey, N. P., Nóbrega, D. B., Cork, S. C., Ronksley, P. E., Barkema, H. W., Polachek, A. J., Ganshorn, H., Sharma, N., Kellner, J. D., & Ghali, W. A. (2017). Restricting the use of antibiotics in food-producing animals and its associations with antibiotic resistance in food-producing animals and human beings: A systematic review and meta-analysis. The Lancet Planetary Health1(8), e316–e327. Link to source: https://doi.org/10.1016/S2542-5196(17)30141-9

Toumpanakis, A., Turnbull, T., & Alba-Barba, I. (2018). Effectiveness of plant-based diets in promoting well-being in the management of type 2 diabetes: A systematic review. BMJ Open Diabetes Research & Care6(1), Article e000534. Link to source: https://doi.org/10.1136/bmjdrc-2018-000534

Van Boeckel, T. P., Brower, C., Gilbert, M., Grenfell, B. T., Levin, S. A., Robinson, T. P., Teillant, A., & Laxminarayan, R. (2015). Global trends in antimicrobial use in food animals. Proceedings of the National Academy of Sciences, 112(18), 5649–5654. Link to source: https://doi.org/10.1073/pnas.1503141112 

Vergnaud, A.-C., Norat, T., Romaguera, D., Mouw, T., May, A. M., Travier, N., Luan, J., Wareham, N., Slimani, N., Rinaldi, S., Couto, E., Clavel-Chapelon, F., Boutron-Ruault, M.-C., Cottet, V., Palli, D., Agnoli, C., Panico, S., Tumino, R., Vineis, P., … Peeters, P. H. M. (2010). Meat consumption and prospective weight change in participants of the EPIC-PANACEA study. The American Journal of Clinical Nutrition92(2), 398–407. Link to source: https://doi.org/10.3945/ajcn.2009.28713

Westhoek, H., Lesschen, J. P., Rood, T., Wagner, S., De Marco, A., Murphy-Bokern, D., Leip, A., van Grinsven, H., Sutton, M. A., & Oenema, O. (2014). Food choices, health and environment: Effects of cutting Europe’s meat and dairy intake. Global Environmental Change26, 196–205. Link to source: https://doi.org/10.1016/j.gloenvcha.2014.02.004

Willett, W., Rockström, J., Loken, B., Springmann, M., Lang, T., Vermeulen, S., Garnett, T., Tilman, D., DeClerck, F., Wood, A., Jonell, M., Clark, M., Gordon, L. J., Fanzo, J., Hawkes, C., Zurayk, R., Rivera, J. A., De Vries, W., Majele Sibanda, L., ... Murray, C. J. L. (2019). Food in the Anthropocene: The EAT–Lancet Commission on healthy diets from sustainable food systems. The Lancet393(10170), 447–492. Link to source: https://doi.org/10.1016/s0140-6736(18)31788-4

Willits-Smith, A., Odinga, H., O’Malley, K., & Rose, D. (2023). Demographic and socioeconomic correlates of disproportionate beef consumption among US adults in an age of global warming. Nutrients15(17), Article 3795. Link to source: https://doi.org/10.3390/nu15173795 

Credits

Lead Fellows

  • Emily Cassidy

Contributors

  • Ruthie Burrows, Ph.D.
  • James Gerber, Ph.D.
  • Daniel Jasper
  • Alex Sweeney

Internal Reviewers

  • Paul C. West, Ph.D.
  • James Gerber, Ph.D.
  • Megan Matthews, Ph.D
  • Ted Otte
Effectiveness

We estimated that replacing 1 kg of ruminant meat with the same weight of other meat or protein-rich food reduces emissions by about 0.065 t CO₂‑eq (100-yr basis). 

We derived GHG emissions from 1 kg of ruminant meat, 0.075 t CO₂‑eq (100-yr basis), from Poore and Nemecek’s (2018) database and modeling from Kim et al. (2020). Our calculation was based on the GHG footprint of a kg of meat from beef cattle, dairy cattle, and sheep. We weighted the average GHG footprint based on the fact that beef makes up the majority (83%) of ruminant meat consumption, with sheep meat making up a smaller proportion (17%), according to data from the United Nations’ Food and Agriculture Organization (FAO) Food Balances (FAO, 2025).

From Poore and Nemecek’s database, we also derived the average GHG emissions from consuming 1 kg of other protein-rich foods in place of ruminant meat. These foods were: pig meat (pork), poultry meat, eggs, fish (farmed), crustaceans (farmed), peas, other pulses, groundnuts, nuts, and tofu, which are all around 20% protein by weight. Using FAO data on food availability in 2022 as a proxy for consumption, we calculated that the weighted average of these substitutes is 0.01 t CO₂‑eq /kg. 

We subtracted the weighted average emissions of these protein-rich foods (0.01 t CO₂‑eq /kg) from the weighted average emissions from ruminant meat production (0.075 t CO₂‑eq /kg) to calculate the emissions savings (0.065 t CO₂‑eq /kg) (Table 1). Our analysis assumed that substituting a serving of plant- or animal-based protein for ruminant meat reduces the production of that meat (see Caveats). 

Kim et al. (2020) did not provide species-specific emissions, but we assumed that for ruminant meat, the breakdown of CO₂, nitrous oxide, and methane was the same as in Poore and Nemecek (2018) – 43% methane and 57% CO₂ and nitrous oxide. 

left_text_column_width

Table 1. Effectiveness at reducing emissions.

Unit: t CO₂‑eq /kg avoided ruminant meat

Mean (weighted average) 0.065

Unit: t CO₂‑eq /kg avoided ruminant meat

Mean (weighted average) 0.13
Left Text Column Width
Cost

Based on our analysis, the average cost of 1 kg of ruminant meat was US$21.29 compared with the weighted average US$20.73 for other protein-rich foods. This resulted in a savings of US$0.56/kg of food. This translates to an estimated savings of US$8.54/t CO₂ eq (Table 2).

Since the publication of the EAT-Lancet Commission's dietary benchmarks, several studies have been published on the affordability of shifting to the diet (Gupta et al., 2021; Hirvonen et al., 2020; Li et al., 2024; Springmann et al., 2021). Research findings have been mixed on whether this diet shift reduces costs for consumers. One modeling study found that while the diet may cost less in upper-middle-income to high-income countries, on average, it may be more expensive in lower-middle-income to low-income countries (Springmann et al., 2021). 

As opposed to the EAT-Lancet commission, our analysis focused solely on the shift from ruminant meat toward other protein-rich foods, which doesn’t include other dietary shifts, such as reducing other kinds of meat, reducing dairy, or increasing fruits and vegetables. We found no published evidence on the economic impacts of the shift away from ruminant meat alone. However, we used data from Bai et al. (2020), which used food price data from the World Bank’s International Comparison Program (ICP) (2011), to estimate cost differences between ruminant meat and substitutes.

We converted these prices into 2023 US$ and calculated a weighted average cost of food substitutes, based on food availability from the FAO Food Balances (2025). 

The limited information used for this estimate can create bias, and we hope this work inspires research and data sharing on the economic impact of reduced ruminant consumption.

left_text_column_width

Table 2. Cost per unit climate impact. Negative values reflect cost savings.

Unit: 2023 US$/t CO₂‑eq , 100-year basis

Mean -8.54
Left Text Column Width
Learning Curve

Improve Diets does not have a learning curve associated with falling costs of adoption. This solution does not address synthetically derived animal products, such as lab-grown meat, which could serve as replacements for ruminant meat. See Advance Cultivated Meat for more information

left_text_column_width
Speed of Action

Speed of action refers to how quickly a climate solution physically affects the atmosphere after it is deployed. This is different from speed of deployment, which is the pace at which solutions are adopted.

At Project Drawdown, we define the speed of action for each climate solution as emergency brake, gradual, or delayed.

Improve Diets is an EMERGENCY BRAKE climate solution. It has the potential to deliver a more rapid impact than nominal and delayed solutions. The impact of this solution is two-fold: first, it reduces methane from enteric fermentation and manure management. Second, the solution reduces pressure on natural ecosystems, reducing deforestation and other land use changes, which create a large, sudden “pulse” of CO₂ emissions.

Because emergency brake solutions can deliver their climate benefits quickly, they can help accelerate our efforts to address dangerous levels of climate change. For this reason, they are a high priority.

left_text_column_width
Caveats

We did not include Low-Income Food-Deficit countries (FAO, 2023) in this analysis because the solution does not apply to people who do not have access to affordable and healthy alternatives to ruminant meat or those with micronutrient deficiencies. 

Although some amino acids, which are building blocks of protein, are present in lower-than-optimal proportions for human needs in some plant-based foods, mixing plant protein sources, as is typically done in vegetarian diets, can address deficiencies (Mariotti & Gardner, 2019).

Additionality is a concern for this solution. While ruminant meat consumption in middle- to high-income countries remained fairly stable between 2010 and 2022, some high-income countries have recently started reducing their ruminant consumption (see Adoption Trends). However, it’s difficult to determine current adoption and trends from national-level statistics, which average out low and high consumers within a country.

Another consideration is that the decision to eat less ruminant meat will ultimately lead farmers to produce fewer ruminant animals, but the substitution may not be one-to-one. For example, one modeling study found that cutting beef consumption by 1 kg may only reduce beef production by 0.7 kg (Norwood & Lusk, 2011).

Humans use more land for animal agriculture than for any other activity. However, the potential to remove and store carbon from the atmosphere by freeing up the land used in food production, as estimated by Mbow et al. (2019), was not included in this analysis.

left_text_column_width
Current Adoption

Household-level data on food consumption are limited and not often comparable. In this analysis, we summarized current levels of food consumption on a national level, based on data on food availability from FAO Food Balances (2025). Because the data are averaged at a country level, we couldn’t estimate the current level of adoption for individuals of reduced ruminant meat consumption or the EAT-Lancet diet. 

The EAT-Lancet recommended threshold of 5.1 kg of ruminant meat per person per year is in edible, retail weight. However, available data on per capita food availability from the FAO Food Balances is measured in carcass weight, which, for beef cattle, is about 1.4 times larger than a retail cut of meat. Therefore, in this analysis, we set the threshold of excess consumption in the Food Balances as greater than 7.2 kg carcass weight per person per year, which is 5.1 kg of retail ruminant meat per person per year.

In 110 of the 146 countries tracked by FAO, average annual consumption was more than 5.1 kg of ruminant meat per person per year. Some of the highest consuming nations include Mongolia (70.1 kg/person/yr), Argentina (33.3 kg/person/yr), the United States (27.5 kg/person/yr), Australia (25.3 kg/person/yr), and Brazil (25 kg/person/yr). 

The 36 high- and middle-income countries with low (<5.1 kg/person/year) ruminant meat consumption include India (2 kg/person/yr), Peru (3.6 kg/person/yr), Poland (0.2 kg/person/yr), Vietnam (3.9 kg/person/yr), and Indonesia (2.4 kg/person/yr). 

left_text_column_width
Adoption Trend

Ruminant meat consumption in high- and middle-income countries remained fairly stable between 2010 and 2022, according to data from FAO’s Food Balances, increasing only 3% overall from 8.2 to 8.5 kg/person/yr.

However, per capita ruminant meat consumption across high-consuming regions (the Americas, Europe, and Oceania) decreased. Consumption in South America and North America declined by 13% and 2%, respectively. Europe and Oceania saw the greatest declines, at 18% and 38%, respectively.

left_text_column_width
Adoption Ceiling

The adoption ceiling for this solution is the amount of total ruminant meat consumption across all 146 high- and middle-income countries tracked by the FAO. In 2022, the consumption of ruminant meat totaled 81.2 billion kg (Table 3).

left_text_column_width

Table 3. Adoption ceiling.

Unit: kg avoided ruminant meat/yr

Estimate 81,200,000,000
Left Text Column Width
Achievable Adoption

If all of the 110 countries consuming more than the EAT-Lancet recommendation cut consumption to 5.1 kg/person/yr (which is about an 85 g serving of ruminant meat every six days), that would lower annual global ruminant meat consumption by about half (53%), or 42.9 billion kg/yr. We used this as the estimated high achievable adoption value. The low achievable adoption value we estimated to be half of this reduction (26%), or 21.4 billion kg/yr (Table 4). 

left_text_column_width

Table 4. Range of achievable adoption levels.

Unit: kg avoided ruminant meat/yr

Current adoption Not Determined
Achievable – low 21,400,000,000
Achievable – high 42,900,000,000
Adoption ceiling 81,200,000,000
Left Text Column Width

Improving diets by reducing ruminant meat consumption globally could mitigate emissions by 1.4–5.3 Gt CO₂‑eq/yr (Table 5). 

Therefore, reducing ruminant meat consumption and replacing it with any other form of plant or animal protein can have a substantial impact on GHG emissions. Such a diet shift can be adopted incrementally with small behavioral changes that together lead to globally significant reductions in GHG emissions.

left_text_column_width

Table 5. Climate impact at different levels of adoption.

Unit: Gt CO₂‑eq/yr

Current adoption Not Determined
Achievable – low 1.40
Achievable – high 2.80
Adoption ceiling 5.30

Unit: Gt CO₂‑eq/yr

Current adoption Not Determined
Achievable – low 2.88
Achievable – high 5.76
Adoption ceiling 10.90
Left Text Column Width
Additional Benefits

Food Security

Reducing ruminant meat in diets of high-income countries can improve food security (Searchinger et al., 2019). Productive cropland that is used to grow animal feed could instead be used to produce food for human consumption (Ripple et al., 2014a).

Health

Reducing ruminant meat consumption has multiple health benefits. Diets high in red meat have been linked to increased risk of overall mortality and mortality from cancer (Pan et al., 2012; Sinha et al., 2009). Excess red meat consumption is also associated with increased risk of cardiovascular disease, stroke, type 2 diabetes, colorectal cancer, and weight gain (Bouvard et al., 2015; Bradbury et al., 2020; Kaluza et al., 2012; Pan et al., 2011; Vergnaud et al., 2010). Diets that incorporate other sources of protein such as fish, poultry, nuts, legumes, low-fat dairy, and whole grains are associated with a lower risk of mortality and a reduction in dietary saturated fat, and can improve the management of diabetes (Pan et al., 2012; Nelson et al., 2016; Toumpanakis et al., 2018). 

Reducing demand for meat also has implications for health outcomes associated with livestock production. Animal agriculture, especially industrial and confined feeding operations, commonly uses antibiotics to prevent and treat infections in livestock (Casey et al., 2013). Consistent direct contact with livestock exposes people, especially farmworkers, to antibiotic-resistant bacteria, which can lead to antibiotic-resistant health outcomes (Sun et al., 2020; Tang et al., 2017). Moreover, these exposures are not limited to farmworkers. In fact, a study in Pennsylvania found that people living near dairy/veal and swine industrial agriculture had a higher risk of developing methicillin-resistant Staphylococcus aureus (MRSA) infections (Casey et al., 2013).

Equality

A lower demand for ruminant meat could promote environmental justice by reducing the amount of industrial animal agriculture operations. This may benefit communities near these operations by reducing exposure to air and water pollution, pathogens, and odors (Casey et al., 2013; Heederik et al., 2007; Steinfeld et al., 2006).

Nature Protection

Agricultural expansion for livestock production is a major driver of deforestation (Ripple et al., 2014b). Deforestation is associated with biodiversity loss through habitat degradation and destruction, as well as forest fragmentation (Steinfeld et al., 2006). Livestock farming can reduce the diversity of landscapes and can contribute to the loss of large carnivore, herbivore, and bird species (Ripple et al., 2015; Steinfeld et al., 2006). The clearing of forests for animal agriculture is especially prevalent in the tropics, and a lower demand for meat, particularly ruminant meat, could reduce tropical deforestation (Ripple et al., 2014b).

Land Resources

Animal agriculture, especially ruminants such as cattle, requires a lot of land (Nijdam et al., 2012). Life-cycle analyses have found that beef consistently requires the most land use among animal-based proteins (Nijdam et al., 2012; Meier & Christen, 2013; Searchinger et al., 2019). This high land use is mostly due to the amount of land needed to grow crops that eventually feed livestock (Ripple et al., 2014a). In the European Union, Westhoek et al. (2014) estimated that halving consumption of meat, dairy, and eggs would result in a 23% reduction in per capita cropland use.

Water Resources

While livestock is directly responsible for a small proportion of global water usage, a significant amount of water is required to produce forage and grain for animal feed (Steinfeld et al., 2006). In the United States, livestock production is the largest source of freshwater consumption, and producing 1 kg of animal protein uses 100 times more water than 1 kg of grain protein (Pimentel & Pimentel, 2003). Ruminant meats have some of the highest water usage rates of all animal protein sources (Kim et al., 2020; Searchinger et al., 2019; Steinfed et al., 2006).

Water Quality

Livestock production can contribute to water pollution directly and indirectly through feed production and processing (Steinfeld et al., 2006). Manure contains nutrients such as nitrogen and phosphorus, as well as drug residues, heavy metals, and pathogens (Steinfeld et al., 2006). Manure can pollute water directly from feedlots and can also leach into water sources when used as a fertilizer on croplands (Porter & Cox, 2020). For example, animal agriculture is one of the top polluters of water basins in central California (Harter et al., 2012) 

Air Quality

In addition to CO₂, ruminant agriculture is a source of air pollutants such as methane, nitrous oxides, ammonia, and volatile organic compounds (Gerber et al., 2013). Fertilization of feed crops and deposition of manure on crops are the primary sources of nitrogen emissions from ruminant agriculture (Steinfeld et al., 2006). Air pollution in nearby communities can lead to poor odors and respiratory issues, which may affect stress levels and quality of life (Domingo et al., 2021; Heederik et al., 2007).

left_text_column_width
Risks

A total replacement of ruminant meat with other food may reduce food availability in arid climates, where ruminants graze on land not suitable for crop production. 

While the shift from ruminant meat consumption to chicken and pork would curtail some of the demand for animal feed, it would not be reduced as much as a shift from ruminants to plant-based foods. 

left_text_column_width
Interactions with Other Solutions

Reinforcing

Pastures for grazing ruminants occupy 34 million sq km of land, more than any other human activity (Foley et al., 2011). Curtailing the consumption of ruminants can significantly reduce demand for land and facilitate protection and restoration of carbon-rich ecosystems.

left_text_column_width

Silvopasture represents a way to produce some ruminant meat and dairy in a more climate-friendly way. This impact can contribute to addressing emissions from ruminant production, but only as part of a program that strongly emphasizes diet change.

left_text_column_width

Cultivated meat shows promise for reducing emissions from animal agriculture, especially ruminant meat production. Although evidence about cultivated meat’s emissions reduction potential is limited, replacing beef or lamb with cultivated meat is a more promising way to reduce emissions than replacing chicken or pork. 

left_text_column_width

Lowering ruminant meat consumption might reduce the amount of manure available to manage, depending on whether it is substituted with plant-based foods or other meat.

left_text_column_width

Improved ruminant breeding could reduce methane emissions from ruminants that are managed on pasture or rangelands. However, intentionally breeding ruminants for reduced methane production is in its early stages, and deploying this solution across multiple species and breeds could take time. Improved breeding could reduce emissions from ruminant agriculture which could reduce the effectiveness of the Improve Diet solution.

left_text_column_width
Dashboard

Solution Basics

kg avoided ruminant meat

t CO₂-eq (100-yr)/unit
0.065
units/yr
Current Not Determined 02.14×10¹⁰4.29×10¹⁰
Achievable (Low to High)

Climate Impact

Gt CO₂-eq (100-yr)/yr
Current Not Determined 1.42.8
US$ per t CO₂-eq
-9
Emergency Brake

CO₂, CH₄ , N₂O

Trade-offs

There are climate and environmental trade-offs associated with the production of different kinds of protein. Producing ruminant meat is land-intensive and contributes to the conversion of natural ecosystems to pasture and animal feed. However, ruminants can live on land that is too dry for crop production and graze on plants not suitable for human consumption. In some low-income food-insecure countries (not included in this analysis), grazing animals may be an important source of protein. 

Substituting ruminant meat with chicken, fish, or other meat can substantially reduce methane emissions, but comes with some environmental and animal welfare trade-offs. 

left_text_column_width
kg/person/yr
0-10
10–20
20–30
30–40
> 40

Per capita ruminant meat consumption

Per capita ruminant meat consumption varies greatly around the world. According to the Food and Agriculture Organization of the United Nations (FAO), Mongolia had the highest per-person ruminant meat consumption (99 kg/person/yr) in 2022, followed by Argentina (47 kg/person/yr) and Turkmenistan (46 kg/person/yr).

Food and Agriculture Organization of the United Nations (FAO). (2025). FAO‑FAOSTAT: Food balances (2010–) [Data set, food balances for individual countries for the year 2022]. Retrieved March 25, 2025, from Link to source: https://www.fao.org/faostat/en/#data/FBS

kg/person/yr
0-10
10–20
20–30
30–40
> 40

Per capita ruminant meat consumption

Per capita ruminant meat consumption varies greatly around the world. According to the Food and Agriculture Organization of the United Nations (FAO), Mongolia had the highest per-person ruminant meat consumption (99 kg/person/yr) in 2022, followed by Argentina (47 kg/person/yr) and Turkmenistan (46 kg/person/yr).

Food and Agriculture Organization of the United Nations (FAO). (2025). FAO‑FAOSTAT: Food balances (2010–) [Data set, food balances for individual countries for the year 2022]. Retrieved March 25, 2025, from Link to source: https://www.fao.org/faostat/en/#data/FBS

Maps Introduction

The emissions intensity of beef production varies considerably between countries, due to the contribution of regional deforestation and other land changes (Kim et al. 2020; Poore and Nemecek, 2018) and the intensity of different cattle raising systems, with extensive, pasture-based systems relatively less efficient (in terms of land and CO₂‑eq /kg beef) (Herrero et al. 2016). For example, GHG emissions per kilogram of bovine meat from Brazil and Paraguay were five and 17 times higher, respectively, than those of Danish bovine meat (Kim et al. 2020). These differences were attributable to higher deforestation for grazing lands and methane emissions from enteric fermentation.

Emissions from beef production are skewed by producers with particularly high impacts. About a quarter of beef producers contribute more than 56% (an estimated 1.3 Gt CO₂‑eq ) of all GHGs attributable to beef cattle production.

Beef consumption per person in Mongolia and North and South America is especially high, and reducing it can benefit human health (see Benefits to People & Nature). According to the Food and Agriculture Organization of the United Nations (FAO), Mongolia had the highest per-person ruminant meat consumption (99 kg/person/yr) in 2022, followed by Argentina (47 kg/person/yr) and Turkmenistan (46 kg/person/yr). 

For this analysis, we examined high- and middle-income countries that consume more than 5.1 kg/person/yr of ruminant meat (what we define as “excess consumption”). The United States has more excess ruminant meat consumption than any other country. A 2023 assessment of health survey data found that in the United States, about 12% of the population ate about half of all beef supplies (Willits-Smith et al., 2023).

Maps are based on global average emissions per kg of ruminant meat, which keeps the focus on consumption.

Action Word
Improve
Solution Title
Diets
Classification
Highly Recommended
Lawmakers and Policymakers
  • Use a comprehensive approach to improving diets including both “hard” (e.g., regulations) and “soft” (e.g., educational programs) policies.
  • Ensure public procurement avoids ruminant meat and favors plant-rich diets as the default, especially in schools, hospitals, and cafeterias for public workers.
  • Require companies that sell food to the government to disclose Scope 3 supply-chain emissions and adopt science-based targets, including a no-deforestation commitment.
  • Develop national dietary guidelines based on health and environmental factors; ensure the guidelines are integrated throughout procurement policies, public education programs, and government food aid programs.
  • Establish coordination bodies with stakeholders, such as farmers, distributors, storage facilities, food processors, transportation companies, retail, and waste management services, to design the most optimal policy package.
  • Set ambitious local, national, and international goals and climate plans to improve diets and include the agricultural sector in emissions reduction targets.
  • Establish safety nets for growers, such as access to grants or low-interest capital, reliable access to price information, early warning systems for price fluctuations, and insurance programs.
  • Use financial instruments such as grants, subsidies, or tax exemptions to support farmers, producers, start-ups, infrastructure, and related technology.
  • Reallocate subsidies for ruminant animal agriculture to alternatives; provide extensive support to farmers and ranchers transitioning to more sustainable agriculture systems through financial assistance, buyout programs, and education programs.
  • Remove or reconfigure other subsidies that artificially deflate the price of meat, such as animal feed and manure storage facilities.
  • Require carbon footprint labels on food and produce.
  • Limit or prohibit the expansion of agricultural lands, especially for animal agriculture.
  • Restrict advertising for unhealthy foods and/or require disclosures for health and environmental impacts for adverts.
  • Work with the health-care industry to integrate plant-rich diets into public health programs, and educate the public on the benefits of plant-rich diets.
  • Expand extension services to help food retailers develop plant-based items, design menus, develop marketing materials, and provide other assistance to improve the profitability of plant-rich diets.
  • Implement a carbon tax on livestock or meat products in food-secure areas and ensure there is proper monitoring and enforcement capacity.
  • Use zoning laws to give plant-based and healthy food outlets better visibility or higher traffic locations; designate favorable spaces for plant-based food trucks and street vendors.
  • Create robust educational programs for schools and adults on plant-based and healthy cooking.
  • Create, support, or join education campaigns and/or public-private partnerships that teach the importance of plant-based diets and the environmental impacts of common foods.
Practitioners
  • Scale up production of nutrient-dense plant-based foods.
  • Create peer-to-peer networks to exchange best practices and local or industry troubleshooting tips.
  • Increase the visibility of plant-based diets through repetitive ad campaigns, product placement, and displays.
  • Design menus to avoid ruminant meat and center plant-based products.
  • Invest in R&D to improve plant-based products.
  • Develop culturally relevant plant-based products to support acceptance and uptake.
  • Develop mobile or web apps that help consumers plan and cook plant-based meals, find plant-based retailers, and learn about plant-rich diets.
  • Take advantage of financial incentives such as grants, subsidies, or tax exemptions.
  • Participate or help establish coordination bodies with stakeholders, such as farmers, distributors, storage facilities, food processors, transportation companies, retail, and waste management services, to design the most optimal food systems transformation.
  • Work with the health-care industry to integrate plant-rich diets into public health programs, and educate the public on the benefits of plant-rich diets.
  • Use labels to show the environmental and emissions impact of food and menu items.
  • Hold local plant-based culinary challenges to promote products and services.
  • Create, support, or join education campaigns and/or public-private partnerships that promote plant-rich diets.
Business Leaders
  • Establish company goals for ruminant substitution and incorporate them into corporate net-zero strategies.
  • Ensure company procurement avoids ruminant meat and favors plant-rich diets as the default.
  • Participate in or help establish coordination bodies with stakeholders, such as farmers, distributors, storage facilities, food processors, transportation companies, retail, and waste management services, to design the most optimal food systems transformation.
  • Take advantage of financial incentives such as grants, subsidies, or tax exemptions.
  • Offer financial services, including low-interest loans, micro-financing, and grants, to support initiatives promoting plant-rich diets.
  • Use labels to show the environmental and emissions impact of food and menu items.
  • Increase the visibility of plant-based diets through repetitive ad campaigns, product placement, and displays.
  • Fund start-ups or existing companies that are improving plant-based proteins and alternatives to animal agriculture.
  • Develop mobile or web apps that help consumers plan and cook plant-based meals, find plant-based retailers, and learn about plant-rich diets.
  • Hold local plant-based culinary challenges to promote products and services.
  • Create, support, or join education campaigns and/or public-private partnerships that promote plant-rich diets.
  • Include ruminant-free and plant-rich dietary support in employee wellness and benefits programs.
Nonprofit Leaders
  • Ensure organization procurement avoids ruminant meat and favors plant-rich diets.
  • Help develop and advocate for ambitious local, national, and international goals and climate plans to improve diets.
  • Participate or help establish coordination bodies with stakeholders, such as farmers, distributors, storage facilities, food processors, transportation companies, retail, and waste management services, to design the most optimal food systems transformation.
  • Advocate to reallocate subsidies for ruminant agriculture to plant-based alternatives.
  • Advocate for financial instruments such as taxes, subsidies, or exemptions to support farmers, producers, start-ups, infrastructure, and related technology.
  • Advocate for standardized and mandatory carbon footprint labels on food and produce.
  • Advocate for a carbon tax on livestock or meat products in food-secure areas and ensure there is proper monitoring and enforcement capacity.
  • Offer comprehensive training and technical assistance programs for farmers and producers supporting plant-rich diets.
  • Implement campaigns promoting divestment from major animal agriculture polluters and challenge misleading claims on high-emissions meat products.
  • Work with the health-care industry to integrate plant-rich diets into public health programs, and educate the public on the benefits of plant-rich diets.
  • Create demonstration farms to show local examples, strategies to generate income, and how to use government programs.
  • Create robust educational programs for schools and adults on plant-based and healthy cooking.
  • Hold local plant-based culinary challenges to promote plant-rich diets.
  • Create, support, or join education campaigns and/or public-private partnerships that promote plant-rich diets.
Investors
  • Ensure relevant portfolio companies avoid ruminant meat production and support plant-rich diets; avoid investing in animal agriculture in high-income countries or work with them to transition to plant-rich alternatives.
  • Invest in companies developing plant-based foods or technologies that support processing, such as equipment, transportation, and storage.
  • Fund start-ups or existing companies that are improving plant-based proteins and alternatives to animal agriculture.
  • Offer financial services, including low-interest loans, micro-financing, and grants, for plant-based food initiatives.
  • Participate or help establish coordination bodies with stakeholders, such as farmers, distributors, storage facilities, food processors, transportation companies, retail, and waste management services, to design the most optimal food systems transformation.
  • Create, support, or join education campaigns and/or public-private partnerships that promote plant-rich diets.
Philanthropists and International Aid Agencies
  • Ensure organization procurement avoids ruminant meat and favors plant-rich diets.
  • Help develop and advocate for ambitious local, national, and international goals and climate plans to improve diets.
  • Participate or help establish coordination bodies with stakeholders, such as farmers, distributors, storage facilities, food processors, transportation companies, retail, and waste management services, to design the most optimal food systems transformation.
  • Invest in companies developing plant-based foods or technologies that support processing, such as equipment, transportation, and storage.
  • Fund start-ups or existing companies that are improving plant-based proteins and alternatives to ruminant animal agriculture.
  • Offer financial services, including low-interest loans, micro-financing, and grants, for plant-based food initiatives.
  • Advocate to reallocate subsidies for animal agriculture to plant-based alternatives.
  • Advocate for financial instruments such as taxes, subsidies, or exemptions to support plant-based farmers, producers, start-ups, infrastructure, and related technology.
  • Advocate for standardized and mandatory environmental impact labels on food and produce.
  • Advocate for a carbon tax on livestock or meat products in food-secure areas and ensure there is proper monitoring and enforcement capacity.
  • Offer comprehensive training and technical assistance programs for farmers and producers supporting plant-rich diets.
  • Create demonstration farms to show local examples, strategies to generate income, and how to use government programs.
  • Create robust educational programs for schools and adults on plant-based and healthy cooking.
  • Work with the health-care industry to integrate plant-rich diets into public health programs and educate the public on the benefits of plant-rich diets.
  • Integrate plant-rich diets with ecosystem protection and restoration efforts such as education campaigns, national plans, and international agreements, when relevant.
  • Create, support, or join education campaigns and/or public-private partnerships that promote plant-rich diets.
Thought Leaders
  • Help develop and advocate for ambitious local, national, and international goals and climate plans to improve diets.
  • Participate or help establish coordination bodies with stakeholders, such as farmers, distributors, storage facilities, food processors, transportation companies, retail, and waste management services, to design the most optimal local food systems transformation.
  • Help shift policy and academic goals around agriculture from quantity of outputs to nutritional quality of outputs.
  • Help market and brand plant-based items appealing to average and/or conventional tastes.
  • Find new ways to appeal to high-red-meat consumers and new markets – particularly, men and athletic communities.
  • Highlight the social and environmental impacts of animal-based products in high-income countries.
  • Design and implement robust educational programs for schools and adults on plant-based and healthy cooking.
  • Advocate to reallocate subsidies for animal agriculture to plant-based alternatives.
  • Advocate for financial instruments such as taxes, subsidies, or exemptions to support plant-based farmers, producers, start-ups, infrastructure, and related technology.
  • Advocate for standardized and mandatory carbon footprint labels on food and produce.
  • Create, support, or join education campaigns and/or public-private partnerships that promote plant-rich diets.
Technologists and Researchers
  • Research connections between plant-based agriculture and human well-being indicators such as nutrition, income, and human rights.
  • Develop new or improve existing plant-based or lab-grown alternatives to ruminant meat and other animal-based proteins.
  • Develop plant-based proteins that account for local supply chains and cultural preferences.
  • Analyze the full suite of interventions that encourage plant-based diets and offer recommendations to policy and lawmakers on the most effective options.
  • Use market data on food purchases and preferences to improve marketing and attractiveness of plant-based options.
  • Develop mobile or web apps that help consumers plan and cook plant-based meals, find plant-based retailers, and learn about plant-rich diets.
  • Research connections between plant-rich diets, food security, cultural cuisine preferences, and health indicators.
  • Help develop national dietary guidelines based on health and environmental factors.
Communities, Households, and Individuals
  • Eat plant-rich diets and avoid ruminant meat as much as possible.
  • Offer alternatives to ruminant meat at social gatherings and request plant-based options at public events.
  • Talk to family, friends, and coworkers about avoiding beef; recommend your favorite restaurants, recipes, and cooking tips.
  • Support educational programs for schools and adults on plant-based and healthy cooking.
  • Advocate to reallocate subsidies for animal agriculture to plant-based alternatives.
  • Advocate for financial instruments such as taxes, subsidies, or exemptions to support plant-based farmers, producers, start-ups, infrastructure, and related technology.
  • Create, support, or join education campaigns and/or public-private partnerships that promote plant-rich diets.
Evidence Base

Consensus of effectiveness in reducing ruminant meat: High

There is a high level of consensus in the scientific literature that shifting diets away from ruminant meat mitigates GHG emissions. An IPCC special report on land found “broad agreement” that meat – particularly ruminant meat – was the single food with the greatest impact on the environment on a global basis, especially in terms of GHG emissions and land use (Mbow et al., 2019). The IPCC found that the range of cumulative emissions mitigation from diet shifts by 2050, depending on the type of shift, was as much as 2.7–6.4 Gt CO₂‑eq/yr. This estimate included shifts away from all meat, whereas our analysis focused on shifting away from ruminant meat alone.

The emissions associated with the production of different food products in this solution came from Poore and Nemecek (2018) and Kim et al. (2020). Poore and Nemecek developed a database of emissions footprints for different foods based on a meta-analysis of 570 studies with a median reference year of 2010 (Figure 1). It covers ~38,700 commercially viable farms in 119 countries and 40 products representing ~90% of global protein and calorie consumption. 

According to Poore and Nemecek (2018), producing 1 kg of beef emits 33 times the GHGs emitted by producing protein-rich plant-based foods, such as beans, nuts, and lentils. But beef can also be replaced with any other non-ruminant meat (poultry, pork, or fish) to cut emissions. Substituting ruminant meat with any other kind of meat reduces average emissions by roughly 85%.

A 2024 study on dietary emissions from 140 food products in 139 countries found that shifting consumption toward the EAT-Lancet guidelines could reduce emissions from the food system 17%, or about 1.94 Gt CO₂‑eq/yr (Li, Y. et al., 2024). 

The results presented in this document summarize findings from 42 studies (34 academic reviews and original studies, three reports from NGOs, and five reports from public and multilateral organizations). The results reflect current evidence from 119 countries, but observations are concentrated in Europe, North America, Oceania, Brazil, and China, and limited in Africa and parts of Asia. We recognize this limited geographic scope creates bias, and hope this work inspires research and data sharing on this topic in underrepresented regions.

left_text_column_width
Updated Date

Manage Oil & Gas Methane

Sector
Other Energy
Image
Image
Oil wells and flame coming from flare stack
Coming Soon
Off
Summary

Oil and gas methane management is the process of reducing methane emissions from oil and gas (O&G) supply chains. These supply chains release methane when pipes and other system parts leak or methane is intentionally vented for operation and safety reasons. We define the Manage Oil & Gas Methane solution as adopting approaches to reduce methane emissions, including fixing leaks in components, upgrading control equipment, changing procedures, and destroying methane by burning methane as a fuel or in flares.

Description for Social and Search
We define the Manage Oil & Gas Methane solution as adopting approaches to reduce methane emissions, including fixing leaks in components, upgrading control equipment, changing procedures, and destroying methane by burning methane as a fuel or in flares.
Overview

Methane can be unintentionally released due to imperfections and faults along the supply chain or intentionally released as part of operations and maintenance. Atmospheric methane has a GWP of 81 over a 20-yr time basis and a GWP of 28 over a 100-yr time basis (IPCC, 2023). This means methane is 81 times more effective at trapping heat than CO₂.  Because methane is a short-lived climate pollutant that has a much stronger warming effect than CO₂ over a given time period, abating methane will have a relatively large near-term impact on slowing global climate change (IEA, 2023b).

The first step to reduce methane releases from O&G production is to identify where releases occur along the supply chain. Many occur during O&G extraction as methane is either intentionally vented or unintentionally emitted. The International Energy Agency (IEA, 2024) estimated more than 60% of global energy-related methane emissions originated from the O&G sector in 2023, with the remaining emissions mostly coming from coal use and some bioenergy (Figure 1). The United Nations Environment Programme (UNEP) has formed a transparency and accountability initiative whose members are responsible for 42% of global O&G production. It reported that activities involved in exploration and processing of O&G accounted for 83% of total reported O&G emissions from 2020 to 2023, with production processes being responsible for 90% of those emissions (UNEP 2024). Alvarez et al. (2018) found that in the United States, more than 58% of O&G methane emissions came from production and about 20% came from extraction in 2015. 

Figure 1. Methane emissions (kt) from energy sources (IEA, 2025).

Source: International Energy Agency. (2025). Methane tracker: Data tools. https://www.iea.org/data-and-statistics/data-tools/methane-tracker 

O&G producers can reduce their methane emissions by preventing its release or by converting it to CO₂ through combustion. Strategies for reducing O&G methane emissions can be put into two broad categories (Climate & Clean Air Coalition [CCAC], 2021):

Device conversion, replacement, and installation is the practice of fixing leaks in pipes, valves, compressors, pumps, and other equipment. This can include converting natural gas–powered devices to electric, driving compressors/pneumatics with air instead of natural gas, or replacing emitting components with non-emitting ones (Pembina Institute, 2024).

Changes to operations and maintenance practices seek to reduce the intentional venting of methane. They include eliminating the need for blow-down (releasing gases during the maintenance or operation of pipe infrastructure), reducing venting, and capturing methane before it is released into the atmosphere, then using it as fuel for product refining or burning it to convert it into CO₂.

Leak detection and repair (LDAR) is the practice of regularly monitoring for methane leaks and modifying or replacing leaking equipment. 

Alvarez, R., Zavala-Araiza, D., Lyon, D. R., Allen, D. T., Barkley, Z. B., Brandt, A. R., Davis, K. J., Herndon, S. C., Jacob, D. J., Karion, A., Kort, E. A., Lamb, B. K., Lauvaux, T., Maasakkers, J. D., Marchese, A. J., Omara, M., Pacala, S. W., Peischl, J., Robinson, A. L., Shepson, P. B., Sweeney, C., Townsend-Small, A., Wofsy, S. C., & Hamburg, S. P. (2018). Assessment of methane emissions from the U.S. oil and gas supply chain. Science, 361(6398), 186-188. Link to source: https://doi.org/10.1126/science.aar7204 

Anejionu, O. C., Whyatt, J. D., Blackburn, G. A., & Price, C. S. (2015). Contributions of gas flaring to a global air pollution hotspot: spatial and temporal variations, impacts and alleviation. Atmospheric Environment, 118, 184-193. Link to source: https://doi.org/10.1016/j.atmosenv.2015.08.006 

Beck, C., Rashidbeigi, S., Roelofsen, O., & Speelman, E. (2020). The future is now: how oil and gas companies can decarbonize. McKinsey & CompanyLink to source: https://www.mckinsey.com/industries/oil-and-gas/our-insights/the-future-is-now-how-oil-and-gas-companies-can-decarbonize 

Carbon Limits. (2014). Quantifying cost-effectiveness of systematic leak detection and repair program using infrared cameras. Link to source: https://www.catf.us/resource/quantifying-cost-effectiveness-ldar/ 

Clean Air Task Force. (2022). Fossil fumes (2022 update): A public health analysis of toxic air pollution from the oil and gas industry. Link to source: https://www.catf.us/resource/fossil-fumes-public-health-analysis/ 

Climate & Clean Air Coalition. (2021). Global methane assessment: Summary for decision makers. Link to source: https://www.ccacoalition.org/resources/global-methane-assessment-summary-decision-makers 

Climate & Clean Air Coalition. (n.d.). Methane. Retrieved July 19, 2024. Link to source: https://www.ccacoalition.org/short-lived-climate-pollutants/methane#:~:text=While%20methane%20does%20not%20cause,rise%20in%20tropospheric%20ozone%20levels

Climateworks Foundation. (2024). Reducing methane emissions on a global scale. Link to source: https://climateworks.org/blog/reducing-methane-emissions-on-a-global-scale/ 

Conrad, B. M., Tyner, D. R., Li, H. Z., Xie, D. & Johnson, M. R. (2023). A measurement-based upstream oil and gas methane inventory for Alberta, Canada reveals higher emissions and different sources than official estimates. Earth & Environment. Link to source: https://doi.org/10.1038/s43247-023-01081-0 

DeFabrizio, S., Glazener, W., Hart, C., Henderson, K., Kar, J., Katz, J., Pratt, M. P., Rogers, M., Ulanov, A., & Tryggestad, C. (2021). Curbing methane emissions: How five industries can counter a major climate threat. McKinsey SustainabilityLink to source: https://www.mckinsey.com/~/media/mckinsey/business%20functions/sustainability/our%20insights/curbing%20methane%20emissions%20how%20five%20industries%20can%20counter%20a%20major%20climate%20threat/curbing-methane-emissions-how-five-industries-can-counter-a-major-climate-threat-v4.pdf 

Dunsky. (2023, July 21). Canada’s methane abatement opportunity. Link to source: https://dunsky.com/project/methane-abatement-opportunities-in-the-oil-gas-extraction-sector/ 

Fawole, O. G., Cai, X. M., & MacKenzie, A. R. (2016). Gas flaring and resultant air pollution: A review focusing on black carbon. Environmental pollution216, 182-197. Link to source: https://doi.org/10.1016/j.envpol.2016.05.075 

Fiore, A. M., Jacob, D. J., & Field, B. D. (2002). Linking ozone pollution and climate change: The case for controlling methane. Geophysical Research Letters29(19), 182-197. Link to source: https://doi.org/10.1029/2002GL015601 

Giwa, S. O., Nwaokocha, C. N., Kuye, S. I., & Adama, K. O. (2019). Gas flaring attendant impacts of criteria and particulate pollutants: A case of Niger Delta region of Nigeria. Journal of King Saud University-Engineering Sciences31(3), 209-217. Link to source: https://doi.org/10.1016/j.jksues.2017.04.003 

Global Energy Monitor (2024). Global Methane Emitters Tracker [Data set, September 2024 release]. Retrieved April 18, 2025 from Link to source: https://globalenergymonitor.org/projects/global-methane-emitters-tracker/ 

Global Methane Initiative (2019). GMI methane data EPA [Data set]. Link to source: https://www.globalmethane.org/methane-emissions-data.aspx 

Global Methane Initiative (2024). 2023 Accomplishments in methane mitigation, recovery, and use through U.S.-supported international efforts. Link to source: https://www.epa.gov/gmi/us-government-global-methane-initiative-accomplishments 

Global Methane Pledge. (n.d.). Global methane pledge. Retrieved August 16, 2024 from Link to source: https://www.globalmethanepledge.org/ 

Guarin, J. R., Jägermeyr, J., Ainsworth, E. A., Oliveira, F. A., Asseng, S., Boote, K., ... & Sharps, K. (2024). Modeling the effects of tropospheric ozone on the growth and yield of global staple crops with DSSAT v4. 8.0. Geoscientific Model Development17(7), 2547-2567. Link to source: https://doi.org/10.5194/gmd-17-2547-2024 

Hong, C., Mueller, N. D., Burney, J. A., Zhang, Y., AghaKouchak, A., Moore, F. C., Qin, Y., Tong, D., & Davis, S. J. (2020). Impacts of ozone and climate change on yields of perennial crops in California. Nature Food1(3), 166-172. Link to source: https://doi.org/10.1038/s43016-020-0043-8 

ICF International. (2016). Economic analysis of methane emission reduction potential from natural gas systems. Link to source: https://onefuture.us/wp-content/uploads/2018/05/ONE-Future-MAC-Final-6-1.pdf 

Intergovernmental Panel on Climate Change (IPCC). (2023). In: Climate change 2023: Synthesis report. Contribution of working groups I, II and III to the sixth assessment report of the intergovernmental panel on climate change [core writing team, H. Lee and J. Romero (eds.)]. IPCC, Geneva, Switzerland, pp. 1-34, doi: 10.59327/IPCC/AR6-9789291691647.001 Link to source: https://www.ipcc.ch/report/ar6/syr/ 

International Energy Agency. (2021). Global methane tracker 2021: Methane abatement and regulation. Link to source: https://www.iea.org/reports/methane-tracker-2021/methane-abatement-and-regulation 

International Energy Agency. (2023a). Financing reductions in oil and gas methane emissions. Link to source: https://www.iea.org/reports/financing-reductions-in-oil-and-gas-methane-emissions 

International Energy Agency. (2023b). Net zero roadmap: A global pathway to keep the 1.5℃ goal in reach - 2023 update. Link to source: https://www.iea.org/reports/net-zero-roadmap-a-global-pathway-to-keep-the-15-0c-goal-in-reach 

International Energy Agency. (2023c). The imperative of cutting methane from fossil fuels. Link to source: https://www.iea.org/reports/the-imperative-of-cutting-methane-from-fossil-fuels 

International Energy Agency. (2023d). World energy outlook 2023. Link to source: https://www.iea.org/reports/world-energy-outlook-2023 

International Energy Agency. (2025). Methane tracker: Data tools. Link to source: https://www.iea.org/data-and-statistics/data-tools/methane-tracker 

Ismail, O. S., & Umukoro, G. E. (2012). Global impact of gas flaring. Energy and Power Engineering4(4), 290-302. Link to source: http://dx.doi.org/10.4236/epe.2012.44039 

Johnson, M. R., & Coderre, A. R. (2012). Opportunities for CO2 equivalent emissions reductions via flare and vent mitigation: A case study for Alberta, Canada. International Journal of Greenhouse Gas Control8, 121-131. Link to source: https://doi.org/10.1016/j.ijggc.2012.02.004 

Laan, T., Do, N., Haig, S., Urazova, I., Posada, E., & Wang, H. (2024). Public financial support for renewable power generation and integration in the G20 countries. International Institute for Sustainable Development. Link to source: https://www.iisd.org/system/files/2024-09/renewable-energy-support-g20.pdf 

Malley, C. S., Borgford-Parnell, N. Haeussling, S., Howard, L. C., Lefèvre E. N., & Kuylenstierna J. C. I. (2023). A roadmap to achieve the global methane pledge. Environmental Research: Climate, 2(1). Link to source: https://doi.org/10.1088/2752-5295/acb4b4 

Mar, K. A., Unger, C., Walderdorff, L., & Butler, T. (2022). Beyond CO2 equivalence: The impacts of methane on climate, ecosystems, and health. Environmental Science & Policy134, 127-136. Link to source: https://doi.org/10.1016/j.envsci.2022.03.027 

Marks, L. (2022). The abatement cost of methane emissions from natural gas production. Journal of the Association of Environmental and Resource Economists, 9(2). Link to source: https://doi.org/10.1086/716700 

Methane Guiding Principles Partnership. (n.d.). Reducing methane emissions on a global scale. Retrieved August 16, 2024 from Link to source: https://methaneguidingprinciples.org/ 

MethaneSAT. (2024). Solving a crucial climate challenge. Retrieved September 2, 2024 Link to source: https://www.methanesat.org/satellite/ 

Michanowicz, D. R., Lebel, E. D., Domen, J. K., Hill, L. A. L., Jaeger, J. M., Schiff, J. E., Krieger, E. M., Banan, Z., Goldman, J. S. W., Nordgaard, C. L., & Shonkoff, S. B.C. (2021). Methane and health-damaging air pollutants from the oil and gas sector: Bridging 10 years of scientific understanding. PSE Healthy EnergyLink to source: https://www.psehealthyenergy.org/work/methane-and-health-damaging-air-pollutants-from-oil-and-gas/ 

Mills, G., Sharps, K., Simpson, D., Pleijel, H., Frei, M., Burkey, K., Emberson, L., Cuddling, J., Broberg, M., Feng, Z., Kobayashi, K. & Agrawal, M. (2018). Closing the global ozone yield gap: Quantification and cobenefits for multistress tolerance. Global Change Biology24(10), 4869-4893. Link to source: https://doi.org/10.1111/gcb.14381 

Moore, C. W., Zielinska, B., Pétron, G., & Jackson, R. B. (2014). Air impacts of increased natural gas acquisition, processing, and use: A critical review. Environmental Science & Technology48(15), 8349–8359. Link to source: https://doi.org/10.1021/es4053472

Motte, J., Alvarenga, R. A., Thybaut, J. W., & Dewulf, J. (2021). Quantification of the global and regional impacts of gas flaring on human health via spatial differentiation. Environmental Pollution291, 118213. Link to source: https://doi.org/10.1016/j.envpol.2021.118213 

National Atmospheric and Ocean Agency (2024). Carbon cycle greenhouse gases in CH4. Retrieved July 19, 2024. Link to source: https://gml.noaa.gov/ccgg/trends_ch4/

Ocko, I. B., Sun, T., Shindell, D., Oppenheimer, M. Hristov, A. N., Pacala, S. W., Mauzerall, D. L., Xu, Y. & Hamburg, S. P. (2021). Acting rapidly to deploy readily available methane mitigation measures by sector can immediately slow global warming. Environmental Research, 16(5). Link to source: https://doi.org/10.1088/1748-9326/abf9c8 

Odjugo, P. A. O. & Osemwenkhae, E. J. (2009). Natural gas flaring affects microclimate and reduces maize (Zea mays) yield.. International Journal of Agriculture and Biology11(4), 408-412. Link to source: https://www.cabidigitallibrary.org/doi/full/10.5555/20093194660

Oil and Gas Climate Initiative. (2023). Building towards net zero. Link to source: https://www.ogci.com/progress-report/building-towards-net-zero 

Olczak, M., Piebalgs, A., & Balcombe, P. (2023). A global review of methane policies reveals that only 13% of emissions are covered with unclear effectiveness. One Earth, 6(5), 519–535. Link to source: https://doi.org/10.1016/j.oneear.2023.04.009

Pembina Institute. (2024). Comments on environment and climate change Canada’s (ECCC) regulations amending the regulations respecting reduction in the release of methane and certain volatile organic compounds (upstream oil and gas sector). Link to source: https://www.pembina.org/reports/2024-02-joint-methane-submission-eccc.pdf 

Project Drawdown. (2021). Climate solutions at work. Link to source: https://drawdown.org/publications/climate-solutions-at-work 

Project Drawdown. (2022). Legal job function action guide. Link to source: https://drawdown.org/programs/drawdown-labs/job-function-action-guides/legal 

Project Drawdown. (2023). Government relations and public policy job function action guide. Link to source: https://drawdown.org/programs/drawdown-labs/job-function-action-guides/government-relations-and-public-policy 

Project Drawdown. (2024, May 29). Unsung (climate) hero: The business case for curbing methane | presented by Stephan Nicoleau [video]. YouTube. Link to source: https://www.youtube.com/watch?v=Y5y0i-RMfJ0 

Ramya, A., Dhevagi, P., Poornima, R., Avudainayagam, S., Watanabe, M., & Agathokleous, E. (2023). Effect of ozone stress on crop productivity: A threat to food security. Environmental Research, 236(2), 116816. Link to source: https://doi.org/10.1016/j.envres.2023.116816 

Ravikumar, A. P., & Brandt, A. R. (2017). Designing better methane mitigation policies: The challenge of distributed small sources in the natural gas sector. Environmental Research Letters, 12(4), 044023. Link to source: https://doi.org/10.1088/1748-9326/aa6791

Rissman, J. (2021). Benefits of the build back better act’s methane fee. Energy Innovation. Link to source: https://energyinnovation.org/wp-content/uploads/2021/10/Benefits-of-the-Build-Back-Better-Act-Methane-Fee.pdf 

Sampedro, J., Waldhoff, S., Sarofim, M., & Van Dingenen, R. (2023). Marginal damage of methane emissions: Ozone impacts on agriculture. Environmental and Resource Economics84(4), 1095-1126. Link to source: https://doi.org/10.1007/s10640-022-00750-6 

Schiffner, D., Kecinski, M., & Mohapatra, S. (2021). An updated look at petroleum well leaks, ineffective policies and the social cost of methane in Canada’s largest oil-producing province. Climatic Change, 164(3-4). Link to source: https://doi.org/10.1007/s10584-021-03044-w

Schmeisser, L., Tecza, A., Huffman, M., Bylsma, S., Delang, M., Stanger, J., Conway, TJ, and Gordon, D. (2024). Fossil Fuel Operations Sector: Oil and Gas Production and Transport Emissions [Data set]. RMI, Climate TRACE Emissions Inventory. Retrieved April 18, 2025 from Link to source: https://climatetrace.org 

Shindell, D., Sadavarte, P., Aben, I., Bredariol, T. O., Dreyfus, G., Höglund-Isaksson, L., Poulter, B., Saunois, M., Schmidt, G. A., Szopa, S., Rentz, K., Parsons, L., Qu, Z., Faluvegi, G., & Maasakkers, J. D. (2024). The methane imperative. FrontiersLink to source: https://www.frontiersin.org/journals/science/articles/10.3389/fsci.2024.1349770/full

Smith, C., Nicholls, Z. R. J., Armour, K., Collins, W., Forster, P., Meinshausen, M., Palmer, M. D., & Watanabe, M. (2021). The earth’s energy budget, climate feedbacks, and climate sensitivity supplementary material (climate change 2021: The physical science basis. Contribution of working group I to the sixth assessment report of the Intergovernmental Panel on Climate Change). Intergovernmental Panel on Climate Change (IPCC). Link to source: https://www.ipcc.ch/ 

Tai, A. P., Sadiq, M., Pang, J. Y., Yung, D. H., & Feng, Z. (2021). Impacts of surface ozone pollution on global crop yields: Comparing different ozone exposure metrics and incorporating co-effects of CO2Frontiers in Sustainable Food Systems5, 534616. Link to source: https://doi.org/10.3389/fsufs.2021.534616 

Tradewater. (2023). Methane. Retrieved August 16, 2024, from Link to source: https://www.ogci.com/progress-report/building-towards-net-zero 

Tran, H., Polka, E., Buonocore, J. J., Roy, A., Trask, B., Hull, H., & Arunachalam, S. (2024). Air quality and health impacts of onshore oil and gas flaring and venting activities estimated using refined satellite‐based emissions. GeoHealth8(3), e2023GH000938. Link to source: https://doi.org/10.1029/2023GH000938 

UN Environment Program. (2021). Global methane assessment: Benefits and costs of mitigating methane emissions. Link to source: https://www.unep.org/resources/report/global-methane-assessment-benefits-and-costs-mitigating-methane-emissions 

UN Environment Program. (2024). An eye on methane: Invisible but not unseen. Link to source: https://www.unep.org/interactives/eye-on-methane-2024/ 

U.S. Department of Commerce, Commercial Law Development Programme. (2023). Methane abatement for oil and gas - handbook for policymakers. Link to source: https://cldp.doc.gov/sites/default/files/2023-09/CLDP%20Methane%20Abatement%20Handbook.pdf

U.S. Energy Information Administration. (2024). What countries are the top producers and consumers of oil? Link to source: https://www.eia.gov/tools/faqs/faq.php?id=709&t=6 

U.S. Environmental Protection Agency. (2019). Global non-CO2 greenhouse gas emission projections & mitigation 2015 - 2050Link to source: https://www.epa.gov/ozone-layer-protection/transitioning-low-gwp-alternatives-residential-and-commercial-air

Van Dingenen, R., Crippa, M., Maenhout, G., Guizzardi, D., & Dentener, F. (2018). Global trends of methane emissions and their impacts on ozone concentrations. Joint Research Commission (European Commission)Link to source: https://op.europa.eu/en/publication-detail/-/publication/c40e6fc4-dbf9-11e8-afb3-01aa75ed71a1/language-en

Wang, J., Fallurin, J., Peltier, M., Conway, TJ, and Gordon, D. (2024). Fossil Fuel Operations Sector: Refining Emissions [Data set]. RMI, Climate TRACE Emissions Inventory. Retrieved April 18, 2025 from Link to source: https://climatetrace.org 

World Bank Group. (2023). What you need to know about abatement costs and decarbonizationLink to source: https://www.worldbank.org/en/news/feature/2023/04/20/what-you-need-to-know-about-abatement-costs-and-decarbonisation 

World Bank Group. (2024). Global flaring and methane reduction partnership (GFMR). Retrieved August 16, 2024, from Link to source: https://www.worldbank.org/en/programs/gasflaringreduction 

Credits

Lead Fellow

  • Jason Lam

Contributors

  • Ruthie Burrows, Ph.D.

  • James Gerber, Ph.D.

  • Yusuf Jameel, Ph.D.

  • Daniel Jasper

  • Alex Sweeney

Internal Reviewers

  • Aiyana Bodi

  • Hannah Henkin

  • Ted Otte

  • Amanda D. Smith, Ph.D.

  • Paul C. West, Ph.D.

  • James Gerber, Ph.D.

Effectiveness

Each Mt of methane that is not emitted avoids 81.2 million t CO₂‑eq on a 20-yr basis and 27.9 million t CO₂‑eq on a 100-yr basis (Smith et al., 2021). The GWP of methane is shown in Table 1. If the methane is burned (converted into CO₂ ), the contribution to climate change will still be less than that of methane released directly into the atmosphere. Methane abatement can have a more immediate impact on future global temperature rise because it has a larger and faster warming effect than CO₂. Mitigating methane emissions in the near term can give us more time for reducing GHG emissions in hard-to-abate sectors.

left_text_column_width

Table 1. Effectiveness at reducing emissions.

Unit: t CO₂‑eq /Mt of methane abated

100-yr GWP 27,900,000
20-yr GWP 81,200,000
Left Text Column Width
Cost

The cost of methane abatement will vary depending on the type of O&G production, the methane content of the O&G resource, and the strategies used to address it. We averaged the costs for various abatement strategies; methane content is sufficiently high to utilize methane abatement strategies, and energy infrastructure is available to utilize abated methane. The initial cost to abate 1 Mt of methane is US$594 million, the revenue is about US$193 million, and the overall net savings over a 30-yr amortization period is US$173 million. This means that reducing O&G methane emissions offers a net economic gain for O&G producers. We were not able to find operating cost information for the solution, meaning the net economic gain may be lower in practice. 

We considered the baseline scenario where O&G producers do not have systems or practices in place to monitor or stop methane from escaping to the atmosphere and found very limited cost data. We assumed baseline costs to be 0 for initial costs, operational costs, and revenue because current practices and infrastructure are releasing methane to the atmosphere as a part of their existing cost of doing business. 

Many of the initial cost data for methane abatement come from studies estimating how much capital would be required to reach methane emission targets for the O&G industry. These costs are for the global scale of O&G methane abatement and not from the point of view of an individual O&G producer. These studies do not go into detail about the cost of specific abatement strategies or their potential revenues. The context and assumptions are difficult to identify, since the abatement strategies must be tailored to each site. Ocko et al (2021) noted that most (around 80%) of economically feasible methane abatement actions are from the O&G sector. 

Table 2 shows the costs per t CO₂‑eq. The value of the methane sold, instead of released, will often bring in revenue that covers the costs of abatement. Refer to the Appendix for information on the proportion of strategies that O&G producers could implement at low to no cost.

left_text_column_width

Table 2. Net cost per unit of climate impact.

Unit: 2023 US$/t CO₂‑eq

Median (100-yr basis) -6.20
Left Text Column Width
Learning Curve

Many of the technology solutions for reducing methane emissions are mature, and we were unable to find literature suggesting the costs to implement these solutions will fall in the future. There may be efficiencies to be gained in LDAR, but little research offers insights into the costs of LDAR programs (Delphi Group, 2017, ICF, 2016). 

left_text_column_width
Speed of Action

Speed of action refers to how quickly a climate solution physically affects the atmosphere after it is deployed. This is different from speed of deployment, which is the pace at which solutions are adopted.

At Project Drawdown, we define the speed of action for each climate solution as emergency brake, gradual, or delayed.

Manage OIl & Gas Methane is an EMERGENCY BRAKE climate solution. It has the potential to deliver a more rapid impact than gradual and delayed solutions. Because emergency brake solutions can deliver their climate benefits quickly, they can help accelerate our efforts to address dangerous levels of climate change. For this reason, they are a high priority.

left_text_column_width
Caveats

Burning methane produces CO₂. Though the GWP is far less than that of releasing methane into the atmosphere, the practice still creates a negative climate impact. Depending on the type of O&G production, methane abatement is already practiced with natural gas production and is likely to bring added profit. However, oil producers who are not already producing methane for profit may not be able to abate methane at a profit. 

Avoiding fossil fuel extraction, transport, and use is the only way to permanently reduce emissions from O&G production. For many low- and middle-income countries (LMICs), O&G is the main source of energy, and it is challenging for them to completely eliminate O&G from their energy mix while they are simultaneously working to improve living standards. High-income countries can help LMICs develop clean energy infrastructure by providing financial and technological support. This will prevent new investments in O&G infrastructure (Laan, et al., 2024), which would result in ongoing emissions for decades. It would also allow LMICs a realistic pathway to transition away from their existing O&G usage. O&G demand must fall by 80% between 2022 and 2050 to stay in alignment with the net-zero emissions scenarios modeled by IEA (2023c). O&G methane abatement will decrease over time as the O&G industry produces less methane to be abated.

Our assessment does not include the impact of the CO₂ created from the destruction of methane.

left_text_column_width
Current Adoption

We found little literature quantifying the current adoption of methane management; much of the methane abatement research revolves around the amount of methane that needs to be abated to reach certain climate targets. Based on data from Global Methane Initiative (GMI, 2024), 0 Mt of methane was abated in 2023 but due to lack of data we consider current adoption to be not determined in Table 3.

GMI (2024) provided a conservative estimate of cumulative methane emissions abated each year, with a total of 153.6 Mt CO₂‑eq (5.51 Mt methane) abated as of 2023. The methane is given as a cumulative value to show the incremental increase in total methane abated and to avoid double counting methane abated. GMI members only cover 70% of human-caused methane emissions, and the organization does not capture methane mitigation that occurs outside of GMI members. This suggests that even in years where methane was abated, it would likely still be an underestimate of what may have actually occurred globally. The untapped potential for methane abatement suggests that O&G companies are investing in increasing natural gas production, which may be due to relatively smaller profits from abatement and nonbinding regulations (Shindell et al., 2024). 

left_text_column_width

Table 3. Current (2023) adoption level.

Unit: Mt of methane abated/yr

Median (50th percentile) not determined
Left Text Column Width
Adoption Trend

Although there is little research specifically quantifying the adoption of methane abatement strategies over time, we estimate the average adoption trend in recent years to be about 0.35 Mt/yr of methane abated. To create this estimate, we relied on GMI analysis (GMI, 2024). GMI showed methane abatement gradually increasing from 2011 to 2023, then tapering off around 2020 and beginning to decrease among its member organizations. Table 4 shows the adoption trend for O&G methane abatement.

The IEA (2025) compiled country-level reporting for GHG emissions with data up to 2024. However, we were not able to use the data for the adoption trend because the changes in methane emissions could have been due to reasons other than methane abatement. In reality, methane emissions may be affected by multiple factors such as natural disasters, political conditions, changes in O&G demand, and changes in O&G industry practices.

Oil and Gas Climate Initiative (2023) data on methane abatement to date for 12 major O&G companies indicate that methane emissions decreased 50% from 2017 to 2022; however, we cannot assume the rest of the O&G industry has made the same level of progress. 

left_text_column_width

Table 4. Adoption trend, 2011–2022.

Unit: Mt methane abated/yr

Median (50th percentile) 0.35
Left Text Column Width
Adoption Ceiling

We found an adoption ceiling of 80.7 Mt/yr of methane based on the IEA’s (2025) estimate for total methane emissions from the O&G sector. We assumed that current O&G methane emissions would remain the same into the future with no changes in O&G production or demand. Table 5 shows the adoption ceiling for O&G methane abatement.

Even in the IEA’s (2023c) highest methane abatement energy scenario, only 93% of the methane emissions are reduced by 2050. This would still leave methane emissions being released into the atmosphere by the O&G sector. Reduced O&G production will reduce the amount of methane emissions produced by the O&G sector and consequently reduce the amount of methane that needs to be controlled with methane abatement. 

left_text_column_width

Table 5. Adoption ceiling.

Unit: Mt methane abated/yr

Median (50th percentile) 80.7
Left Text Column Width
Achievable Adoption

Based on the limited data available for current adoption and adoption trend, we expect 3.26–8.84 Mt/yr of methane abated. The Achievable – Low value aligns with the IEA (2023c) baseline energy scenario (STEPS), in which partial methane abatement is used but not all technically possible methane is abated. The Achievable – High value aligns with the IEA (2023c) baseline scenario (STEPS), in which full methane abatement is employed (all technically possible methane is abated). We determined this range by taking the total methane abated in these scenarios and dividing by the difference between the target year and 2024 to determine an average amount of methane abated each year to reach the scenario target. Under both scenarios, reduced demand for O&G would reduce methane emissions produced and lower the adoption ceiling possible for methane abatement. Even in scenarios where there is reduced O&G demand, methane abatement would still be required to control fugitive methane emissions from O&G infrastructure and limit global climate change. 

The amount of methane that can be abated varies greatly depending on how much methane the O&G industry produces. If O&G production remains steady, cumulative methane abatement could be 21–81 Mt, according to the IEA energy scenarios. If O&G demand drops 80% (IEA’s Net Zero Emissions scenario), total methane emissions would decline to 18 Mt, and the use of methane abatement would reduce methane emissions further by 17 Mt, leaving only 1 Mt of methane emitted in 2050. 

There has been growing interest from governments and academia to more accurately identify methane emissions using technologies such as satellite sensing (MethaneSat, 2024); UNEP (2024) has set up a monitoring and operator’s alliance group that will share best practices among O&G producers. This alliance group has identified more than 1,200 methane releases, but only 15 responses from government or companies provided detail about the source of the emissions or whether any mitigation action was considered or taken. This shows there are still many opportunities to abate methane emissions. 

More than 150 countries (representing 50% of the world’s human-caused methane emissions) have joined the Global Methane Pledge to reduce methane emissions 30% from 2020 to 2030 (UNEP, 2021). The IEA (2023b) found that many governments already have announced or put into place measures to cut methane emissions, so we expect global methane abatement to grow. 

Conrad et al. (2023) found that the emission inventories reported by the Alberta, Canada, government underestimate the methane emissions from the O&G sector, with a large portion coming from venting. These sources of methane are relatively easier to address and can allow the O&G sector to quickly reduce methane emissions. Table 6 shows the statistical low and high achievable ranges for O&G methane abatement based on different sources for future uptake of O&G methane abatement.

left_text_column_width

Table 6. Achievable adoption.

Unit: Mt methane abated/yr

Current adoption not determined
Achievable – low 3.26
Achievable – high 8.84
Adoption ceiling 80.66
Left Text Column Width

We estimate that the O&G industry is currently abating approximately 0 Gt CO₂‑eq/yr on a 100-yr basis and 0 Gt CO₂‑eq/yr on a 20-yr basis using methane abatement strategies. 

As the O&G industry grows or shrinks its emissions, the amount of methane available to abate will change accordingly. If O&G demand and production stay constant to 2050, we estimate 0.09–0.25 Gt CO₂‑eq/yr of methane could be abated. 

However, if O&G demand drops, the methane abatement potential would drop because the O&G sector is producing less methane. This is projected in the different energy scenarios modeled by the IEA (2023). The range between the current O&G methane abatement and the adoption ceiling is shown in Table 7.

left_text_column_width

Table 7. Climate impact at different levels of adoption.

Unit: Gt CO₂‑eq/yr, 100-yr basis

Current adoption not determined
Achievable – low 0.09
Achievable – high 0.25
Adoption ceiling 2.25
Left Text Column Width
Additional Benefits

Air Quality and Health

Methane reacts with other pollutants to create ground-level ozone (Mar et al., 2022), and incomplete combustion of methane (Figure 2) releases other pollutants such as CO₂, carbon monoxide, black carbon, and volatile organic compounds (Fawole et al., 2016; Johnson and Coderre, 2012; Motte et al., 2021). These pollutants cause respiratory, reproductive, and neurological diseases; cancer; and premature death (Michanowicz et al., 2021; Motte et al., 2021; Tran et al., 2024), so reducing methane release can improve human health. Reducing or stopping flaring at a small number of the largest active sites can significantly reduce air pollution (Anejionu et al., 2015; Johnson and Coderre, 2012). Van Dingenen et al. (2018) estimate that ambitious methane reduction could prevent 70,000 to 130,000 ozone-related deaths worldwide each year.

left_text_column_width

Figure 2. Air pollutants emitted along the O&G life cycle (Moore et al., 2014). BTEX = benzene, toluene, ethylbenzene, xylene.

Image
Diagram listing air pollutants emitted along the oil and gas life cycle

Source: Moore, C. W., Zielinska, B., Pétron, G., & Jackson, R. B. (2014). Air impacts of increased natural gas acquisition, processing, and use: A critical review. Environmental Science & Technology48(15), 8349–8359. Link to source: https://doi.org/10.1021/es4053472

Enable Download
On
Risks

If natural gas prices drop there would be less economic reason for industries to voluntarily abate methane (IEA, 2021). Without policy support enforcing the use of methane abatement technologies, methane could continue to be released into the atmosphere. The use of methane abatement will be needed regardless of whether O&G demand remains the same or decreases over time because it has an immediate effect on reducing global temperature rise in the near term.

left_text_column_width
Interactions with Other Solutions

Reinforcing

Managing O&G methane can reinforce other solutions that reduce the amount of methane released to the atmosphere. The use of solutions such as applying changes to operations and maintenance; converting, replacing, and installing devices; and LDAR in the O&G industry can help demonstrate the effectiveness and economic case for methane abatement elsewhere and build momentum for adoption of methane abatement in other sectors. 

left_text_column_width

Competing

Managing O&G methane has the potential to compete with solutions that provide clean electricity and solutions that focus on fuel switching in transportation because this solution increases O&G supply and can reduce the cost of O&G products. As a result, it could prolong the use of fossil fuels and slow down the transition to clean electricity.

left_text_column_width
Dashboard

Solution Basics

Mt methane abated

t CO₂-eq (100-yr)/unit
2.79×10⁷
units/yr
Current Not Determined 03.268.84
Achievable (Low to High)

Climate Impact

Gt CO₂-eq (100-yr)/yr
Current Not Determined 0.090.25
US$ per t CO₂-eq
-6
Emergency Brake

CH₄, N₂O, BC

Trade-offs

Methane abatement could increase the use of O&G resources without a broader strategy to reduce reliance on O&G as an energy resource. The use of methane abatement strategies to extend the use of existing O&G infrastructure, or building new O&G infrastructure, will not result in a net decrease in emissions. Beck et al. (2020) found that more than 57% of the GHG emissions from the O&G supply chain are from methane emissions, while the rest is due to CO₂ emissions (15% from the extraction process and 28% from O&G energy use). Even with methane mitigation, continued use of O&G will generate CO₂ emissions and will contribute to global temperature rise. 

left_text_column_width
Mt CO2–eq/yr
< 50
50–100
100–200
200–300
> 300
Refining
Production
Transport

Annual emissions from oil and gas sources, 2024

Globally, oil and gas sources, including production, refining, and transport, were responsible for 81 Mt out of the 354 Mt of anthropogenic methane emissions in 2024. This is equivalent to 2,250 Mt CO2-eq based on a 100-year GWP time scale. Methane emissions occur throughout the supply chain due to equipment imperfections, leaks, and intentional venting.

International Energy Agency. (2025). Global Methane tracker 2025: Data tools. Link to source: https://www.iea.org/data-and-statistics/data-tools/methane-tracker

Schmeisser, L., Tecza, A., Huffman, M., Bylsma, S., Delang, M., Stanger, J., Conway, TJ, and Gordon, D. (2024). Fossil fuel operations sector: Oil and gas production and transport emissions [Data set]. RMI, Climate TRACE Emissions Inventory. Retrieved April 18, 2025 from Link to source: https://climatetrace.org

Wang, J., Fallurin, J., Peltier, M., Conway, TJ, and Gordon, D. (2024). Fossil fuel operations sector: Refining emissions [Data set]. RMI, Climate TRACE Emissions Inventory. Retrieved April 18, 2025 from Link to source: https://climatetrace.org

Mt CO2–eq/yr
< 50
50–100
100–200
200–300
> 300
Refining
Production
Transport

Annual emissions from oil and gas sources, 2024

Globally, oil and gas sources, including production, refining, and transport, were responsible for 81 Mt out of the 354 Mt of anthropogenic methane emissions in 2024. This is equivalent to 2,250 Mt CO2-eq based on a 100-year GWP time scale. Methane emissions occur throughout the supply chain due to equipment imperfections, leaks, and intentional venting.

International Energy Agency. (2025). Global Methane tracker 2025: Data tools. Link to source: https://www.iea.org/data-and-statistics/data-tools/methane-tracker

Schmeisser, L., Tecza, A., Huffman, M., Bylsma, S., Delang, M., Stanger, J., Conway, TJ, and Gordon, D. (2024). Fossil fuel operations sector: Oil and gas production and transport emissions [Data set]. RMI, Climate TRACE Emissions Inventory. Retrieved April 18, 2025 from Link to source: https://climatetrace.org

Wang, J., Fallurin, J., Peltier, M., Conway, TJ, and Gordon, D. (2024). Fossil fuel operations sector: Refining emissions [Data set]. RMI, Climate TRACE Emissions Inventory. Retrieved April 18, 2025 from Link to source: https://climatetrace.org

Maps Introduction

Methane abatement is recommended for all oil and gas (O&G) production. The levels of achievable abatement can vary geographically, depending on the extraction technology used (i.e., conventional drilling versus hydraulic fracturing). The Middle East, Europe, Asia, and North America are among the largest O&G producers and have the highest related methane emissions, according to the IEA (2025). Research from Shindell et al. (2024) found that North America, Russia, and several countries in the Middle East and Africa have the most methane abatement potential in O&G. O&G methane abatement could be accelerated if technologies and strategies used in high-income countries are shared with other O&G producing countries.

Action Word
Manage
Solution Title
Oil & Gas Methane
Classification
Highly Recommended
Lawmakers and Policymakers
  • Hold well owners accountable for harm caused to the public and environment.
  • Introduce performance goals for emissions reductions.
  • Use economic measures such as taxes or financial incentives.
  • Regulate key aspects of abatement, such as the use of LDAR, and enforce existing regulations.
  • Utilize data-driven public information programs such as collecting and publishing monitoring and reporting data (“naming and shaming”).
  • Distribute information to operators, such as technology options that fit relevant regulations. 
Practitioners
  • Shift business models toward 100% renewable energy.
  • Detect and repair methane leaks.
  • Implement device conversion, replacement, and installation and LDAR.
  • Change operations and maintenance practices to reduce or recover vented methane.
  • Implement zero-tolerance policies for methane leaks.
  • Increase transparency on emissions and practices.
  • Join cross-company and industry coalitions that facilitate implementation.
Business Leaders
  • Eliminate major methane O&G emitters in your value chains or pressure them to improve performance.
  • Create a plan to transition to renewable energy.
  • Center methane in net-zero strategies, such as establishing internal methane pricing mechanisms and requiring suppliers to meet standards for monitoring and reducing methane emissions in your operations.
  • Identify technology partners that are monitoring and reducing methane emissions and make market commitments.
  • If your company is participating in the voluntary carbon market, look into funding projects that plug methane leaks.
  • Proactively collaborate with government and regulatory actors to support methane abatement policies.
  • Join or support transparency initiatives led by trusted third parties, such as the Oil and Gas Methane Partnership 2.0.
Nonprofit Leaders
  • Help with monitoring and reporting by, for example, utilizing satellite data.
  • Help design policies and regulations that support methane abatement.
  • Educate the public on the urgent need to abate methane.
  • Join or support efforts such as the Global Methane Alliance.
  • Encourage policymakers to create ambitious targets and regulations.
  • Pressure O&G companies to improve their practices.
  • Take or support legal action when companies do not follow relevant regulations.
  • Work with journalists and the media to support public education on the importance of methane abatement.
Investors
  • Pressure and influence portfolio companies to incorporate methane abatement into their operations, noting that this saves money and adds value for investors.
  • Provide capital for nascent methane abatement strategies and leak detection and monitoring instruments.
  • Invest in green bonds and other financial instruments that support methane abatement projects.
  • Seek impact investment opportunities such as sustainability-linked loans in entities that set methane abatement targets.
  • Invest in projects that plug methane leaks. 
Philanthropists and International Aid Agencies
  • Provide capital for methane monitoring, de-risking, and abatement in the early stages of implementation.
  • Support global, national, and local policies that reduce methane emissions.
  • Support accelerators or multilateral initiatives like the Global Methane Hub.
  • If working in a fossil fuel–producing nation, support sustainable developments in other sectors of the economy.
  • Explore opportunities to fund the plugging of abandoned oil or gas wells that leak methane.
  • Advance awareness of the public health and climate threats from the O&G industry.
  • Join, create, or participate in partnerships or certification programs dedicated to managing oil and gas methane.
Thought Leaders
  • Provide technical assistance (e.g., monitoring and reporting) to businesses, government agencies, and other entities working to reduce methane emissions.
  • Help design policies and regulations that support methane abatement.
  • Analyze historical emissions patterns to identify and publicize successful programs.
  • Educate the public on the urgent need to abate methane.
  • Advocate to policymakers for more ambitious targets and regulations.
  • Pressure O&G companies to improve their practices.
  • Join, create, or participate in partnerships or certification programs dedicated to managing oil and gas methane.
Technologists and Researchers
  • Develop new LDAR technologies that reduce cost and required capacity.
  • Develop new technologies for measuring and verifying emissions.
  • Conduct longitudinal studies to measure emissions against objectives or means of enforcement. 
Communities, Households, and Individuals
  • If you are impacted by harmful O&G methane management practices, document your experiences.
  • Reduce household consumption of fossil fuels by adopting clean energy sources, increasing energy efficiency, and replacing fossil fuel-powered equipment with electricity-powered equipment.
  • Share documentation of harmful practices and/or other key messages with policymakers, the press, and the public.
  • Encourage policymakers to improve regulations.
  • Support public education efforts on the urgency and need to address the issue.
Evidence Base

Consensus of effectiveness of abating methane emissions in the O&G sector: High

There is a high level of consensus about the effectiveness of methane abatement strategies. These strategies can be deployed cost effectively in many cases and have an immediate impact on reducing global temperature rise. 

Authoritative sources such as the IEA (2023d), UNEP (2021), and Global Methane Hub (2024) agree that reducing methane emissions can noticeably reduce the rate of global temperature rise. DeFabrizio et al. (2021) identified that methane abatement strategies such as LDAR, switching from natural gas fuel to electric power, using air for pneumatic devices, and using vapor recovery units could reduce O&G methane emissions by 40% by 2030 based on global 2017 O&G emissions. With methane being the second largest contributor to climate change after CO₂, reductions in methane emissions can quickly reduce global temperature rise.

Others (Marks Levi, 2022; DeFabrizio et al., 2021; Malley et al., 2023) have identified that many methane abatement strategies can use existing technologies, often at low cost. Dunsky (2023) found that implementing 24 of the least expensive abatement measures in the exploration and production phases of Canada’s O&G industry could help Canada achieve its 2030 methane target. The IEA (2023a) noted that the O&G industry was responsible for 80 Mt of methane in 2022 and had the largest potential for abatement in the near term. The O&G industry has the potential to abate 60 Mt of methane by 2030 using abatement strategies; 40% of that could be abated at no net cost based on average natural gas prices from 2017 to 2021 (IEA, 2023a).

The results presented in this document summarize findings from more than 15 reviews and meta-analyses and more than 10 original studies reflecting current evidence from two countries, primarily from the United States and Canada, and from global sources. We recognize this limited geographic scope creates bias, and hope this work inspires research and data-sharing on this topic in underrepresented regions.

left_text_column_width
Appendix

Data describing methane abatement potential in the O&G industry are often shown in marginal abatement cost curves (MACCs), which incorporate the initial cost, operating cost, revenue, and any extra costs per unit of emissions reduced as one value.

left_text_column_width

Figure A1. Marginal abatement cost curves (MACC) for methane abatement in the O&G industry (IEA, 2024).

Image
Cost curve chart.

Source: International Energy Agency (Global Methane Tracker 2024).

Enable Download
On

MACCs indicate a range of potential climate actions and show at a glance the magnitude of financial return or financial cost across that range. In Figure A1, for the blocks below the horizontal axis, the value received from the sale of the captured methane is greater than the cost of the solution employed. The width of a block shows the annual amount of emissions a technology can abate, with wider blocks abating more emissions than narrower blocks.

MACCs are useful for identifying which climate action could have the most impact at reducing emissions or which options have a net economic gain. However, they do not illustrate the intricacies that may be in play among different climate actions and can lead users to ignore hard-to-abate emissions. The World Bank (2023) identified that MACCs are useful to find which option will reduce emissions by a set percentage but less useful for reducing absolute emissions to near zero. 

left_text_column_width
Updated Date

Manage Coal Mine Methane

Sector
Other Energy
Image
Image
Worker in a coal mine
Coming Soon
Off
Summary

Managing coal mine methane (CMM) is the process of reducing methane emissions released from coal deposits and surrounding rock layers due to mining activities. CMM is naturally found in coal seams and released into the atmosphere when the coal seams are disturbed. Coal mines can continue to emit methane even after being closed or abandoned, which is known as abandoned mine methane (AMM). CMM and AMM can be captured and then utilized as a fuel source or destroyed before they reach the atmosphere [U.S. Environmental Protection Agency (U.S. EPA), 2024a].

Description for Social and Search
Managing coal mine methane (CMM) is the process of reducing methane emissions released from coal deposits and surrounding rock layers due to mining activities.
Overview

CMM is released from coal mines before, during, and after active coal mining and from coal being transported (U.S. EPA, 2024a). Atmospheric methane has a GWP of 81 on a 20-yr basis and a GWP of 28 on a 100-yr basis (Intergovernmental Panel on Climate Change [IPCC], 2023). This means methane is 81 times more effective at trapping heat than CO₂. Because methane is a short-lived climate pollutant that has a much stronger warming effect than CO₂ over a given time period, abating methane from coal mines will have a powerful near-term impact on slowing global climate change. If capturing methane is not possible, destroying the methane by burning it is preferable to releasing it.

CMM comes from five major sources throughout the coal mine’s life cycle (Figure 1): 

  1. Degasification systems – pipes installed in the ground to move methane into the atmosphere before starting mining
  2. Ventilation air – air escaping from underground mines when fresh air is used to push out underground methane during mining
  3. Surface mines – exposed coal seams that emit methane directly into the atmosphere during mining
  4. Fugitive emissions – already mined coal that emits methane while being transported or stored
  5. Abandoned or closed mines – coal seams and rock strata that are exposed to air, allowing AMM to escape through existing vents or cracks after mine closure. 

Figure 1. Percent breakdown of CMM sources in the United States, 2021.

Source: U.S. Environmental Protection Agency (2024d). Sources of coal mine methane. Retrieved November 5, 2024. https://www.epa.gov/cmop/sources-coal-mine-methane

CMM management relies on several practices and technologies to reduce the amount of methane released into the atmosphere. The CMM that is captured can be used as a fuel at high concentrations and destroyed through flaring or oxidation at low concentrations. The methane captured from degasification systems typically has a high concentration while fugitive and ventilation methane sources are low concentration. CMM management also includes leak detection and repair using satellites, drones, or other technologies to prevent methane from escaping into the atmosphere.

Underground coal mines have more methane abatement strategies available due to higher average methane concentrations and relative ease of capture. Surface coal mines are exposed directly to the atmosphere and can cover large areas, making them more difficult to abate methane, though there are technologies that can reduce CMM emissions. See the Appendix for more details on the abatement technologies specific to underground and surface coal mines.

Assan, S., & Whittle, E. (2023). In the dark: Underreporting of coal mine methane is a major climate risk. EmberLink to source: https://ember-energy.org/latest-insights/in-the-dark-underreporting-of-coal-mine-methane-is-a-major-climate-risk/#supporting-material 

Assan, S. (2024). Understanding the EU’s methane regulation for coal. EmberLink to source: https://ember-energy.org/latest-insights/eumethane-reg-explained/ 

CNX. (2024, March 20). Jumpstarting coal mine methane capture projects for beneficial end use [PowerPoint slides].Global Methane Initiative. Link to source: https://www.globalmethane.org/resources/details.aspx?resourceid=5386 

DeFabrizio, S., Glazener, W., Hart, C., Henderson, K., Kar, J., Katz, J., Pratt, M. P., Rogers, M., Ulanov, A., & Tryggestad, C. (2021). Curbing methane emissions: How five industries can counter a major climate threat. McKinsey Sustainability. Link to source: https://www.mckinsey.com/~/media/mckinsey/business%20functions/sustainability/our%20insights/curbing%20methane%20emissions%20how%20five%20industries%20can%20counter%20a%20major%20climate%20threat/curbing-methane-emissions-how-five-industries-can-counter-a-major-climate-threat-v4.pdf 

Domingo, N. G. G., Fiore, A. M., Lamarque, J.-F., Kinney, P. L., Jiang, L., Gasparrini, A., Breitner, S., Lavigne, E., Madureira, J., Masselot, P., das Neves Pereira da Silva, S., Sheng Ng, C. F., Kyselý, J., Guo, Y., Tong, S., Kan, H., Urban, A., Orru, H., Maasikmets, M., … Chen, K. (2024). Ozone-related acute excess mortality projected to increase in the absence of climate and air quality controls consistent with the Paris Agreement. One Earth (Cambridge, Mass.)7(2), 325–335. Link to source: https://doi.org/10.1016/j.oneear.2024.01.001

Fiore, A. M., Jacob, D. J., & Field, B. D. (2002). Linking ozone pollution and climate change: The case for controlling methane. Geophysical Research Letters29(19), 182-197. Link to source: https://doi.org/10.1029/2002GL015601 

Gajdzik, B., Tobór-Osadnik, K., Wolniak, R., & Grebski, W. W. (2024). European climate policy in the context of the problem of methane emissions from coal mines in Poland. Energies, 17(10), 2396. Link to source: https://doi.org/10.3390/en17102396 

Global Energy Monitor (n.d.). Global coal mine tracker. Retrieved February 27, 2025 from Link to source: https://globalenergymonitor.org/projects/global-coal-mine-tracker/ 

Global Methane Initiative. (2015). Coal mine methane country profiles. Link to source: https://www.globalmethane.org/documents/toolsres_coal_overview_fullreport.pdf 

Global Methane Initiative (2018). Expert dialogue on ventilation air methane (VAM). Link to source: https://www.globalmethane.org/documents/res_coal_VAM_Dialogue_Report_20181025.pdf 

Global Methane Initiative (2024a). 2023 Accomplishments in methane mitigation, recovery, and use through U.S.-supported international efforts. Link to source: https://www.epa.gov/system/files/documents/2024-12/epa430r24009-fy23-accomplishments-report.pdf 

Global Methane Initiative (2024b). International coal mine methane project list. Link to source: https://globalmethane.org/resources/details.aspx?resourceid=1981 

Hong, C., Mueller, N. D., Burney, J. A., Zhang, Y., AghaKouchak, A., Moore, F. C., Qin, Y., Tong, D., & Davis, S. J. (2020). Impacts of ozone and climate change on yields of perennial crops in California. Nature Food1(3), 166–172. Link to source: https://doi.org/10.1038/s43016-020-0043-8 

Intergovernmental Panel on Climate Change (IPCC). (2023). In: Climate change 2023: Synthesis report. Contribution of working groups I, II and III to the sixth assessment report of the intergovernmental panel on climate change [core writing team, H. Lee and J. Romero (eds.)]. IPCC, Geneva, Switzerland, pp. 1–34, doi: 10.59327/IPCC/AR6-9789291691647.001 Link to source: https://www.ipcc.ch/report/ar6/syr/ 

International Energy Agency. (2021). Global methane tracker 2021: Methane abatement and regulation. Link to source: https://www.iea.org/reports/methane-tracker-2021/methane-abatement-and-regulation 

International Energy Agency. (2023a). Net zero roadmap: A global pathway to keep the 1.5℃ goal in reach - 2023 update. Link to source: https://www.iea.org/reports/net-zero-roadmap-a-global-pathway-to-keep-the-15-0c-goal-in-reach 

International Energy Agency. (2023b). Strategies to reduce emissions from coal supply. Global Methane Tracker 2023. Link to source: https://www.iea.org/reports/global-methane-tracker-2023/strategies-to-reduce-emissions-from-coal-supply 

International Energy Agency. (2023c). The imperative of cutting methane from fossil fuels. Link to source: https://www.iea.org/reports/the-imperative-of-cutting-methane-from-fossil-fuels 

International Energy Agency. (2023d). Global methane tracker 2023: Overview. Link to source: https://www.iea.org/reports/global-methane-tracker-2023/overview 

International Energy Agency. (2024a). Global methane tracker documentation 2024 version. Link to source: https://iea.blob.core.windows.net/assets/d42fc095-f706-422a-9008-6b9e4e1ee616/GlobalMethaneTracker_Documentation.pdf 

International Energy Agency. (2024b). Methane tracker: Data tools. Link to source: https://www.iea.org/data-and-statistics/data-tools/methane-tracker 

International Energy Agency. (2024c). World energy outlook 2024. Link to source: https://www.iea.org/reports/world-energy-outlook-2024 

International Energy Agency. (2025). Global methane tracker documentation 2025 version. Link to source: https://iea.blob.core.windows.net/assets/2c0cf2d5-3910-46bc-a271-1367edfed212/GlobalMethaneTracker2025.pdf 

Kholod, N., Evans, M., Pilcher, R. C., Roshchanka, V., Ruiz, F., Coté, M., & Collings, R. (2020). Global methane emissions from coal mining to continue growing even with declining coal production. Journal of Cleaner Production256. Link to source: https://doi.org/10.1016/j.jclepro.2020.120489 

Lewis, C., Tate, R.D., and Mei, D.L. (2024). Fuel operations sector: Coal mining emissions methodology [Data set]. WattTime and Global Energy Monitor, Climate TRACE Emissions Inventory. Retrieved April 18, 2025, from Link to source: https://climatetrace.org 

Malley, C. S., Borgford-Parnell, N. Haeussling, S., Howard, L. C., Lefèvre E. N., & Kuylenstierna J. C. I. (2023). A roadmap to achieve the global methane pledge. Environmental Research: Climate, 2(1). Link to source: https://doi.org/10.1088/2752-5295/acb4b4 

Mar, K. A., Unger, C., Walderdorff, L., & Butler, T. (2022). Beyond CO2 equivalence: The impacts of methane on climate, ecosystems, and health. Environmental Science & Policy134, 127–136. Link to source: https://doi.org/10.1016/j.envsci.2022.03.027 

MethaneSAT. (2024). Solving a crucial climate challenge. Retrieved September 2, 2024, from Link to source: https://www.methanesat.org/satellite/ 

Mills, G., Sharps, K., Simpson, D., Pleijel, H., Frei, M., Burkey, K., Emberson, L., Cuddling, J., Broberg, M., Feng, Z., Kobayashi, K. & Agrawal, M. (2018). Closing the global ozone yield gap: Quantification and cobenefits for multistress tolerance. Global Change Biology24(10), 4869–4893. Link to source: https://doi.org/10.1111/gcb.14381 

Ocko, I. B., Sun, T., Shindell, D., Oppenheimer, M. Hristov, A. N., Pacala, S. W., Mauzerall, D. L., Xu, Y. & Hamburg, S. P. (2021). Acting rapidly to deploy readily available methane mitigation measures by sector can immediately slow global warming. Environmental Research, 16(5). Link to source: https://doi.org/10.1088/1748-9326/abf9c8 

Ramya, A., Dhevagi, P., Poornima, R., Avudainayagam, S., Watanabe, M., & Agathokleous, E. (2023). Effect of ozone stress on crop productivity: A threat to food security. Environmental Research, 236(2), 116816. Link to source: https://doi.org/10.1016/j.envres.2023.116816 

Roshchanka, V., Evans, M., Ruiz, F., & Kholod, N. (2017). A strategic approach to selecting policy mechanisms for addressing coal mine methane emissions: A case study on Kazakhstan. Environmental Science & Policy78, 185–192. Link to source: https://doi.org/10.1016/j.envsci.2017.08.005 

Roshchanka, V., & Talkington, C. (2022). Effective monitoring, reporting and verification of methane emissions in the coal industry and the linkage to methane mitigation. Link to source: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4298409

Rystad Energy. (2023, October 18). Methane tracking technologies study [PowerPoint slides]. Environmental Defense Fund. Link to source: https://www.edf.org/sites/default/files/documents/Methane%20Tracking%20Technologies%20Study%20Oct%2018%202023.pdf 

Sampedro, J., Waldhoff, S., Sarofim, M., & Van Dingenen, R. (2023). Marginal damage of methane emissions: Ozone impacts on agriculture. Environmental and Resource Economics84(4), 1095–1126. Link to source: https://doi.org/10.1007/s10640-022-00750-6 

Setiawan, D. & Wright, C. (2024). The risks of ignoring methane emissions in coal mining. EmberLink to source: https://ember-energy.org/latest-insights/the-risks-of-ignoring-methane-emissions-in-coal-mining/#supporting-material 

Shindell, D., Sadavarte, P., Aben, I., Bredariol, T. O., Dreyfus, G., Höglund-Isaksson, L., Poulter, B., Saunois, M., Schmidt, G. A., Szopa, S., Rentz, K., Parsons, L., Qu, Z., Faluvegi, G., & Maasakkers, J. D. (2024). The methane imperative. Frontiers. Link to source: https://www.frontiersin.org/journals/science/articles/10.3389/fsci.2024.1349770/full

Silvia, F., Talia, V., & Di Matteo, M. (2021). Coal mining and policy responses: Are externalities appropriately addressed? A meta-analysis. Environmental Science & Policy126, 39–47. Link to source: https://doi.org/10.1016/j.envsci.2021.09.013

Smith, C., Nicholls, Z. R. J., Armour, K., Collins, W., Forster, P., Meinshausen, M., Palmer, M. D., & Watanabe, M. (2021). The earth’s energy budget, climate feedbacks, and climate sensitivity supplementary material (climate change 2021: The physical science basis. Contribution of working group I to the sixth assessment report of the Intergovernmental Panel on Climate Change). Intergovernmental Panel on Climate Change (IPCC). Link to source: https://www.ipcc.ch/ 

Tai, A. P., Sadiq, M., Pang, J. Y., Yung, D. H., & Feng, Z. (2021). Impacts of surface ozone pollution on global crop yields: comparing different ozone exposure metrics and incorporating co-effects of CO2Frontiers in Sustainable Food Systems5, 534616. Link to source: https://doi.org/10.3389/fsufs.2021.534616 

Tao, S., Chen, S., & Pan, Z. (2019). Current status, challenges, and policy suggestions for coalbed methane industry development in China: A review. Energy Science & Engineering7(4), 1059–1074. Link to source: https://doi.org/10.1002/ese3.358

Tate, R. D., (2022). Bigger than oil or gas? Sizing up coal mine methane. Global Energy MonitorLink to source: https://globalenergymonitor.org/wp-content/uploads/2022/03/GEM_CCM2022_final.pdf 

United Nations Economic Commission for Europe (UNECE). (2019). Best practice guidance for effective methane recovery and use from abandoned coal mines. Link to source: https://unece.org/fileadmin/DAM/energy/images/CMM/CMM_CE/Best_Practice_Guidance_for_Effective_Methane_Recovery_and_Use_from_Abandoned_Coal_Mines_FINAL__with_covers_.pdf 

United Nations Economic Commission for Europe (UNECE). (2022). Best practice guidance for effective management of coal mine methane at national level: Monitoring, reporting, verification and mitigation. Link to source: https://globalmethane.org/documents/Best%20Practice%20Guidance%20for%20Effective%20Management%20of%20Coal%20Mine%20Methane%20at%20National%20Level%20Monitoring,%20Reporting,%20Verification%20and%20Mitigation.pdf 

United Nations Environment Program. (2022). Coal mine methane science studies road map. Link to source: https://www.unep.org/resources/other-evaluation-reportsdocuments/coal-mine-methane-science-studies-road-map 

U.S. Center for Disease Control and Prevention, (2024, September 25). Mining fires and explosions. Link to source: https://www.cdc.gov/niosh/mining/topics/fires-explosions.html 

U.S. Environmental Protection Agency (2019). Global non-CO2 greenhouse gas emission projections & mitigation 2015–2050. Link to source: https://www.epa.gov/sites/default/files/2019-09/documents/epa_non-co2_greenhouse_gases_rpt-epa430r19010.pdf 

U.S. Environmental Protection Agency (2024a). About coal mine methane. Retrieved November 5, 2024. Link to source: https://www.epa.gov/cmop/about-coal-mine-methane 

U.S. Environmental Protection Agency (2024b). Coalbed methane outreach program accomplishments. Link to source: https://www.epa.gov/cmop/coalbed-methane-outreach-program-accomplishments 

U.S. Environmental Protection Agency (2024c). GHGRP underground coal mines. Retrieved November 5, 2024. Link to source: https://www.epa.gov/ghgreporting/ghgrp-underground-coal-mines 

U.S. Environmental Protection Agency (2024d). Sources of coal mine methane. Retrieved November 5, 2024. Link to source: https://www.epa.gov/cmop/sources-coal-mine-methane 

Ward, K., Mountain State Spotlight, Mierjeski, A. & Scott Pham. (2023). In the game of musical mines, environmental damage takes a back seat. ProPublica. Link to source: https://www.propublica.org/article/west-virginia-coal-blackjewel-bankruptcy-pollution 

Zhu, R., Khanna, N., Gordon, J., Dai, F., & Lin, J. (2023). Abandoned coal mine methane reduction. Berkeley Lab. Link to source: https://ccci.berkeley.edu/sites/default/files/Abandonded%20Coal%20Mines_Final%20%28EN%29.pdf 

Credits

Lead Fellow

  • Jason Lam

Contributors

  • James Gerber, Ph.D.

  • Yusuf Jameel, Ph.D. 

  • Ruthie Burrows, Ph.D.

  • Daniel Jasper

  • Alex Sweeney

Internal Reviewers

  • Sarah Gleeson, Ph.D.

  • Aiyana Bodi

  • Hannah Henkin

  • Ted Otte

  • Amanda D. Smith, Ph.D.

  • Paul C. West, Ph.D.

Effectiveness

Each 1 Mt of methane that is not emitted avoids 81.2 Mt CO₂‑eq on a 20-yr basis and 27.9 Mt CO₂‑eq on a 100-yr basis (Smith et al., 2021). The GWP of methane is shown in Table 1. If methane is converted into CO₂ through burning, the contribution to global climate change will still be less than if it were released into the atmosphere. Methane abatement can have a more immediate impact on future global temperature rise because it has a larger and faster warming effect than CO₂. Mitigating methane emissions in the near term can give us more time for reducing GHG emissions in hard-to-abate sectors.

left_text_column_width

Table 1. Effectiveness at reducing emissions.

Unit: t CO₂‑eq/Mt methane abated

100-yr GWP 27,900,000
20-yr GWP 81,200,000
Left Text Column Width
Cost

The cost of methane abatement will vary depending on the type of coal mine, the methane content of the coal seam, the strategies used, and the availability of financial support for methane abatement. For our analysis, we average the costs for various feasible abatement strategies under two general assumptions: sufficiently high methane content for any of the major abatement strategies to be applied (International Energy Agency [IEA], 2024a) and the ability to use the abated methane on-site or sell it to natural gas companies. The initial cost to abate 1 Mt of methane is US$1.5 billion, the operating cost is about US$130 million, revenue is about US$260 million and the overall net savings over a 30-yr amortization period is US$90 million. We were only able to find revenue information from the IEA (2023b, 2024a), meaning the net cost could be different than shown here due to the site specific nature of methane abatement strategies. 

We considered the baseline scenario to be coal mining practices without methane abatement; all cost estimates here are relative to that scenario.

Cost data were limited for this solution. The available costs for a specific abatement strategy were normalized according to the cost of abating one Mt of methane, and it was assumed that a single strategy abated all of the methane for the coal mine. This results in an overestimate of the effectiveness of any individual strategy. In reality, multiple strategies are likely to be used. The costs shown in Table 2 are for the global scale of coal methane abatement and not from the point of view of an individual coal producer. Many studies that look at global coal methane abatement put multiple abatement strategies together and do not go into detail about the individual technology costs. The IEA (2024a) included costs for individual CMM abatement strategies; however, the costs were only applicable for coal mines that produce enough methane for it to be economically feasible to deploy the specific abatement strategy. Flaring is an effective strategy for destroying captured methane, but will not create revenue in the absence of a carbon market. For more details on important aspects for coal methane abatement strategies, refer to the Appendix.

left_text_column_width

Table 2. Cost per unit climate impact.

Unit: 2023 US$/t CO₂‑eq, 100-yr basis

Median -3.17
Left Text Column Width
Learning Curve

Many of the solutions for reducing methane emissions from coal mining are mature. Research from Rystad (2023) found that technologies for abating CMM emissions, such as drainage gas utilization, sealing and rerouting, and flaring, were considered mature in Australian coal mines. Regenerative thermal oxidation technology is in commercial use for destroying volatile organic compounds and can be used for destroying ventilation air methane (VAM), but the manufacturers have little interest in improving the technology for use in coal mines without confirmed markets (GMI, 2018; Rystad, 2023). We do not foresee the costs of implementing these solutions falling in the future. CMM regulations may encourage manufacturers to improve oxidation technology, but the technology is already used commercially, so there may not be large efficiency gains.

left_text_column_width
Speed of Action

Speed of action refers to how quickly a climate solution physically affects the atmosphere after it is deployed. This is different from speed of deployment, which is the pace at which solutions are adopted.

At Project Drawdown, we define the speed of action for each climate solution as emergency brake, gradual, or delayed.

Manage Coal Mine Methane is an EMERGENCY BRAKE climate solution. It has the potential to deliver a more rapid impact than gradual and delayed solutions. Because emergency brake solutions can deliver their climate benefits quickly, they can help accelerate our efforts to address dangerous levels of climate change. For this reason, they are a high priority.

left_text_column_width
Caveats

CMM abatement consists of capturing methane that would otherwise be released into the atmosphere. If the methane is burned, CO₂ will be emitted as a byproduct; however, this provides a net climate benefit compared to the methane that would be emitted. CMM emissions management can be avoided by not extracting, transporting, or using coal in the first place. 

As coal demand drops, the number of closed or abandoned coal mines will increase. These mines will continue to release AMM into the atmosphere for many decades. Sealing underground mines can stop methane from being released, but seals have been known to fail and require ongoing monitoring to verify methane is not escaping (Kholod et al., 2020). Gas collection systems can be used to capture AMM, but the CO₂ produced will need to be captured for complete emission reductions. Flooding underground coal mines is very effective at stopping methane from being released; however, there are concerns about water contamination (McKinsey, 2021).

Our assessment does not include the impact of the CO₂ created from the destruction of methane.

left_text_column_width
Current Adoption

We estimated that the coal sector abated 0.59 Mt of methane in 2023 and released 40 Mt in 2024 (IEA, 2025). Reports from U.S. EPA (2022), and Global Methane Initiative (GMI, 2023) estimated the amount of CMM abated to date, and the statistical ranges from the sources are shown in Table 3. However, most of the data focused on coal mines in the United States. The U.S. EPA (2024b) stated that 0.3 Mt of methane was captured in 2021 due to the Coalbed Methane Outreach Program. CMM is controlled at coal mines for health and safety reasons, but only in 2024 was regulation introduced for reducing methane emissions from the energy sector in the European Union (Assan, 2024).


GMI (2024a) reports that 0.79 Mt of methane was abated from coal mines in 2023 among its member countries. The organization includes 48 GMI member countries but covers only 70% of human-caused methane emissions and does not track methane mitigation that has occurred outside of the group. GMI (2024b) currently lists more than 471 CMM abatement projects in 20 countries worldwide. According to Global Energy Monitor (n.d.), more than 6,000 coal mines were active in more than 70 countries as of April 2024. With these data sources, we consider our analysis of the current adoption of CMM abatement as conservative. 

left_text_column_width

Table 3. Current (2023) adoption level.

Unit: Mt/yr of methane abated

25th percentile 0.49
Mean 0.59
Median (50th percentile) 0.59
75th percentile 0.69
Left Text Column Width
Adoption Trend

Although there are few data specifically quantifying the adoption trend of methane abatement strategies, we estimate the median adoption trend to be about 0.60 Mt/yr of methane abated.  Table 4 shows the adoption trend for CMM abatement.

GMI (2024) reported methane abatement staying relatively stable 2016–2023 at about 0.8 Mt/yr, with a small increase to 1.0 Mt of methane in 2019–2022 before decreasing back to 0.8 Mt in 2023, causing the adoption trend to be higher than the current adoption value we state above. The U.S. EPA (2024a) Coalbed Methane Outreach Program showed fairly stable emission reductions of around 0.33 Mt/yr between 2016 and 2022. The annual methane emission abatement from this program gradually increased 2003–2011, followed by a continued trend of methane abatement at a slower rate 2011–2022. The IEA (2024b) found that the U.S. coal industry emitted almost 2.0 Mt of methane in 2023, and 60% of those emissions could be abated.

left_text_column_width

Table 4. (2016–2023) adoption trend.

Unit: Mt/yr methane abated

25th percentile 0.46
Mean 0.60
Median (50th percentile) 0.60
75th percentile 0.73
Left Text Column Width
Adoption Ceiling

We found an adoption ceiling of about 40.3 Mt/yr of methane based on the IEA’s (2025) estimate for total methane emissions from the coal mine sector. We assumed that current CMM emissions would remain the same into the future with no changes in coal production or demand. Table 5 shows the adoption ceiling for coal mine methane abatement.

Even in the IEA’s (2023c) highest methane abatement energy scenario, only 93% of the methane emissions are reduced by 2050. This would still leave the coal sector releasing methane into the atmosphere. Reduced coal production will reduce the amount of methane emissions produced by the coal sector and consequently reduce the amount of methane that needs to be controlled with methane abatement. However, methane abatement will still be important for abating the remaining CMM emissions and the growing proportion of AMM emissions (IEA, 2023c, Kholod et al., 2020). 

left_text_column_width

Table 5. Adoption ceiling.

Unit: Mt/yr of methane abated

Median (50th percentile) 40.30
Left Text Column Width
Achievable Adoption

The amount of methane that could be abated from CMM varies greatly depending on global coal demand. We estimate an achievable adoption range of 2.83–4.40 Mt/yr of methane abated. The Achievable – Low value aligns with the IEA (2023c) Announced Pledges scenario, in which all announced climate policies are met and full methane abatement is employed, but net-zero emissions are not achieved. This range of high and low values was determined by taking the total methane abated in these scenarios and dividing by the difference between the target year and 2024 to determine an average amount of methane abated each year to reach the scenario target. 

The Achievable – High value aligns with Ocko et al.(2021), where all economically and technically feasible methane abatement is employed by 2030. DeFabrizio et al. (2021) estimated that the degasification of underground mines and flaring would be the source of most methane abatement from coal mining, with degasification of surface mines abating a smaller proportion of methane over time. However, research from Kholod et al. (2020) suggested there will be an increase in AMM emissions as coal mines are closed. Methane emissions from AMM are not extensively monitored right now, and there is limited research on the topic. Methane abatement strategies will be needed to abate growing AMM emissions (Zhu et al, 2023). 

In addition, some research suggested CMM is being underestimated, with global emissions being as high as 67 Mt/yr (Assan & Whittle, 2023). If coal demand drops by 90%, as outlined in IEA’s Net Zero Emissions scenario, total coal methane emissions would decline to 3 Mt/yr, and the use of methane abatement would reduce emissions by 2 Mt/yr, leaving only 1 Mt/yr of CMM emitted in 2050. 

With growing interest and investment from governments and academia in identifying methane leaks using technologies such as satellite sensing (MethaneSAT, 2024), the opportunities for methane abatement will increase. Over 150 countries have joined the Global Methane Pledge (representing 50% of the world’s human-caused methane) to reduce methane emissions by 30% of 2020 emissions by 2030 (United Nations Environment Programme [UNEP], 2021). The IEA (2023a) found that even in a baseline scenario, many governments have announced or put in place measures to cut methane emissions; we would expect a growing trend in global methane abatement to occur. The IEA (2024c) states that in all scenarios global coal demand will decrease. Table 6 shows the statistical low and high achievable ranges for CMM abatement based on different sources for future uptake of CMM abatement.

left_text_column_width

Table 6. Range of achievable adoption levels.

Unit: Mt/yr methane abated

Current adoption 0.59
Achievable – low 2.83
Achievable – high 4.40
Adoption ceiling 40.30
Left Text Column Width

We estimate that the coal industry is currently abating approximately 0.02 Gt CO₂‑eq/yr on a 100-yr basis and 0.03 Gt CO₂‑eq/yr on a 20-yr basis using methane abatement strategies. This is about 1% of total methane emissions emitted in 2024 (IEA, 2025). 

As the coal industry opens or closes coal mines due to changing coal demand, the opportunities for CMM abatement projects will change along with it. If coal demand gradually drops by 2050, more than 0.12 Gt CO₂‑eq/yr of methane could be abated. However, if coal demand drops more quickly from the implementation of energy and climate policies, the methane abatement potential would drop because the coal sector is producing less methane. This is projected in the different energy scenarios modeled by the IEA (2023c). The range between the current CMM abatement and the adoption ceiling is shown in Table 7.

left_text_column_width

Table 7. Climate impact at different levels of adoption.

Unit: Gt CO₂‑eq/yr, 100-yr basis

Current adoption 0.02
Achievable – low 0.08
Achievable – high 0.12
Adoption ceiling 1.12
Left Text Column Width
Additional Benefits

Health and Air Quality

Around 10% of anthropogenic methane comes from coal mines (IEA, 2024a). Methane released from coal mines contributes to ground-level ozone pollution, which can harm lung function, exacerbating conditions like asthma, bronchitis, and emphysema, and can contribute to premature mortality (Mar et al., 2022). Domingo et al. (2024) estimated that ground-level ozone accounted for about 6,600 excess deaths per year in about 400 cities globally. 

Methane released from coal mines also endangers workers’ safety in the mines, increasing the possibility of explosions, which are a significant source of fatalities and injuries (CDC, 2024). In the United States, from 2006 to 2011, mine explosions were responsible for about 25% of fatalities in the mining industry (CDC, 2024). While advances in methane mitigation technologies can prevent explosions and fatalities, mines across LMICs usually do not have methane mitigation protocols in place. Installing methane abatement strategies can potentially protect workers from such explosions (Tate, 2022).

left_text_column_width
Risks

CMM abatement strategies could be implemented on a voluntary basis due to favorable natural gas prices, but if natural gas prices drop there is less economic incentive to abate methane (IEA, 2021). Without policy support enforcing methane abatement, emissions could continue, especially from VAM and AMM, which are more difficult to capture and use. Ensuring long-term monitoring and abatement of CMM can be challenging if coal mines are abandoned due to owners going bankrupt, leaving environmental damages unpaid for and remediation up to nearby communities or taxpayers (Ward et al., 2023). 

left_text_column_width
Interactions with Other Solutions

Reinforcing

Managing coal methane can have a positive impact on other solutions that reduce methane release to the atmosphere. The use of technologies such as degasification systems, methane destruction, and Leak Detection and Repair (LDAR) in the coal mine sector can demonstrate the effectiveness and economic case for employing methane abatement. This would build momentum for the widespread adoption of methane abatement because successes in the coal sector can be leveraged and applied to other sectors. In addition, LDAR is a key part in identifying where we can abate methane emissions and lessons learned from the coal sector can be applied to other sites, as well as identifying methane leaks in general. 

left_text_column_width

Competing

CMM management interacts negatively with solutions that provide clean electricity as this solution captures methane that can be used as an energy source, prolonging the use of natural gas infrastructure and reducing the cost of methane as a fuel source. 

left_text_column_width
Dashboard

Solution Basics

Mt methane abated

t CO₂-eq (100-yr)/unit
2.79×10⁷
units/yr
Current 0.59 02.834.4
Achievable (Low to High)

Climate Impact

Gt CO₂-eq (100-yr)/yr
Current 0.02 0.080.12
US$ per t CO₂-eq
-3
Emergency Brake

CH₄ , N₂O, BC

Trade-offs

Methane abatement strategies are a powerful tool to reduce methane emissions; however, providing a secondary source of revenue for coal mining could increase the profitability and longevity of some coal mines. A broad strategy to reduce reliance on coal as an energy resource is needed to reduce the amount of CMM generated. Even with methane abatement strategies in place, methane used as a fuel or destroyed through flaring will still emit GHGs and contribute to global climate change.

left_text_column_width
Mt CO2–eq/yr
< 1
1–3
3–5
5–7
7–9
> 9

Annual emissions from coal mine sources, 2024

Globally, coal mines are responsible for 40 of the 354 Mt of anthropogenic methane emissions in 2024. This is equivalent to 1,116 Mt CO2-eq based on a 100-year GWP time scale. Methane emissions occur throughout the life of a coal mine and can continue after mines are closed or abandoned.

Lewis, C., Tate, R.D., and Mei, D.L. (2024). Fuel operations sector: Coal mining emissions methodology [Data set]. WattTime and Global Energy Monitor, Climate TRACE Emissions Inventory. Retrieved April 18, 2025, from Link to source: https://climatetrace.org

International Energy Agency. (2025). Global methane tracker documentation 2025 versionLink to source: https://iea.blob.core.windows.net/assets/2c0cf2d5-3910-46bc-a271-1367edfed212/GlobalMethaneTracker2025.pdf

Mt CO2–eq/yr
< 1
1–3
3–5
5–7
7–9
> 9

Annual emissions from coal mine sources, 2024

Globally, coal mines are responsible for 40 of the 354 Mt of anthropogenic methane emissions in 2024. This is equivalent to 1,116 Mt CO2-eq based on a 100-year GWP time scale. Methane emissions occur throughout the life of a coal mine and can continue after mines are closed or abandoned.

Lewis, C., Tate, R.D., and Mei, D.L. (2024). Fuel operations sector: Coal mining emissions methodology [Data set]. WattTime and Global Energy Monitor, Climate TRACE Emissions Inventory. Retrieved April 18, 2025, from Link to source: https://climatetrace.org

International Energy Agency. (2025). Global methane tracker documentation 2025 versionLink to source: https://iea.blob.core.windows.net/assets/2c0cf2d5-3910-46bc-a271-1367edfed212/GlobalMethaneTracker2025.pdf

Maps Introduction

Coal mine methane abatement is applicable in any area with coal mines. While China and the United States are the largest coal producers, Russia, Ukraine, Kazakhstan, and India also generated more than 10 Mt CO₂‑eq (100-yr) from coal mines in 2015 (GMI, 2015).

Levels of methane emissions from coal mines can vary geographically. The greatest abatement potential is in China, Kazakhstan, Australia, and several countries in Eastern Europe and Africa (Shindell et al., 2024). However, methane abatement is recommended for all coal mining activities, and high-income countries are in a position to share supportive technologies and practices for coal mine methane abatement with other coal-producing countries to reduce methane emissions from active and abandoned or closed mines.

Action Word
Manage
Solution Title
Coal Mine Methane
Classification
Highly Recommended
Lawmakers and Policymakers
  • Create policies based on global best practices, such as the IEA’s roadmap to implementing CMM regulations.
  • Require all coal mines to measure and report on methane emissions.
  • Invest in monitoring, reporting, and verification technologies, such as satellites, and support low-income countries in monitoring emissions.
  • Provide financial incentives, such as reduced taxes, subsidies, grants, low-interest loans, and feed-in tariffs, for adopting drainage and capture technologies suitable for the region.
  • Require closed and abandoned mines to be sealed and monitored.
  • Compile or update global inventories of the status of abandoned and closed mines.
  • When possible, do not approve the construction of new coal mines.
  • Require low-emitting technologies for equipment, coal processing, storage, and transportation.
  • Develop infrastructure to use captured CMM, including gas processing, grid connections, and industry capacity.
  • Establish clear resource rights to methane emitted from active and abandoned mines.
  • Include CMM recovery in Nationally Determined Contributions and other international reporting instruments.
  • Provide educational resources to industry leaders, including potential reduction options, workshops, actionable reports, direct engagements, and demonstrations.
  • Join, support, or create public initiatives such as the Global Methane Initiative, Global Methane Pledge, or Global Methane Hub.
Practitioners
  • Use or destroy CMM to the maximum extent.
  • Work with policymakers to create policies based on global best practices, such as the IEA’s roadmap to implementing CMM regulations.
  • Measure and report on methane emissions.
  • Invest in monitoring, reporting, and verification technologies, such as satellites, and support low-income countries to monitor emissions.
  • Take advantage of any financial incentives, such as reduced taxes, subsidies, grants, low-interest loans, and feed-in tariffs, to adopt drainage and capture technologies suitable for the region.
  • Ensure abandoned and closed mines are sealed and monitored.
  • Compile or update global inventories of the status of abandoned and closed mines.
  • When possible, do not approve the construction of new coal mines.
  • Develop infrastructure to use captured CMM, including gas processing, grid connections, and industry capacity.
  • Assist policymakers in establishing clear resource rights to methane emitted from active and abandoned mines.
  • Use existing drainage systems for gas capture, utilization, and sale.
  • Improve technologies, such as thermal oxidizers, for the purposes of VAM destruction.
  • Partner with carbon markets that are linked to CMM abatement.
  • Improve CMM emissions modeling and monitoring, including satellites and on-the-ground methods.
  • Invest in research and development to improve extraction, capture, storage, transportation, and utilization technologies.
  • Join, support, or create public initiatives such as the GMI, Global Methane Pledge, or Global Methane Hub.
  • Educate industry leaders, including sharing potential reduction options, through workshops, actionable reports, direct engagements, and demonstrations.
Business Leaders
  • Ensure that operations or investments that include coal mines utilize or destroy methane emissions.
  • Do not invest, plan to use, or create agreements with new coal mines.
  • Invest in high-integrity carbon markets that are linked to CMM abatement.
  • Invest in R&D to improve the efficiency of extraction, capture, storage, transportation, and utilization technologies.
  • Develop infrastructure to use captured CMM, including gas processing, grid connections, and industry capacity.
  • Utilize existing data sets such as the UN’s International Methane Emissions Observatory to inform current and future decisions.
  • Join, support, or create public initiatives such as the Global Methane Initiative, Global Methane Pledge, or Global Methane Hub.
Nonprofit Leaders
  • Advocate for regulating CMM emissions and local policies based on global best practices, such as the IEA’s roadmap to implementing CMM regulations.
  • Assist coal mines in measuring and reporting or conducting independent studies on CMM emissions.
  • Advocate for financial incentives, such as reduced taxes, subsidies, grants, low-interest loans, and feed-in tariffs, for the adoption of drainage and capture technologies suitable for the region.
  • Advocate to stop the construction of new coal mines.
  • Compile or update global inventories of the status of abandoned and closed mines.
  • Help create high-integrity carbon markets that are linked to CMM abatement.
  • Provide educational resources to industry leaders, including potential reduction options, workshops, actionable reports, direct engagements, and demonstrations.
  • Join, support, or create public initiatives such as the Global Methane Initiative, Global Methane Pledge, or Global Methane Hub.
Investors
  • Invest in monitoring, reporting, and verification technologies, such as satellites, and support low-income countries to monitor emissions.
  • Provide financial support through low-interest loans or green bonds to adopt drainage and capture technologies suitable for the region.
  • Do not invest in constructing new coal mines and require any existing investments to provide transparent emissions data and time-based reduction strategies.
  • Invest in R&D to improve the efficiency of extraction, capture, storage, transportation, and utilization technologies.
  • Develop infrastructure to use captured CMM, including gas processing, grid connections, and industry capacity.
  • Invest in high-integrity carbon markets that are linked to CMM abatement.
  • Join, support, or create public initiatives such as the Global Methane Initiative, Global Methane Pledge, or Global Methane Hub.
Philanthropists and International Aid Agencies
  • Invest in monitoring, reporting, and verification technologies, such as satellites, and support low-income countries to monitor emissions.
  • Provide financial support to adopt drainage and capture technologies suitable for the region.
  • Invest in R&D to improve the efficiency of extraction, capture, storage, transportation, and utilization technologies.
  • Assist in establishing clear resource rights to methane emitted from active and abandoned mines.
  • Help create high-integrity carbon markets that are linked to CMM abatement.
  • Join, support, or create public initiatives such as the Global Methane Initiative, Global Methane Pledge, or Global Methane Hub.
  • Provide educational resources to industry leaders, including potential reduction options, workshops, actionable reports, direct engagements, and demonstrations.
  • Advocate for regulating CMM emissions and local policies based on global best practices, such as the IEA’s roadmap to implementing CMM regulations.
  • Compile or update global inventories of the status of abandoned and closed mines.
Thought Leaders
  • Advocate for regulating CMM emissions and local policies based on global best practices, such as the IEA’s roadmap to implementing CMM regulations.
  • Assist coal mines in measuring and reporting or conducting independent studies on CMM emissions.
  • Advocate for financial incentives, such as reduced taxes, subsidies, grants, low-interest loans, and feed-in tariffs, for adopting drainage and capture technologies suitable for the region.
  • Assist in establishing clear resource rights to methane emitted from active and abandoned mines.
  • Advocate to stop the construction of new coal mines.
  • Compile or update global inventories of the status of abandoned and closed mines.
  • Help create high-integrity carbon markets that are linked to CMM abatement.
  • Provide educational resources to industry leaders, including potential reduction options, workshops, actionable reports, direct engagements, and demonstrations.
  • Join, support, or create public initiatives such as the Global Methane Initiative, Global Methane Pledge, or Global Methane Hub.
Technologists and Researchers
  • Improve CMM emissions modeling and monitoring, including satellites and on-the-ground methods.
  • Compile or update global inventories of the status of abandoned and closed mines.
  • Develop infrastructure to use captured CMM, including gas processing, grid connections, and industry capacity.
  • Discover ways to utilize existing drainage systems for gas capture, utilization, and sale.
  • Improve technologies, such as thermal oxidizers, for the purposes of VAM destruction.
  • Develop new ways to improve extraction, capture, storage, transportation, and utilization technologies.
  • Develop verifiable carbon credits using technology such as blockchain to improve the integrity of carbon markets.
  • Improve the efficiency of mining equipment to reduce maintenance requirements and costs.
Communities, Households, and Individuals
  • Advocate for regulating CMM emissions and local policies based on global best practices, such as the IEA’s roadmap to implementing CMM regulations.
  • Advocate for financial incentives, such as reduced taxes, subsidies, grants, low-interest loans, and feed-in tariffs, for the adoption of drainage and capture technologies suitable for the region.
  • Advocate to stop the construction of new coal mines.
  • Assist coal mines in measuring and reporting or conducting independent studies on CMM emissions.
  • Provide educational resources to industry leaders, including potential reduction options, workshops, actionable reports, direct engagements, and demonstrations.
  • Join, support, or create public initiatives such as the Global Methane Initiative, Global Methane Pledge, or Global Methane Hub.
Evidence Base

Consensus of effectiveness of abating methane emissions from coal mines: High

There is a high level of consensus about the effectiveness of methane abatement strategies. These strategies can be deployed cost effectively in many cases and have an immediate impact on reducing global temperature rise. 

Authoritative sources such as the IEA (2024c) and UNEP (2021) agree that reducing methane emissions can noticeably slow global climate change. Methane is a short-lived climate pollutant that has a much stronger warming effect than CO₂ over a given time period. IEA (2023d) identified that close to 55% (22 Mt) of CMM emissions could be abated with existing technologies. However, there are significant challenges in measuring and recovering methane emissions in the coal sector. Analysis from Assan & Whittle (2023) found that global CMM emissions could be significantly higher than reported, 38–67 Mt/yr compared with the 40 Mt/yr reported by the IEA (2025).

The IEA (2023a) noted that more than half of CMM emissions could be abated through utilization, flaring, or oxidation technologies, with abatement being more practical for underground mines. Many studies (DeFabrizio et al., 2021; Malley et al., 2023; Shindell et al., 2024) have shown that methane abatement strategies can use existing technologies, often at low cost. In some countries, coal operators already identify the location and sources of CMM to meet health and safety regulations (Assan & Whittle, 2023); Setiawan & Wright (2024) noted that existing technologies such as pre-mine drainage and VAM mitigation have been proven in various places around the world over the past 25 years. According to UNEP (2021), coal methane abatement could reduce emissions by 12–25 Mt/yr, with up to 98% of the measures implemented at low cost. However, costs may vary significantly based on the available infrastructure and characteristics of an individual coal mine.

The results presented in this document summarize findings from 21 reviews and meta-analyses and 20 original studies reflecting current evidence from three countries (Australia, China, and the United States) as well as from sources examining global CMM emissions. We recognize this limited geographic scope creates bias, and hope this work inspires research and data sharing on this topic in underrepresented regions.

left_text_column_width
Appendix

CMM abatement strategy constraints:

The type of coal mine, the amount of methane produced, and the available infrastructure greatly affect which abatement strategies are economical. Underground coal mines often produce more CMM and are likely to capture CMM using degasification systems and use it for productive purposes such as electricity generation or selling captured methane. However, VAM, which is a major part of CMM emissions, can be challenging to use for productive purposes due to the low methane concentrations. VAM requires regenerative thermal oxidation technology to effectively destroy and with more gassy coal mines. According to the IEA (2023b), technologies such as flaring and drained CMM can be used at less gassy mines with lower initial capital cost. Capturing methane for destruction has the disadvantage of not creating a source of revenue to offset the capital cost of methane abatement without a form of carbon markets in place. 

More than 60% of methane-related emissions from coal mining are from the ventilation of underground coal mines. Large amounts of fresh air are used to lower the concentration of methane and reduce the risk of explosions in underground mines. This makes it challenging to destroy or use the low concentrations of VAM (UNEP, 2022). It is also challenging to capture methane from surface mines because the coal is in direct contact with the atmosphere and over a larger surface area. However, thermal oxidation systems have been used to destroy VAM (U.S. EPA, 2019) and there have been examples of degasification systems used for surface mines as well (IEA, 2023b). Methane emissions from AMM can be dealt with by flooding underground mines with water (Kholod et al., 2020) or by sealing and using capture and utilization projects (Zhu et al., 2023). 

Technologies for reducing methane emissions can be divided between underground and surface coal mines:

Underground mines
  • Predainage prior to mining
  • VAM capture and utilization
  • Capture of abandoned mine gas
  • Sealing or flooding of abandoned mines 
Surface mines
  • Degasification of surface mines
  • Predrainage of surface mines

Appendix References

CNX. (2024, March 20). Jumpstarting coal mine methane capture projects for beneficial end use [PowerPoint slides].Global Methane Initiative. https://www.globalmethane.org/resources/details.aspx?resourceid=5386 

United Nations Economic Commission for Europe (UNECE). (2019). Best practice guidance for effective methane recovery and use from abandoned coal mines. https://unece.org/fileadmin/DAM/energy/images/CMM/CMM_CE/Best_Practice_Guidance_for_Effective_Methane_Recovery_and_Use_from_Abandoned_Coal_Mines_FINAL__with_covers_.pdf 

left_text_column_width
Updated Date

Mobilize Electric Cars

Image
Image
Electric car plugged into charging station
Coming Soon
Off
Summary

Electric cars are four-wheeled passenger cars that run on electricity, usually from the electricity grid and stored in onboard batteries (i.e., not including fuel cell electric cars). This definition includes electric pickup trucks, motorhomes, and other such vehicles. It does not include two-wheeled vehicles or hybrid cars (which combine an electric motor with a gasoline or diesel engine). It also does not include freight and commercial vehicles, such as electric heavy trucks, buses, and ambulances. We define Mobilize Electric Cars as replacing fossil fuel–powered cars (i.e., those powered by internal combustion engines) with electric equivalents, as well as building out the necessary infrastructure (especially charging stations) to support them.

Description for Social and Search
Mobilize Electric Cars is a Highly Recommended climate solution. Electric cars slash air pollution and greenhouse gases, especially when powered by clean grids.
Overview

Electric cars provide the same functionality as fossil fuel–powered cars, but use electric motors rather than fuel-burning engines. The energy for the motors comes from an onboard battery, which is normally charged using electricity from the grid.

Electric cars have no direct tailpipe emissions, since electric motors do not burn fuel to function. The grid electricity used to charge their batteries may have come from fossil fuel-burning power plants, meaning electric cars are not entirely free of direct emissions. However, in most electrical grids, even those that mainly generate electricity from fossil fuels, electric cars usually still produce fewer emissions per pkm than fossil fuel–powered cars. This is for three reasons. First, large, fixed power plants and efficient electric grids can convert fossil fuels into useful energy more efficiently than smaller, mobile internal combustion engines in cars. In extreme cases, such as grids powered entirely by coal, this might not be the case, particularly if the grid has a lot of transmission and distribution losses. Second, the powertrain of an electric car delivers electricity from the battery to the wheels much more efficiently than the powertrain of a fossil fuel–powered car, which wastes much more energy as heat (International Transport Forum, 2020; Mofolasayo, 2023; Verma et al., 2022). Third, electric cars’ powertrains enable regenerative braking, where the kinetic energy of the car’s motion is put back into the battery when the driver brakes (Yang et al., 2024).

Electric cars reduce emissions of CO₂,  methane, and nitrous oxide to the atmosphere by replacing fuel-powered cars, which emit these gases from their tailpipes.

APEC. (2024). Connecting Traveler Choice with Climate Outcomes: Innovative Greenhouse Gas Emissions Reduction Policies and Practices in the APEC Region through Traveler Behavioral Change. Link to source: https://www.apec.org/publications/2024/09/connecting-traveler-choice-with-climate-outcomes--innovative-greenhouse-gas-emissions-reduction-policies-and-practices-in-the-apec-region-through-traveler-behavioral-change 

Agusdinata, D. B., Liu, W., Eakin, H., & Romero, H. (2018). Socio-environmental impacts of lithium mineral extraction: Towards a research agenda. Environmental Research Letters13(12). Scopus.Link to source: https://doi.org/10.1088/1748-9326/aae9b1

Anenberg, S. C., Miller, J., Henze, D., & Minjares, R. (2019, February 26). A global snapshot of the air pollution-related health impacts of transportation sector emissions in 2010 and 2015. International Council on Clean Transportation. Link to source: https://theicct.org/publication/a-global-snapshot-of-the-air-pollution-related-health-impacts-of-transportation-sector-emissions-in-2010-and-2015/

Bloomberg New Energy Finance. (2024). Electric Vehicle Outlook 2024. Bloomberg. Link to source: https://about.bnef.com/electric-vehicle-outlook/

Carey, J. (2023). The other benefit of electric vehicles. Proceedings of the National Academy of Sciences120(3), e2220923120. Link to source: https://doi.org/10.1073/pnas.2220923120

Castelvecchi, D. (2021). Electric cars and batteries: How will the world produce enough? Nature596(7872), 336–339. Link to source: https://doi.org/10.1038/d41586-021-02222-1

Choma, E. F., Evans, J. S., Hammitt, J. K., Gómez-Ibáñez, J. A., & Spengler, J. D. (2020). Assessing the health impacts of electric vehicles through air pollution in the United States. Environment International144, 106015. Link to source: https://doi.org/10.1016/j.envint.2020.106015

Dillman, K. J., Árnadóttir, Á., Heinonen, J., Czepkiewicz, M., & Davíðsdóttir, B. (2020). Review and Meta-Analysis of EVs: Embodied Emissions and Environmental Breakeven. Sustainability12(22), Article 22. Link to source: https://doi.org/10.3390/su12229390

Electric vehicle database. (2024). Energy consumption of full electric vehicles. Electric Vehicle Database. Link to source: https://ev-database.org/cheatsheet/energy-consumption-electric-car

Fakhrooeian, P., Pitz, V., & Scheppat, B. (2024). Systematic Evaluation of Possible Maximum Loads Caused by Electric Vehicle Charging and Heat Pumps and Their Effects on Common Structures of German Low-Voltage Grids. World Electric Vehicle Journal15(2), 49. Link to source: https://doi.org/10.3390/wevj15020049

Garcia, E., Johnston, J., McConnell, R., Palinkas, L., & Eckel, S. P. (2023). California’s early transition to electric vehicles: Observed health and air quality co-benefits. The Science of the Total Environment867, 161761. Link to source: https://doi.org/10.1016/j.scitotenv.2023.161761

Goetzel, N., & Hasanuzzaman, M. (2022). An empirical analysis of electric vehicle cost trends: A case study in Germany. Research in Transportation Business & Management43, 100825. Link to source: https://doi.org/10.1016/j.rtbm.2022.100825

Guarnieri, M., & Balmes, J. R. (2014). Outdoor air pollution and asthma. Lancet383(9928), 1581–1592. Link to source: https://doi.org/10.1016/S0140-6736(14)60617-6

IEA. (2022). Electric Vehicles: Total Cost of Ownership Tool. IEA. Link to source: https://www.iea.org/data-and-statistics/data-tools/electric-vehicles-total-cost-of-ownership-tool

IEA. (2024). Global EV Outlook 2024. International Energy Agency. Link to source: https://www.iea.org/reports/global-ev-outlook-2024

International Council on Clean Transportation. (2024). Clearing the air: Why EVs can outperform conventional vehicles in freezing temperatures. International Council on Clean Transportation. Link to source: https://theicct.org/clearing-the-air-why-evs-can-outperform-conventional-vehicles-in-freezing-temperatures-oct24/

International Transport Forum. (2020). Good to Go? Assessing the Environmental Performance of New Mobility (Corporate Partnership Board). OECD. Link to source: https://www.itf-oecd.org/sites/default/files/docs/environmental-performance-new-mobility.pdf

IPCC. (2022). Mitigation of Climate Change. Contribution of Working Group III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge. Link to source: https://www.ipcc.ch/report/ar6/wg3/downloads/report/IPCC_AR6_WGIII_FullReport.pdf

Jones, S. J. (2019). If electric cars are the answer, what was the question? British Medical Bulletin129(1), 13–23. Link to source: https://doi.org/10.1093/bmb/ldy044

Kerr, G. H., Goldberg, D. L., & Anenberg, S. C. (2021). COVID-19 pandemic reveals persistent disparities in nitrogen dioxide pollution. Proceedings of the National Academy of Sciences118(30), e2022409118. Link to source: https://doi.org/10.1073/pnas.2022409118

Kittner, N., Tsiropoulos, I., Tarvydas, D., Schmidt, O., Staffell, I., & Kammen, D. M. (2020). Chapter 9—Electric vehicles. In M. Junginger & A. Louwen (Eds.), Technological Learning in the Transition to a Low-Carbon Energy System (pp. 145–163). Academic Press. Link to source: https://doi.org/10.1016/B978-0-12-818762-3.00009-1

Larson, E., Grieg, C., Jenkins, J., Mayfield, E., Pascale, A., Zhang, C., Drossman, J., Williams, R., Pacala, S., Socolow, R., Baik, E., Birdesy, R., Duke, R., Jones, R., Haley, B., Leslie, E., Paustain, K., & Swan, A. (2021). Net-Zero America: Potential Pathways, Infrastructure, and Impacts. Princeton University. Link to source: https://lpdd.org/resources/princeton-report-net-zero-america/

Melaina, M., Bush, B., Eichman, J., Wood, E., Stright, D., Krishnan, V., Keyser, D., Mai, T., & McLaren, J. (2016). National Economic Value Assessment of Plug-in Electric Vehicles: Volume I (No. NREL/TP-5400-66980). National Renewable Energy Lab. (NREL), Golden, CO (United States). Link to source: https://doi.org/10.2172/1338175

Milovanoff, A., Posen, I. D., & MacLean, H. L. (2020). Electrification of light-duty vehicle fleet alone will not meet mitigation targets. Nature Climate Change, 1–6. Link to source: https://doi.org/10.1038/s41558-020-00921-7

Mofolasayo, A. (2023). Assessing and Managing the Direct and Indirect Emissions from Electric and Fossil-Powered Vehicles. Sustainability15(2), Article 2. Link to source: https://doi.org/10.3390/su15021138

Nguyen, C. T. P., Nguyễn, B.-H., Ta, M. C., & Trovão, J. P. F. (2023). Dual-Motor Dual-Source High Performance EV: A Comprehensive Review. Energies16(20), Article 20. Link to source: https://doi.org/10.3390/en16207048

Nickel Institute. (2021a). Asia Pacific and UK Automotive ICE vs EV Total Cost of Ownership. Link to source: https://nickelinstitute.org/media/8d993d1b8165b23/tco-asia-pacific-automotive.pdf

Nickel Institute. (2021b). European Union and UK Automotive ICE vs EV Total Cost of Ownership. Link to source: https://nickelinstitute.org/media/8d9058c08d2bcf2/avicenne-study-tco-eu-and-uk-automotive.pdf

Nickel Institute. (2021c). North American Automotive ICE vs EV Total Cost of Ownership. Link to source: https://nickelinstitute.org/media/8d993d0fd3dfd5b/tco-north-american-automotive-final.pdf

Pan, S., Yu, W., Fulton, L. M., Jung, J., Choi, Y., & Gao, H. O. (2023). Impacts of the large-scale use of passenger electric vehicles on public health in 30 US. metropolitan areas. Renewable and Sustainable Energy Reviews173, 113100. Link to source: https://doi.org/10.1016/j.rser.2022.113100

Pennington, A. F., Cornwell, C. R., Sircar, K. D., & Mirabelli, M. C. (2024). Electric vehicles and health: A scoping review. Environmental Research251, 118697. Link to source: https://doi.org/10.1016/j.envres.2024.118697

Peters, D. R., Schnell, J. L., Kinney, P. L., Naik, V., & Horton, D. E. (2020). Public health and climate benefits and trade‐offs of U.S. vehicle electrification. GeoHealth, 4, e2020GH000275. Link to source: https://doi.org/10.1029/2020GH000275 

Ravi, S. S., & Aziz, M. (2022). Utilization of Electric Vehicles for Vehicle-to-Grid Services: Progress and Perspectives. Energies15(2), Article 2. Link to source: https://doi.org/10.3390/en15020589

Ren, Y., Sun, X., Wolfram, P., Zhao, S., Tang, X., Kang, Y., Zhao, D., & Zheng, X. (2023). Hidden delays of climate mitigation benefits in the race for electric vehicle deployment. Nature Communications14(1), 3164. Link to source: https://doi.org/10.1038/s41467-023-38182-5

Requia, W. J., Mohamed, M., Higgins, C. D., Arain, A., & Ferguson, M. (2018). How clean are electric vehicles? Evidence-based review of the effects of electric mobility on air pollutants, greenhouse gas emissions and human health. Atmospheric Environment185, 64–77. Link to source: https://doi.org/10.1016/j.atmosenv.2018.04.040

Roberts, C. (2022). Easy Street for Low-Carbon Mobility? The Political Economy of Mass Electric Car Adoption. In G. Parkhurst & W. Clayton (Eds.), Electrifying Mobility: Realising a Sustainable Future for the Car (Vol. 15, pp. 13–31). Emerald Publishing Limited. Link to source: https://doi.org/10.1108/S2044-994120220000015004

Sovacool, B. K. (2019). The precarious political economy of cobalt: Balancing prosperity, poverty, and brutality in artisanal and industrial mining in the Democratic Republic of the Congo. The Extractive Industries and Society6(3), 915–939. Link to source: https://doi.org/10.1016/j.exis.2019.05.018

Szyszkowicz, M., Kousha, T., Castner, J., & Dales, R. (2018). Air pollution and emergency department visits for respiratory diseases: A multi-city case crossover study. Environmental Research163, 263–269. Link to source: https://doi.org/10.1016/j.envres.2018.01.043

Vega-Perkins, J., Newell, J. P., & Keoleian, G. (2023). Mapping electric vehicle impacts: Greenhouse gas emissions, fuel costs, and energy justice in the United States. Environmental Research Letters18(1), 014027. Link to source: https://doi.org/10.1088/1748-9326/aca4e6

Verma, S., Dwivedi, G., & Verma, P. (2022). Life cycle assessment of electric vehicles in comparison to combustion engine vehicles: A review. Materials Today: Proceedings49, 217–222. Link to source: https://doi.org/10.1016/j.matpr.2021.01.666

Weiss, M., Dekker, P., Moro, A., Scholz, H., & Patel, M. K. (2015). On the electrification of road transportation – A review of the environmental, economic, and social performance of electric two-wheelers. Transportation Research Part D: Transport and Environment41, 348–366. Link to source: https://doi.org/10.1016/j.trd.2015.09.007

WHO. (2024). Number of registered vehicles. Link to source: https://www.who.int/data/gho/data/indicators/indicator-details/GHO/number-of-registered-vehicles

Yang, C., Sun, T., Wang, W., Li, Y., Zhang, Y., & Zha, M. (2024). Regenerative braking system development and perspectives for electric vehicles: An overview. Renewable and Sustainable Energy Reviews198, 114389. Link to source: https://doi.org/10.1016/j.rser.2024.114389

Yoder, K. (2023, June 14). The environmental disaster lurking beneath your neighborhood gas station. GristLink to source: https://grist.org/accountability/gas-stations-underground-storage-tank-leaks-environmental-disaster/

Credits

Lead Fellow

  • Cameron Roberts, Ph.D.

Contributors

  • Ruthie Burrows, Ph.D.

  • James Gerber, Ph.D.

  • Daniel Jasper

  • Heather Jones, Ph.D.

  • Heather McDiarmid, Ph.D.

  • Alex Sweeney

Internal Reviewers

  • Aiyana Bodi

  • James Gerber, Ph.D.

  • Hannah Henkin

  • Jason Lam

  • Ted Otte

  • Amanda D. Smith, Ph.D.
Effectiveness

Every million pkm shifted from fossil fuel–powered cars to electric cars reduces 48.52 t CO₂‑eq on a 100-yr basis (Table 1), or 49.13 t CO₂‑eq on a 20-yr basis

We found this by collecting data on electricity consumption for a range of electric car models (Electric Vehicle Database, 2024) and multiplying it by the global average emissions per kWh of electricity generation. Fossil fuel–powered cars emit 115.3 t CO₂‑eq/million pkm on a 100-yr basis (116.4 t CO₂‑eq/million pkm on a 20-yr basis). Electric cars already have lower emissions in countries with large shares of renewable, nuclear, or hydropower generation in their electricity grids (International Transport Forum, 2020; Verma et al., 2022).

These data come disproportionately from North America and Europe, and, notably, leave out China, which has made major progress on electric cars in recent years and has many of its own makes and models. 

Electric cars today are disproportionately used in high- and upper-middle-income countries, whose electricity grids emit fewer GHG emissions than the global average per unit of electricity generated (International Energy Agency [IEA], 2024). Electric cars in use today reduce more emissions on average than the figure we have calculated. 

Electric cars have higher embodied emissions than fossil fuel–powered cars, due to the GHG-intensive process of manufacturing batteries. This gives them a carbon payback period which ranges from zero to over 10 years (Dillman et al., 2020; Ren et al., 2023).

left_text_column_width

Table 1. Effectiveness at reducing emissions.

Unit: t CO₂‑eq/million pkm, 100-yr basis

25th percentile 38.95
Mean 49.54
Median (50th percentile) 48.52
75th percentile 62.82

Shifted from fossil fuel–powered cars to electric cars, 100-yr basis.

Left Text Column Width
Cost

Including purchase price, financing, fuel and electricity costs, maintenance costs, and insurance, electric cars cost on average US$0.05 less per pkm (US$49,440/million pkm) than fuel-powered cars. This is based on a population-weighted average of the cost differential between electric and fossil fuel–powered cars in seven countries: Japan, South Korea, China, the United States, France, Germany, and the United Kingdom (Nickel Institute, 2021b, 2021c, 2021a). 

While this analysis found that electric cars are less expensive than fossil fuel–powered cars almost everywhere, the margin is often quite small. The difference is less than US$0.01/pkm (US$10,000/million pkm) in South Korea, the United States, and Germany. In some markets, electric cars are more expensive per pkm than fossil fuel–powered cars (IEA, 2022).

This amounts to savings of US$1,019/t CO₂‑eq on a 100-yr basis (Table 2), or US$1,006/t CO₂‑eq avoided emissions on a 20-yr basis). 

Our analysis does not include costs that are the same for both electric and fossil fuel–powered cars, including taxes, insurance costs, and public costs of building road infrastructure.

left_text_column_width

Table 2. Cost per unit climate impact.

Unit: 2023 US$/t CO₂‑eq, 100-yr basis

Median –1,019
Left Text Column Width
Learning Curve

For every doubling in electric car production, costs decline by approximately 23% (Table 3; Goetzel & Hasanuzzaman, 2022; Kittner et al., 2020; Weiss et al., 2015). 

In addition to manufacturing improvements and economies of scale, this reflects rapid technological advancements in battery production, which is a significant cost component of an electric powertrain (Weiss et al., 2015).

left_text_column_width

Table 3. Learning rate: drop in cost per doubling of the deployed solution.

Unit: %

25th percentile 23.00
Mean 22.84
Median (50th percentile) 23.00
75th percentile 24.00
Left Text Column Width
Speed of Action

Speed of action refers to how quickly a climate solution physically affects the atmosphere after it is deployed. This is different from speed of deployment, which is the pace at which solutions are adopted.

At Project Drawdown, we define the speed of action for each climate solution as emergency brake, gradual, or delayed.

Mobilize Electric Cars is a GRADUAL climate solution. It has a steady, linear impact on the atmosphere. The cumulative effect over time builds as a straight line.

left_text_column_width
Caveats

The effectiveness of electric cars in mitigating GHG emissions is critically dependent on the emissions associated with electricity production. In electricity grids dominated by fossil fuels, electric cars have far higher emissions than in jurisdictions with low-emission electricity generation (International Transport Forum [ITF], 2020; Intergovernmental Panel on Climate Change [IPCC], 2022; Milovanoff et al., 2020).

Electric car adoption faces a major obstacle in the form of constraints on battery production. While electric car battery production is being aggressively upscaled (IEA, 2024), building enough batteries to replace a significant fraction of fossil fuel–powered cars is an enormous challenge and will likely slow down a transition to electric cars, even if there is very high consumer demand (Milovanoff et al., 2020). 

left_text_column_width
Current Adoption

Approximately 28 million electric cars are in use worldwide (IEA, 2024). This corresponds to about 819,000 million pkm traveled by electric car worldwide each year (Table 4). We assume that all of this travel would be undertaken by a fossil fuel–powered car if the car’s occupants did not use an electric car. Adoption is much higher in some countries, such as Norway, where the share of electric cars was 29% in 2023.

To convert the IEA’s electric car estimates into pkm traveled, we needed to determine the average passenger-distance that each passenger car travels per year. Using population-weighted data from several different countries, the average car carries 1.5 people and travels an average of 29,250 pkm/yr. Multiplying this number by the number of electric cars in use gives the total travel distance shift from fossil fuel–powered cars to electric cars.

left_text_column_width

Table 4. Current (2024) adoption level.

Unit: million pkm/yr

Population-weighted mean 818,900

Implied travel shift from fossil fuel-powered cars to electric cars.

Left Text Column Width
Adoption Trend

Globally, about 104 billion pkm are displaced from fossil fuel–powered cars by electric cars every year (Table 5). The number of new electric cars purchased each year is growing at an average rate of over 10% (Bloomberg New Energy Finance, 2024; IEA, 2024), although purchase rates have declined slightly from record highs between 2020–2022. Global purchases of electric cars are still increasing by around 3.6 million cars/yr. This is based on globally representative data (Bloomberg New Energy Finance, 2024; IEA, 2024).

Despite this impressive rate of growth, electric cars still have a long way to go before they replace a large percentage of the more than 2 billion cars currently driven (WHO, 2024).

left_text_column_width

Table 5. 2023-2024 adoption trend.

Unit: million pkm/yr

Median, or population-weighted mean 104,000

Implied travel shift from fossil fuel-powered cars to electric cars.

Left Text Column Width
Adoption Ceiling

The adoption ceiling for electric cars is equal to the total passenger-distance driven by the more than 2 billion cars worldwide (WHO, 2024). Using a population-weighted mean of the average distance (in pkm) traveled per car annually, this translates to about 59 trillion pkm (Table 6).

Replacing every single fossil fuel–powered car with an electric car would require an enormous upscaling of electric car production capacity, rapid development of charging infrastructure, cost reductions to increase affordability, and technological improvements to improve suitability for more kinds of drivers and trips. It would also face cultural obstacles from drivers who are attached to fossil fuel–powered cars (Roberts, 2022).

left_text_column_width

Table 6. Adoption ceiling.

Unit: million pkm/yr

Median, or population-weighted mean 59,140,000

Implied travel shift from fossil fuel-powered cars to electric cars.

Left Text Column Width
Achievable Adoption

The achievable adoption of electric car travel ranges from about 26–47 trillion pkm displaced from fossil fuel–powered cars (Table 7).

Various organizations have produced forecasts for electric car adoption. These are not assessments of feasible adoption per se; they are instead trying to predict likely rates of adoption, given various assumptions about the future (Bloomberg New Energy Finance, 2024; IEA, 2024). However, they are useful in that they take a large number of different variables into account to make their estimates. To convert these estimates of future likely adoption into estimates of the achievable adoption range, we apply some assumptions to the numbers in the scenario projections. 

To find a high rate of electric car adoption, we assume that every country could reach the highest rate of adoption projected to occur for any country. Bloomberg New Energy Finance’s (2024) Economic Transition scenario predicts that Norway will reach an 80% electric vehicle stock share by 2040. We therefore set our high adoption rate at 80% worldwide. This corresponds to 1,617 million total electric cars in use, or 47 trillion pkm traveled by electric car. An important caveat is that with a global supply constraint in the production of electric car batteries, per-country adoption rates are somewhat zero-sum. Every electric car purchased in Norway is one that cannot be purchased elsewhere. Therefore, for the whole world to achieve an 80% electric car stock share, global electric car and battery production would have to increase radically. While this might be possible due to technological improvements or radical increases in investment, it should not be taken for granted.

To identify a lower feasible rate of electric car adoption, we simply take the highest estimate for global electric car adoption. Bloomberg’s Economic Transition scenario predicts 44% global electric car adoption by 2050. This corresponds to 890 million electric cars, or 26 trillion pkm.

left_text_column_width

Table 7. Range of achievable adoption levels.

Unit: million pkm/yr

Current adoption 818,900
Achievable – low 26020000
Achievable – high 47310000
Adoption ceiling (physical limit) 59140000
Left Text Column Width

Electric cars are currently displacing 0.040 Gt CO₂‑eq of GHG emissions from the transportation system on a 20-yr basis (Table 8), or 0.040 Gt CO₂‑eq on a 100-yr basis. 

If electric cars reach 44% of the global car stock share by 2040, as Bloomberg (2024) projects, without any change in the total number of cars on the road, they will displace 1.263 Gt CO₂‑eq GHG emissions on a 100-yr basis (1.279 Gt CO₂‑eq  on a 20-yr basis).

If electric cars globally reach 80% of car stock share, as Bloomberg projects might happen in Norway by 2040, they will displace 2.296 Gt CO₂‑eq GHG emissions on a 100-yr basis (2.325 Gt CO₂‑eq on a 20-yr basis).

If electric cars replace 100% of the global car fleet, they will displace 2.870 Gt CO₂‑eq  GHG emissions on a 100-yr basis (2.906 Gt CO₂‑eq on a 20-yr basis).

These numbers are based on the present-day average emissions intensity from electrical grids in countries with high rates of electric car adoption. If more clean energy is deployed on electricity grids, the total climate impact from electric cars will increase considerably.

left_text_column_width

Table 8. Climate impact at different levels of adoption.

Unit: Gt CO₂‑eq/yr, 100-yr basis

Current adoption 0.040
Achievable – low 1.263
Achievable – high 2.296
Adoption ceiling (physical limit) 2.870
Left Text Column Width
Additional Benefits

Health

Since electric cars do not have tailpipe emissions, they can mitigate traffic-related air pollution, which is associated with asthma, lung cancer, increased emergency department visits for respiratory disease, and increased mortality (Anenberg et al., 2019; Guarnieri & Balmes, 2014; Pan et al., 2023; Pennington et al., 2024; Requia et al., 2018; Szyszkowicz et al., 2018). Transitioning to electric cars can reduce exposure to air pollution, improve health, and prevent premature mortality (Garcia et al., 2023; Larson et al., 2021; Peters et al., 2020).

The health benefits of adopting electric cars vary spatially and partly depend upon how communities generate electricity (Choma et al., 2020), but there is evidence that they have improved health. A study in California found a reduction in emergency department visits in zip codes with an increase in zero-emissions cars (Garcia et al., 2023). By 2050, projections estimate that about 64,000–167,000 deaths could be avoided by adopting electric cars (Larson et al., 2021).

In the United States, communities with higher proportions of racial and ethnic minorities tend to be located near highways and major traffic corridors and so are disproportionately exposed to air pollution (Kerr et al., 2021). Transitioning to electric cars could improve health in marginalized urban neighborhoods that are located near highways, industry, or ports (Pennington et al., 2024). These benefits depend upon an equitable distribution of electric cars and infrastructure to support the adoption of electric cars (Garcia et al., 2023). Low-income households may not see the same savings from an electric car due to the cost and stability of electricity prices and distance to essential services (Vega-Perkins et al., 2023)

Income and Work

Adopting electric cars can reduce a household’s energy burden, or the proportion of income spent on residential energy (Vega-Perkins et al., 2023). About 90% of United States households that use a car could see a reduction in energy burden by transitioning to an electric car. Money spent to charge electric cars is more likely to stay closer to the local community where electricity is generated, whereas money spent on fossil fuels often benefits oil-producing regions. This benefits local and national economies by improving their trade balance (Melaina et al., 2016).

Water Quality

Substituting electric car charging points for gas stations can eliminate soil and water pollution from leaking underground gas tanks (Yoder, 2023). 

Air Quality

The adoption of electric cars reduces emissions of air pollutants, including sulfur oxidessulfur dioxide, and nitrous oxides, and especially carbon monoxide and volatile organic compounds. It has a smaller impact on particulate emissions (Requia et al., 2018). Some air pollution reductions are limited (particularly PM and ozone) due to heavier electric cars and pollution from brakes, tires, and wear on the batteries (Carey, 2023; Jones, 2019).

left_text_column_width
Risks

Mining minerals necessary to produce electric car batteries carries environmental and social risks. This has been associated with significant harms, particularly in lower-income countries that supply many of these minerals (Agusdinata et al., 2018; Sovacool, 2019).

Electric cars might also pose added safety risks due to their higher weight, which means they have longer stopping distances and can cause more significant damage in collisions and to pedestrians and cyclists (Jones, 2019). This risk includes dual-motor electric cars that incorporate two electric motors – one for the front axle and one for the rear – providing all-wheel drive (AWD) capabilities. The addition of a second motor increases the vehicle's weight and complexity, which can lead to higher energy consumption and reduced overall efficiency. Moreover, the increased manufacturing costs associated with dual-motor systems can result in higher purchase prices for consumers (Nguyen et al., 2023). However, this configuration enhances vehicle performance, offering improved acceleration, traction, and handling, particularly in adverse weather conditions, which are valued by some consumers. 

left_text_column_width
Interactions with Other Solutions

Reinforcing

Electric car batteries can potentially be used as stationary batteries for use as energy storage to balance electrical grids, either through vehicle-to-grid (V2G) technology or with degraded electric car batteries being installed in stationary battery farms as a form of reuse (Ravi & Aziz, 2022). 

The effectiveness of electric cars in reducing GHG emissions increases as electricity grids become cleaner, since lower-carbon electricity further reduces the emissions associated with car charging. 

left_text_column_width

Competing

Electric cars compete with heat pumps for electricity. Installing both heat pumps and electric cars could strain the electric grid’s capacity (Fakhrooeian et al., 2024).

left_text_column_width

Scaling up the production of electric cars requires more mining of critical minerals, which could affect ecosystems that are valuable carbon sinks (Agusdinata et al., 2018).

left_text_column_width

Getting travelers onto bicycles, sidewalks, public transit networks, or smaller electric vehicles (such as electric bicycles) provides a greater climate benefit than getting them into electric cars. There is an opportunity cost to deploying electric cars because those resources could otherwise be used to support these more effective solutions (APEC, 2024).

left_text_column_width
Dashboard

Solution Basics

million passenger kilometers (million pkm)

t CO₂-eq (100-yr)/unit
038.9548.52
units/yr
Current 818,900 02.602×10⁷4.731×10⁷
Achievable (Low to High)

Climate Impact

Gt CO₂-eq (100-yr)/yr
Current 0.04 1.2632.296
US$ per t CO₂-eq
-1,019
Gradual

CO₂, CH₄, N₂O, BC

Trade-offs

Electric car batteries are currently quite emissions-intensive to produce, resulting in high embodied emissions. While the embodied emissions are higher for electric cars than fossil fuel–powered cars, the results are mixed when coupling these with operating emissions. Dillman et al.’s (2020) review of the literature on this topic found that producing the average battery-electric car emits 63% more GHG emissions than the average gasoline-powered car, and 77% more GHG emissions than the average diesel-powered car. Taking their lower tailpipe emissions into account, this gives them a GHG payback period of zero to more than 10 years. In some cases, the emissions payback period is longer than the expected lifespan of the electric car, meaning it will have higher life cycle GHG emissions than a comparable gasoline or diesel-powered car. However, the International Transport Forum (ITF, 2020) found that the lifetime emissions from manufacturing, operation, and infrastructure are lower for electric cars. All of these studies relied on assumptions, including the type of car, size of battery, electricity grid, km/yr, and lifetime. 

There is some criticism against any solution that advocates for car ownership, contending that the focus should be on solutions such as Enhance Public Transit that reduce car ownership and usage. Jones (2019) noted “there is little evidence to suggest that EVs can offer the universal solution that global governments are seeking,” and that efforts to popularize electric cars “may be better directed at creating more efficient public transport systems, rather than supporting personal transportation, if the significant health disbenefits of car use during the past 150 years are to be in any way reduced.”

Milovanoff et al. (2020) offered similar criticism: “Closing the mitigation gap solely with EVs would require more than 350 million on-road EVs (90% of the fleet), half of national electricity demand, and excessive amounts of critical materials to be deployed in 2050. Improving [the] average fuel consumption of fossil fuel–powered vehicles, with stringent standards and weight control, would reduce the requirement for alternative technologies, but is unlikely to fully bridge the mitigation gap. There is therefore a need for a wide range of policies that include measures to reduce vehicle ownership and usage.”

Allocating the limited global battery supply to privately owned electric cars might undermine the deployment of other solutions that also require batteries, but are more effective at avoiding GHG emissions (Castelvecchi, 2021). These could include electric buses, electric rail, and electric bicycles.

left_text_column_width
Mt CO2-eq
0–4
4–8
8–12
12–16
16–20
> 20
No data

Annual road transportation emissions, 2024

Cars are the largest source of vehicle emissions, which are shown here for urban areas.

Kott, T., Foster, K., Villafane-Delgado, M., Loschen, W., Sicurello, P., Ghebreselassie, M., Reilly, E., and Hughes, M. (2024). Transportation sector - Global road emissions. [Data set]. The Johns Hopkins University Applied Physics Laboratory (JHU/APL), Climate TRACE Emissions Inventory. Retrieved March 12, 2025 from Link to source: https://climatetrace.org

Mt CO2-eq
0–4
4–8
8–12
12–16
16–20
> 20
No data

Annual road transportation emissions, 2024

Cars are the largest source of vehicle emissions, which are shown here for urban areas.

Kott, T., Foster, K., Villafane-Delgado, M., Loschen, W., Sicurello, P., Ghebreselassie, M., Reilly, E., and Hughes, M. (2024). Transportation sector - Global road emissions. [Data set]. The Johns Hopkins University Applied Physics Laboratory (JHU/APL), Climate TRACE Emissions Inventory. Retrieved March 12, 2025 from Link to source: https://climatetrace.org

Maps Introduction

Electric cars can effectively mitigate climate change in all geographic regions, although there is spatial variability that influences per-pkm effectiveness and potential solution uptake. Effectiveness heavily depends on the carbon intensity of the charging source, which varies greatly between and within countries. The effectiveness of electric cars decreases for larger vehicles, favored in some countries (Jones, 2019; Nguyen et al., 2023).  

The uptake of electric cars can be significantly influenced by socioeconomic factors, including the relative costs of fuels and electricity, the capacity of civil society to provide adequate charging infrastructure, and the availability of subsidies for electric vehicles.

Extreme temperatures can negatively impact vehicle range, both by slowing battery chemistry and increasing energy demands for regulating passenger compartment temperature, which can adversely affect consumers’ perceptions of electric car suitability in locations with such climates (International Council on Clean Transportation, 2024).

Electric cars are most effective in regions with low-carbon electricity grids (International Transport Forum, 2020; Verma et al., 2022). This includes countries with high hydro power (including Iceland, Norway, Sweden, and parts of Canada such as British Columbia and Quebec), nuclear energy (such as France), and renewables (including Portugal, New Zealand, and parts of the United States, including California and some of the Northwest) (IEA, 2024). Electric car adoption is growing rapidly in a number of regions. For future scaling, targeting countries with supportive policies, renewable energy potential, and growing urban populations will deliver the greatest climate benefits.

Action Word
Mobilize
Solution Title
Electric Cars
Classification
Highly Recommended
Lawmakers and Policymakers
  • Create government procurement policies to transition government fleets to electric cars.
  • Provide financial incentives such as tax breaks, subsidies, or grants for electric car production and purchases that gradually reduce as market adoption increases.
  • Provide complimentary benefits for electric car drivers, such as privileged parking areas, free tolls, and access schemes.
  • Use targeted financial incentives to assist low-income communities in purchasing electric cars and to incentivize manufacturers to produce more affordable options.
  • Develop charging infrastructure, ensuring adequate spacing between stations and equitable distribution of stations.
  • Invest in R&D or implement regulations to improve manufacturing, adoption, supply chain standards, and circularity of electric cars, particularly batteries.
  • Transition fossil fuel electricity production to renewables while promoting the transition to electric cars.
  • Disincentivize fossil fuel–powered car ownership by gradually introducing taxes, penalties, buy-back programs, or other mechanisms.
  • Offer educational resources and one-stop shops for information on electric vehicles, including demonstrations, cost savings, environmental impact, and maintenance.
  • Work with industry and labor leaders to construct new electric car plants and to transition fossil fuel–powered car manufacturing into electric car production.
  • Set regulations for sustainable use of electric car batteries and improve recycling infrastructure.
  • Join international efforts to promote and ensure that environmental and human rights standards are met for supply chains.
  • Incentivize or mandate life-cycle assessments and product labeling (e.g., Environmental Product Declarations).
  • Create, support, or join partnerships that offer information, training, and general support for electric car adoption.

Further information:

Practitioners
  • Produce and sell affordable electric car models.
  • Collaborate with dealers to provide incentives, low-interest financing, or income-based payment options.
  • Develop charging infrastructure, ensuring adequate spacing between stations and equitable distribution of stations.
  • Invest in R&D to improve manufacturing, adoption, supply chain standards, and circularity of electric cars, particularly batteries.
  • Offer educational resources and one-stop shops for information on electric cars, including demonstrations, cost savings, environmental impact, and maintenance.
  • Work with policymakers and labor leaders to construct new electric car plants and to transition fossil fuel–powered car manufacturing into electric car production.
  • Join international efforts to promote and ensure that environmental and human rights standards are met for supply chains.
  • Invest in recycling and circular economy infrastructure.
  • Conduct life-cycle assessments and ensure product labeling (e.g., Environmental Product Declarations).
  • Create, support, or join partnerships that offer information, training, and general support for electric car adoption.

Further information:

Business Leaders
  • Set company procurement policies to transition corporate fleets to electric cars.
  • Take advantage of any financial incentives such as tax breaks, subsidies, or grants for electric car purchases.
  • Create long-term purchasing agreements with electric car manufacturers to support stable demand and improve economies of scale.
  • Install charging stations and offer employee benefits for electric car drivers, such as privileged parking areas.
  • Invest in R&D to improve manufacturing, adoption, supply chain standards, and circularity of electric cars, particularly batteries.
  • Work with industry and labor leaders to transition fossil fuel–powered car manufacturing into electric car production.
  • Advocate for financial incentives and policies that promote electric car adoption.
  • Join international efforts to promote and ensure that environmental and human rights standards are met for supply chains.
  • Educate customers and investors about the company's transition to electric cars and encourage them to learn more about them.
  • Create, support, or join partnerships that offer information, training, and general support for electric car adoption.

Further information:

Nonprofit Leaders
  • Set organizational procurement policies to transition fleets to electric cars.
  • Take advantage of financial incentives such as tax breaks, subsidies, or grants for electric car purchases.
  • Advocate for financial incentives and policies that promote electric car adoption.
  • Install charging stations and offer employee benefits for electric car drivers, such as privileged parking areas.
  • Advocate for or provide improved charging infrastructure.
  • Offer workshops or support to low-income communities for purchasing and owning electric cars.
  • Work with industry and labor leaders to transition fossil fuel–powered car manufacturing into electric car production.
  • Join international efforts to promote and ensure that environmental and human rights standards are met for supply chains.
  • Advocate for regulations on lithium-ion batteries and investments in recycling facilities.
  • Offer educational resources and one-stop shops for information on electric cars, including demonstrations, cost savings, environmental impact, and maintenance.
  • Create, support, or join partnerships that offer information, training, and general support for electric car adoption.

Further information:

Investors
  • Invest in electric car companies.
  • Support portfolio companies in transitioning their corporate fleets.
  • Invest in companies that provide charging equipment or installation.
  • Invest in R&D to improve manufacturing, adoption, supply chain standards, and circularity of electric cars, particularly batteries.
  • Invest in electric car companies, associated supply chains, and end-user businesses like rideshare apps.
  • Join international efforts to promote and ensure that environmental and human rights standards are met for supply chains.
  • Create, support, or join partnerships that offer information, training, and general support for electric car adoption. 

Further information:

Philanthropists and International Aid Agencies
  • Set organizational procurement policies to transition fleets to electric cars.
  • Install charging stations and offer employee benefits for electric car drivers, such as privileged parking areas.
  • Take advantage of any financial incentives such as tax breaks, subsidies, or grants for electric car purchases.
  • Advocate for financial incentives and policies that promote electric car adoption.
  • Advocate for or provide improved charging infrastructure.
  • Offer financial services such as low-interest loans or grants for purchasing electric cars and charging equipment.
  • Offer workshops or support to low-income communities for purchasing and owning electric cars.
  • Work with industry and labor leaders to transition fossil fuel–powered car manufacturing into electric car production.
  • Join international efforts to promote and ensure that environmental and human rights standards are met for supply chains.
  • Advocate for regulations on lithium-ion batteries and investments in recycling facilities.
  • Offer educational resources and one-stop shops for information on electric cars, including demonstrations, cost savings, environmental impact, and maintenance.
  • Create, support, or join partnerships that offer information, training, and general support for electric car adoption.

Further information:

Thought Leaders
  • If purchasing a new car, buy an electric car.
  • Take advantage of financial incentives such as tax breaks, subsidies, or grants for electric car purchases.
  • Share your experiences with electric cars through social media and peer-to-peer networks, highlighting the cost savings, benefits, incentive programs, and troubleshooting tips.
  • Advocate for financial incentives and policies that promote electric car adoption.
  • Advocate for improved charging infrastructure.
  • Help improve the circularity of electric car supply chains through design, advocacy, or implementation.
  • Conduct in-depth life-cycle assessments of electric cars in particular geographies.
  • Research ways to reduce weight and improve the performance of electric cars while appealing to customers.
  • Join international efforts to promote and ensure that environmental and human rights standards are met for supply chains.
  • Create, support, or join partnerships that offer information, training, and general support for electric car adoption.

Further information:

Technologists and Researchers
  • Improve the circularity of supply chains for electric car components.
  • Reduce the amount of critical minerals required for electric car batteries.
  • Innovate low-cost methods to improve safety, labor standards, and supply chains in mining for critical minerals.
  • Research ways to reduce weight and improve the performance of electric cars while appealing to customers.
  • Develop vehicle-grid integration and feasible means of using the electrical capacity of electric cars to manage the broader grid.
  • Improve techniques to repurpose used electric car batteries for stationary energy storage.
  • Develop methods of converting fossil fuel–powered car manufacturing and infrastructure to electric.

Further information:

Communities, Households, and Individuals
  • If purchasing a new car, purchase an electric car.
  • Take advantage of any financial incentives such as tax breaks, subsidies, or grants for electric car purchases.
  • Share your experiences with electric cars through social media and peer-to-peer networks, highlighting the cost-savings, benefits, incentive programs, and troubleshooting tips.
  • Help shift the narrative around electric cars by demonstrating capability and performance.
  • Advocate for financial incentives and policies that promote electric car adoption.
  • Advocate for improved charging infrastructure.
  • Help improve ciricularity of electric car supply chains.
  • Join international efforts to promote and ensure that environmental and human rights standards are met for supply chains.
  • Create, support, or join partnerships that offer information, training, and general support for electric car adoption.

Further information:

Sources
Evidence Base

Consensus of effectiveness in reducing emissions: Mixed

There is a high level of consensus among major organizations and researchers working on climate solutions that electric cars offer a substantial reduction in GHG emissions compared to fossil fuel–powered cars. This advantage is strongest in places where electricity in the grid comes from sources with low GHG emissions, but it persists even if fossil fuels play a major role in energy production. 

Major climate research organizations generally see electric cars as the primary means of reducing GHG emissions from passenger transportation. This perspective has received criticism from some scholars who argue that electric cars have been overstated as a climate solution, pointing to supply constraints, embodied emissions, and emissions from electricity generation (Jones, 2019; Milovanoff et al., 2020). Embodied emissions are outside the scope of this assessment. 

The IPCC (2022) estimated well-to-wheel (upstream and downstream emissions) GHG emissions intensity from gasoline and diesel cars at 139 g CO₂‑eq/pkm and 107 g CO₂‑eq/pkm, respectively. They estimated that electric cars running on low-carbon electricity (solar, wind, and nuclear sourced) emit 9 g CO₂‑eq/pkm; electric cars running on natural gas electricity emit 104 g CO₂‑eq/pkm; and electric cars running entirely on coal electricity emit 187 g CO₂‑eq/pkm. These estimates include upstream emissions, such as those from oil refining and coal mining.

The IEA (2024) noted that “[a] battery electric car sold in 2023 will emit half as much as fossil fuel–powered equivalents over its lifetime. This includes full life-cycle emissions, including those from producing the car.” 

The ITF (2020) estimated that fossil fuel–powered cars emit 162 g CO₂‑eq/pkm, while electric cars emit 125 g CO₂‑eq/pkm. This included embodied and upstream emissions, which are outside the scope of this assessment.

The results presented in this document summarize findings from 15 reviews and meta-analyses and 24 original studies reflecting current evidence from 52 countries, primarily the IEA’s Electric Vehicle Outlook (2024), the Electric Vehicle Database (2024), the International Transportation Forum’s life cycle analysis on sustainable transportation (2020), and the Nickel Institute’s cost estimates on electric cars (Nickel Institute, 2021a, 2021b, 2021c). We recognize this limited geographic scope creates bias, and hope this work inspires research and data sharing on this topic in underrepresented regions.

left_text_column_width
Updated Date

Mobilize Electric Bicycles

Image
Image
Parent riding electric bicycle with children seated in back carrier
Coming Soon
Off
Summary

We define the Mobilize Electric Bicycles solution as increased travel by bicycles that have an electric motor to supplement the effort of the rider, but require the rider to turn the pedals to activate the motor. Some sources refer to electric mopeds or motorcycles as electric bicycles, but those modes of transportation fall within Project Drawdown’s Mobilize Electric Scooters & Motorcycles solution and are not covered here. Also known as pedelecs or e-bikes, electric bicycles can be deployed as privately owned electric bicycles or as shared electric bicycles, which are available as part of bicycle sharing networks typically operated at the city level for short-term rental on a per-trip basis.

Description for Social and Search
Mobilize Electric Bicycles is a Highly Recommended climate solution. Electric bikes offer faster, longer, and easier rides than conventional bicycles, effectively replacing more car trips and so further cutting GHG emissions.
Overview

Electric bicycles use electric power to supplement the muscular effort of the rider. Like conventional bicycles and other forms of nonmotorized transportation, electric bicycles get some of their motive power from human muscle power, which in turn comes from food calories – a form of closed-loop biomass power with no emissions (see Improve Nonmotorized Transportation). Unlike conventional bicycles, however, electric bicycles get added power from electricity, which comes from the grid and is stored in a battery.

This partial reliance on grid electricity, as well as the production of the battery and electric motors, increases the carbon emissions and cost of an electric bicycle compared to those of a conventional bicycle. Nevertheless, electric bicycle emissions remain far lower than the emissions of cars (including electric cars), meaning that every passenger-kilometer (pkm) moved from a car to an electric bicycle achieves significant GHG emissions savings. 

Since the additional electric power enables electric bicycle riders to cover longer distances at greater speeds, climb larger hills, and carry heavier loads – and do it all with substantially less physical effort – electric bicycles can substitute for more car trips than conventional bicycles can. This can amplify electric bicycles’ potential carbon savings relative to conventional bicycles, even if the savings per pkm traveled are lower. Electric bicycles also tend to get used at high rates, and a large proportion of pkm by electric bicycle are pkm that would otherwise have been by car (Bigazzi & Wong, 2020; Bourne et al., 2020; Cairns et al., 2017; Fukushige et al., 2021).

Shared electric bicycles can enhance this effect. The need for docking stations and rebalancing services (i.e., the use of larger vehicles to reposition bicycles to avoid one-way trips that create shortages in some places and surpluses in others) increases the carbon emissions of electric bicycles per pkm compared with private electric bicycles. By renting out electric bicycles one trip at a time, however, bicycle-share systems can make electric bicycles affordable to a larger percentage of the public, further increasing the number of pkm that can be shifted to electric bicycles.

The adoption of electric bicycles reduces emissions of CO₂ and methane from cars by displacing pkm traveled via car. When electric bicycles replace a trip by a gasoline- or diesel-powered car, they also eliminate reliance on fossil fuels to complete that trip. Even if the electricity used to power electric bicycles comes from fossil fuels, those emissions are relatively small and could eventually be replaced with low-emission electricity through the deployment of renewables or similar technologies.

Astegiano, P., Fermi, F., & Martino, A. (2019). Investigating the impact of e-bikes on modal share and greenhouse emissions: A system dynamic approach. Transportation Research Procedia37, 163-170. Link to source: https://doi.org/10.1016/j.trpro.2018.12.179

Berjisian, E., & Bigazzi, A. (2019). Summarizing the impacts of electric bicycle adoption on vehicle travel, emissions, and physical activity. UBC REACT LAb. Link to source: https://civil-reactlab.sites.olt.ubc.ca/files/2019/07/BerjisianBigazzi_ImpactsofE-bikes_Report_July2019.pdf

Bigazzi, A., & Wong, K. (2020). Electric bicycle mode substitution for driving, public transit, conventional cycling, and walking. Transportation Research Part D: Transport and Environment85, 102412. Link to source: https://doi.org/10.1016/j.trd.2020.102412

Bourne, J. E., Cooper, A. R., Kelly, P., Kinnear, F. J., England, C., Leary, S., & Page, A. (2020). The impact of e-cycling on travel behaviour: A scoping review. Journal of Transport & Health19, 100910. Link to source: https://doi.org/10.1016/j.jth.2020.100910

Bucher, D., Buffat, R., Froemelt, A., & Raubal, M. (2019). Energy and greenhouse gas emission reduction potentials resulting from different commuter electric bicycle adoption scenarios in Switzerland. Renewable and Sustainable Energy Reviews, 114, 109298. Link to source: https://doi.org/10.1016/j.rser.2019.109298 

Cairns, S., Behrendt, F., Raffo, D., Beaumont, C., & Kiefer, C. (2017). Electrically-assisted bikes: Potential impacts on travel behaviour. Transportation Research Part A: Policy and Practice103, 327-342. Link to source: https://doi.org/10.1016/j.tra.2017.03.007

Carracedo, D., & Mostofi, H. (2022). Electric cargo bikes in urban areas: A new mobility option for private transportation. Transportation Research Interdisciplinary Perspectives, 16, 100705. Link to source: https://doi.org/10.1016/j.trip.2022.100705

Dekker, P. (2013). Electrification of road transport-An analysis of the economic performance of electric two-wheelers. Utrecht University. Link to source: https://studenttheses.uu.nl/bitstream/handle/20.500.12932/13022/Thesis%20P.W.K.%20Dekker%2012%20May%202013.pdf?sequence=1&isAllowed=y

eBicycles. (2025a). How much does an electric bike cost? E-bike price breakdown [2025]. Link to source: https://www.ebicycles.com/how-much-does-an-electric-bike-cost/ 

eBicycles. (2025b). Useful facts & stats of e-bikes [for 2025] + infographic. Link to source: https://www.ebicycles.com/ebike-facts-statistics/ 

Ebike Canada. (2025). The best electric bikes & scooters in canada for 2025. Ebike Canada. Link to source: https://ebikecanada.com/best-electric-bike-and-scooter/ 

Fishman, E., & Cherry, C. (2016). E-bikes in the Mainstream: Reviewing a Decade of Research. Transport Reviews36(1), 72-91. Link to source: https://doi.org/10.1080/01441647.2015.1069907

Fukushige, T., Fitch, D. T., & Handy, S. (2021). Factors influencing dock-less E-bike-share mode substitution: Evidence from Sacramento, California. Transportation Research Part D: Transport and Environment99, 102990. Link to source: https://doi.org/10.1016/j.trd.2021.102990

Galatoulas, N.-F., Genikomsakis, K. N., & Ioakimidis, C. S. (2020). Spatio-Temporal Trends of E-Bike Sharing System Deployment: A Review in Europe, North America and Asia. Sustainability12(11), Article 11. Link to source: https://doi.org/10.3390/su12114611

Gössling, S., Choi, A., Dekker, K., & Metzler, D. (2019). The social cost of automobility, cycling and walking in the European Union. Ecological Economics, 158, 65–74. Link to source: https://doi.org/10.1016/j.ecolecon.2018.12.016 

Guidon, S., Becker, H., Dediu, H., & Axhausen, K. W. (2018). Electric bicycle-sharing: A new competitor in the urban transportation market?: An empirical analysis of transaction data. Arbeitsberichte Verkehrs- Und Raumplanung, 1364. Link to source: https://doi.org/10.1016/j.ecolecon.2018.12.016 

Hanna, J. (2023). Bike Share Toronto 2023 business review. Link to source: https://www.toronto.ca/legdocs/mmis/2023/pa/bgrd/backgroundfile-240804.pdf 

Helton, J. (2025). Ride with power: The top electric bikes for 2025, as chosen by experts. Road & Track.. Link to source: https://www.roadandtrack.com/gear/lifestyle/g46464030/best-electric-bikes/ 

Huang, Y., Jiang, L., Chen, H., Dave, K., & Parry, T. (2022). Comparative life cycle assessment of electric bikes for commuting in the UK. Transportation Research Part D: Transport and Environment, 105, 103213. Link to source: https://doi.org/10.1016/j.trd.2022.103213 

Innovation Origins. (2023). The booming rise of shared e-bikes in urban mobility. Link to source: https://innovationorigins.com/en/the-booming-rise-of-shared-e-bikes-in-urban-mobility/ 

International Transport Forum. (2020). Good to Go? Assessing the Environmental Performance of New Mobility (Corporate Partnership Board). OECD. Link to source: https://www.itf-oecd.org/sites/default/files/docs/environmental-performance-new-mobility.pdf

Jones, B. (2019). Electric Bike Maintenance Cost. BicycleVolt. Link to source: https://bicyclevolt.com/electric-bike-maintenance-cost/ 

Koning, M., & Conway, A. (2016). The good impacts of biking for goods: Lessons from Paris city. Case Studies on Transport Policy, 4(4), 259-268. Link to source: https://doi.org/10.1016/j.cstp.2016.08.007

Langford, B. C., Chen, J., & Cherry, C. R. (2015). Risky riding: Naturalistic methods comparing safety behavior from conventional bicycle riders and electric bike riders. Accident Analysis & Prevention82, 220-226. Link to source: https://doi.org/10.1016/j.aap.2015.05.016

Langford, B. C., Cherry, C. R., Bassett, D. R., Fitzhugh, E. C., & Dhakal, N. (2017). Comparing physical activity of pedal-assist electric bikes with walking and conventional bicycles. Journal of Transport & Health6, 463–473. Link to source: https://doi.org/10.1016/j.jth.2017.06.002

Li, Q., Fuerst, F., & Luca, D. (2023). Do shared E-bikes reduce urban carbon emissions? Journal of Transport Geography112, 103697. Link to source: https://doi.org/10.1016/j.jtrangeo.2023.103697

Luxe Digital. (2025). The best electric bikes: upgrade your commute for a sustainable ride. Luxe Digital. Link to source: https://luxe.digital/lifestyle/garage/best-electric-bikes/ 

Matasyan, A. (2015). Technical analysis and market study of electric bicycles. Link to source: https://upcommons.upc.edu/handle/2117/77272?locale-attribute=en 

Mellino, S., Petrillo, A., Cigolotti, V., Autorino, C., Jannelli, E., & Ulgiati, S. (2017). A Life Cycle Assessment of lithium battery and hydrogen-FC powered electric bicycles: Searching for cleaner solutions to urban mobility. International Journal of Hydrogen Energy, 42(3), 1830–1840. Link to source: https://doi.org/10.1016/j.ijhydene.2016.10.146 

Mordor Intelligence. (2022). Asia Pacific e-bike market (2017-2029). Link to source: https://www.mordorintelligence.com/industry-reports/asia-pacific-e-bike-market

N, A. (2023). Maintenance costs for an electric bike. Bike LVR. Link to source: https://bikelvr.com/bikes/e-bikes/maintenance-costs-for-an-electric-bike/ 

de Nazelle, A., Nieuwenhuijsen, M., Antó, J., Brauer, M., Briggs, D., Charlotte Braun-Fahrlander, C., Cavill, N., Cooper, A., Desqueyroux, H., Fruin, S., Hoek, G., Panis, L., Janssen, N., Jerrett, M., Joffe, M., Andersen, Z., van Kempen, E., Kingham, S., Kubesch, N., Leyden, K., Marshall, J., Matamala, J., Mellios, G., Mendez, M., Nassif, H., Ogilvie, D., Peiró, R., Pérez, K., Rabl, A., Ragettli, M., Rodríguez, D., Rojas, D., Ruiz, P., Sallis, J., Terwoert, J., Toussaint, J., Tuomisto, J., Zuurbier, M., & Lebret, E. (2011). Improving health through policies that promote active travel: A review of evidence to support integrated health impact assessment. Environment International, 37(4), 767-777. Link to source: https://doi.org/10.1016/j.envint.2011.02.003 

PBSC Urban Solutions. (2022). The Meddin Bike-sharing World Map Report 2022 edition. Link to source: https://bikesharingworldmap.com/reports/bswm_mid2022report.pdf

Pekow, C. (2024, April 1). E-bikes could cut smog, energy use and congestion globally—But will they? Mongabay Environmental News. Link to source: https://news.mongabay.com/2024/04/e-bikes-could-cut-smog-energy-use-and-congestion-globally-but-will-they/

Philips, I., Anable, J., & Chatterton, T. (2022). E-bikes and their capability to reduce car CO2 emissions. Transport Policy116, 11-23. Link to source: https://doi.org/10.1016/j.tranpol.2021.11.019

Platt, S. M., Haddad, I. E., Pieber, S. M., Huang, R.-J., Zardini, A. A., Clairotte, M., Suarez-Bertoa, R., Barmet, P., Pfaffenberger, L., Wolf, R., Slowik, J. G., Fuller, S. J., Kalberer, M., Chirico, R., Dommen, J., Astorga, C., Zimmermann, R., Marchand, N., Hellebust, S., … Prévôt, A. S. H. (2014). Two-stroke scooters are a dominant source of air pollution in many cities. Nature Communications, 5(1), 3749. Link to source: https://doi.org/10.1038/ncomms4749

Precedence Research. (2024). E-bike market poised for robust expansion | CAGR of 10.16%. Link to source: https://www.precedenceresearch.com/insights/e-bike-market 

Roberts, C. (2023). Diversity in passenger mobility: Where it went and how to bring it back. One Earth6(1), 11-13. Link to source: https://doi.org/10.1016/j.oneear.2022.12.008

Roberts, C. (2020). Into a headwind: Canadian cycle commuting and the growth of sustainable practices in hostile political contexts. Energy Research and Social Science, 70. Scopus. Link to source: https://doi.org/10.1016/j.erss.2020.101679

Rodriguez Mendez, Q., Fuss, S., Lück, S., & Creutzig, F. (2024). Assessing global urban CO2 removal. Nature Cities, 1(6), 413-423. Link to source: https://doi.org/10.1038/s44284-024-00069-x

Shi, Z., Wang, J., Liu, K., Liu, Y., & He, M. (2024). Exploring the usage efficiency of electric bike-sharing from a spatial–temporal perspective. Transportation Research Part D: Transport and Environment, 129, 104139. Link to source: https://doi.org/10.1016/j.trd.2024.104139 

So, A. (2024). Best electric bikes (2025): Hauling, commuting, mountain biking. WIRED. Link to source: https://www.wired.com/gallery/best-electric-bikes/ 

Stewart, D., & Ramachandran, K. (2022, March 31). E-bikes merge into the fast lane. Deloitte Insights. Link to source: https://www2.deloitte.com/us/en/insights/industry/technology/smart-micromobility-e-bikes.html

Strategic Market Research. (2024). E-bikes statistics and trends 2024. Link to source: https://www.strategicmarketresearch.com/blogs/e-bikes-statistics 

Summit Bike Share. (2023). Summit bike share end of year report 2023. Link to source: https://www.summitcountyutah.gov/2415/Summit-Bike-Share 

Teixeira, J. F., Silva, C., & Moura e Sá, F. (2021). Empirical evidence on the impacts of bikesharing: A literature review. Transport Reviews, 41(3), 329-351. Link to source: https://doi.org/10.1080/01441647.2020.1841328

The Freedonia Group. (2024). Global E-Bikes—Market Size, Market Share, Market Leaders, Demand Forecast, Sales, Company Profiles, Market Research, Industry Trends and Companies. The Freedonia Group. Link to source: https://www.freedoniagroup.com/industry-study/global-e-bikes

Thomas, A. (2022). Electric bicycles and cargo bikes—Tools for parents to keep on biking in auto-centric communities? Findings from a US metropolitan area. International Journal of Sustainable Transportation, 16(7), 637-646. Link to source: https://doi.org/10.1080/15568318.2021.1914787

Van Acker, V., & Witlox, F. (2010). Car ownership as a mediating variable in car travel behaviour research using a structural equation modelling approach to identify its dual relationship. Journal of Transport Geography, 18(1), 65-74. Link to source: https://doi.org/10.1016/j.jtrangeo.2009.05.006

Wamburu, J., Lee, S., Hajiesmaili, M. H., Irwin, D., & Shenoy, P. (2021). Ride Substitution Using Electric Bike Sharing: Feasibility, Cost, and Carbon Analysis. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol.5(1), 38:1-38:28. Link to source: https://doi.org/10.1145/3448081

WHO. (2022). Number of registered vehicles. Link to source: https://www.who.int/data/gho/data/indicators/indicator-details/GHO/number-of-registered-vehicles 

WHO. (2023). Despite notable progress, road safety remains urgent global issue. Link to source: https://www.who.int/news/item/13-12-2023-despite-notable-progress-road-safety-remains-urgent-global-issue

World Bank. (2024). World Development Indicators. Link to source: https://datacatalog.worldbank.org/search/dataset/0037712/World-Development-Indicators

Weiss, M., Dekker, P., Moro, A., Scholz, H., & Patel, M. K. (2015). On the electrification of road transportation – A review of the environmental, economic, and social performance of electric two-wheelers. Transportation Research Part D: Transport and Environment41, 348-366. Link to source: https://doi.org/10.1016/j.trd.2015.09.007

Yang, Y., Okonkwo, E. G., Huang, G., Xu, S., Sun, W., & He, Y. (2021). On the sustainability of lithium ion battery industry – A review and perspective. Energy Storage Materials36, 186-212. Link to source: https://doi.org/10.1016/j.ensm.2020.12.019

Credits

Lead Fellows

  • Cameron Roberts, Ph.D.

  • Heather Jones, Ph.D.

Contributors

  • Ruthie Burrows, Ph.D.

  • James Gerber, Ph.D.

  • Yusuf Jameel, Ph.D.

  • Daniel Jasper

  • Heather McDiarmid, Ph.D.

  • Alex Sweeney

Internal Reviewers

  • Aiyana Bodi

  • Hannah Henkin

  • Ted Otte

  • Amanda D. Smith, Ph.D.

Effectiveness

Per 1,000 private electric bicycles, approximately 110.5 t CO₂‑eq/yr is offset by displacing trips taken by higher-emission transportation modes such as cars and public transit (Table 1a). 

Per 1,000 shared electric bicycles, approximately 14.44 t CO₂‑eq/yr is offset (Table 1b). This lower value is due to the additional emissions produced in the operation of a shared electric-bicycle system (e.g., due to the need to reposition bicycles after they accumulate in some locations while becoming depleted in others). Additionally, other modes of transportation are shifted to shared electric bicycles at different rates than privately owned electric bicycles – notably shifted less from car travel. These factors limit the total GHG emissions reduced per shared electric bicycle.

left_text_column_width

Table 1. Effectiveness at reducing emissions.

Unit: t CO₂‑eq /1,000 electric bicycles/yr, 100-yr basis

25th percentile 55.87
Mean 136.1
Median (50th percentile) 110.5
75th percentile 220.5

Unit: t CO₂‑eq /1,000 electric bicycles/yr, 100-yr basis

25th percentile 1.415
Mean 14.62
Median (50th percentile) 14.44
75th percentile 34.31
Left Text Column Width
Cost

Electric bicycles vary significantly in cost, but generally are more expensive than traditional bicycles due to the cost of batteries, motors, and other electronic components, as well as the need for more durable mechanical components. 

Private electric bicycles cost about US$2,700, plus another few hundred dollars per year in maintenance costs. All told, assuming a 10-year lifespan, electric bicycles cost about US$600/yr to operate . The average privately owned electric bicycle is ridden 2,400 km/yr; since 28.67% of that distance is shifted from car trips, electric bicycles displace approximately 688 pkm/yr traveled by car. Car travel costs US$0.53/pkm while electric bicycle travel costs US$0.25/pkm, meaning every pkm traveled via electric bicycle saves US$0.28. Multiplied over 688 pkm/yr, this translates to every electric bicycle saving its owner approximately US$193/yr in avoided car trips (Bucher et al., 2019; Carracedo & Mostofi, 2022; eBicycles, 2025a; Ebike Canada, 2025; Gössling et al., 2019; Helton, 2025; Huang et al., 2022; International Transport Forum, 2020; Jones, 2019; Luxe Digital, 2025; Mellino et al., 2017; N, 2023; So, 2024; Weiss et al., 2015).

Most of the costs of riding an electric bicycle are up-front costs. As a result, electric bicycle owners who shift more trips from a car onto their electric bicycle will significantly increase their savings. Privately owned electric bicycles save US$1,748 for every t CO₂‑eq they avoid (Table 2a).

Shared electric bicycles are more expensive to the system provider than privately owned electric bicycles due to greater needs for infrastructure, maintenance, operating expenses, and services, such as rebalancing. Shared electric bicycles cost US$2.42/pkm and displace an average of 156 pkm/yr from car trips per bicycle. The same distance traveled by car costs US$83, meaning that shared electric bicycles cost an additional US$295/yr compared to traveling the same distance by car (Gössling et al., 2019; Guidon et al., 2018; Hanna, 2023; Matasyan, 2015; Summit Bike Share, 2023). Shared electric bicycles cost US$22,860/t CO₂‑eq avoided due to their higher costs, higher emissions, and the lower chance that riders on shared electric bicycles would otherwise have been traveling by car (Table 2b).

left_text_column_width

Table 2. Cost per climate impact.

Unit: US$ (2023) per t CO₂‑eq , 100-year basis

Median (50th percentile) –1,748

Unit: US$ (2023) per t CO₂‑eq , 100-year basis

Median (50th percentile) 22,860

*Cost to the provider of the system, not the user

Left Text Column Width
Learning Curve

Learning rates for electric bicycles are often negative (i.e., prices increase with cumulative production). This is largely because electric bicycle batteries have grown larger over time, causing the bicycles to become more expensive (Dekker, 2013; Weiss et al., 2015). The learning rate per electric bicycle ranges from 15% to –43% (Table 3a). This range has improved the general value proposition of electric bicycles, however, since larger batteries enable electric bicycles to go further and faster than before.

To compensate for this, it is useful to calculate the learning rate per kWh battery capacity rather than per bicycle. On this measure, Dekker (2013) calculates a learning rate of 7.9% cost reduction per kWh of electric bicycle battery capacity for every doubling of cumulative production (Table 3b).

These estimates are based on analyses published in 2013 and 2015, respectively, and therefore do not take into account more recent advances in electric bicycle production. More up-to-date research on electric bicycle learning rates is needed to inform future assessments on this topic.

left_text_column_width

Table 3. Learning rate: drop in cost per doubling of cumulative electric bicycle production.*

Unit: %

25th percentile –43.50
Mean –26.86
Median (50th percentile) –36.00
75th percentile 15

These data are from 2013 and 2015, due to a lack of available research on this topic.

Unit: %

Median (50th percentile) 7.9

These data are from 2013 and 2015, due to a lack of available research on this topic.

Left Text Column Width
Speed of Action

Speed of action refers to how quickly a climate solution physically affects the atmosphere after it is deployed. This is different from speed of deployment, which is the pace at which solutions are adopted.

At Project Drawdown, we define the speed of action for each climate solution as emergency brake, gradual, or delayed.

Mobilize Electric Bicycles is a GRADUAL climate solution. It has a steady, linear impact on the atmosphere. The cumulative effect over time builds as a straight line.

left_text_column_width
Caveats

Electric bicycles do not only compete with cars for the total passenger transport demand; a given electric bicycle trip might also substitute for public transit. This can sometimes still be beneficial since, as electric bicycles often have lower per-kilometer emissions than public transit vehicles (International Transport Forum, 2020). However, an electric bicycle trip might also substitute for a conventional bicycle trip or for a pedestrian journey, in which case electric bicycle usage would actually increase emissions. Finally, some electric bicycle trips are new journeys, meaning that they would not occur at all if the traveler did not have an electric bicycle, which also increases emissions (Astegiano et al., 2019; Berjisian & Bigazzi, 2019; Bourne et al., 2020; Cairns et al., 2017; Dekker, 2013).

Generally speaking however, electric bicycles still shift enough passenger car trips to make up for this effect, although the scale can be more marginal with shared electric bicycle systems. However, electric bicycles are more likely to substitute more for whichever forms of transportation their users were already using previously (Wamburu et al., 2021). This means that wider adoption of electric bicycles in car-dependent North American suburbs, for example, will have a much clearer and more beneficial climate impact than in a dense, pedestrianized European city center, or in a low-income country where most people do not have access to a car (although in these contexts electric bicycles could still produce major social and economic benefits).

Our estimates of the total adoption ceiling potential of electric bicycles (described in the Adoption section) are based on the ratio of adoption between electric bicycles and cars, on the grounds that each electric bicycle avoids some amount of car travel. However, the relationship is not necessarily quite so simple. Car trips with passengers might require more than one electric bicycle trip to replace them (unless the passengers are children, who can be carried as passengers on electric bicycles). On the other side of the equation, some households own more than one car per person. Having more than one electric bicycle per car would therefore not meaningfully reduce car trips. Lastly, our approach of tracking electric bicycle adoption in relation to car ownership neglects people whose use of an electric bicycle enables them to avoid owning a car at all. Estimates of adoption should be taken as rough guesses, rather than authoritative forecasts.

left_text_column_width
Current Adoption

Private electric bicycles have experienced significant growth since 2015. We estimate there are approximately 278 million private electric bicycles in use in the world today (Table 4a). 

Data on this subject typically include throttle-assisted electric bicycles, e-scooter/trotinettes, and sometimes mopeds and motorcycles; these are not included in this solution. Data from China, the highest adopter of electric bicycles, does not usually distinguish between types of electric two-wheelers. For this reason, we used more conservative estimates, preferring to understate adoption than overstate it. We used several global estimates, data on electric bicycle sales in Canada, the United States, and Europe, and stock estimates from the Asia-Pacific region (eBicycles, 2025b; Mordor Intelligence, 2022; Precedence Research, 2024; Stewart & Ramachandran, 2022; Strategic Market Research, 2024; The Freedonia Group, 2024). To convert from European and American sales data to stocks data, we assumed that all electric bicycles sold over the past 10 years (the lifespan of an electric bicycle) are still in use today. We then calculated the number of electric bicycles per 1,000 people in each of the three regions, used those three values to calculate a population-weighted global mean adoption rate, and multiplied the result by the number of residents of high- and upper-middle income countries worldwide (where we assume most electric bicycle adoption takes place). This calculation provided a global estimate.

Shared electric bicycle schemes now exist in many cities around the world, with at least 2 million shared electric bicycles currently in use as part of electric bicycle sharing systems (Table 4b; eBicycles, 2025b; Innovation Origins, 2023; PBSC Urban Solutions, 2022; Strategic Market Research, 2024). This is a conservative estimate because research published in a reputable academic journal claimed that China has 8.7 million shared electric bicycles in 2022 (Shi et al., 2024). 

left_text_column_width

Table 4. Current (2024) adoption level.

Unit: 1,000 electric bicycles

Population-weighted mean 277600

Unit: 1,000 electric bicycles

Population-weighted mean 2000
Left Text Column Width
Adoption Trend

Private electric bicycles are being adopted at a rate of about 37 million new bicycles every year (eBicycles, 2025b; Mordor Intelligence, 2022; Precedence Research, 2024; Stewart & Ramachandran, 2022; Strategic Market Research, 2024; The Freedonia Group, 2024; see Table 5a). Electric bicycles are also attracting interest from consumers who do not normally ride bicycles, including people in rural areas (Philips et al., 2022) and members of vulnerable groups, such as the elderly. 

Shared electric bicycles are being added to cities at a rate of approximately 413,000/yr (eBicycles, 2025b; Innovation Origins, 2023; PBSC Urban Solutions, 2022; Strategic Market Research, 2024; see Table 5b). Cities and private companies are adding shared electric bicycle systems at a rate of around 30/yr (Galatoulas et al., 2020). Based on these data, we calculate a 37.97% compounding annual growth rate in electric bicycle sharing system installations around the world. 

left_text_column_width

Table 5. 2023–2024 adoption trend.

Unit: 1,000 electric bicycles/yr

25th percentile 34000
Population-weighted mean 37330
Median (50th percentile) 38000
75th percentile 40000

Unit: 1,000 electric bicycles/yr

Median (50th percentile) 412.5
Left Text Column Width
Adoption Ceiling

Because we model electric bicycles as a solution primarily due to their ability to shift travel from fossil fuel–powered cars, we estimate adoption by reference to the ratio of electric bicycles to cars. This does not mean that people without access to a car will not use electric bicycles; it means that they are not shifting their pkm from fossil fuel–powered cars and therefore are not included in the calculations of shifting from car to electric bicycle. 

Private electric bicycles’ adoption ceiling (Table 6a) would be approximately 2 billion around the world: one for every car (World Health Organization, 2021). This would mean that every motorist has an electric bicycle as a ready alternative to a car.

Shared electric bicycles’ adoption ceiling can be measured similarly, except that we assume these systems are only viable in cities. Therefore, we set the maximum adoption ceiling of shared electric bicycles to be 1.3 billion (Table 6b) – the number of cars in cities around the world. we estimated by multiplying the global urban population (4.45 billion) by the global average car registrations per 1,000 people (286.2) (World Health Organization, 2021; World Bank, 2024).

This upper-bound scenario faces many of the same caveats as the upper-bound scenario for the Improve Nonmotorized Transportation solution. It would require a revolution in support for electric bicycles: new infrastructure, new traffic laws, a substantial increase in electric battery production capacity, and major changes to built environments, including increases in population and land-use density to make more journeys feasible by electric bicycle. However, this scenario would require less dramatic change than a similar upper-bound scenario for the Improve Nonmotorized Transportation solution because electric bicycles go faster, have higher carrying capacities, can travel longer distances, and are easier to use than nonmotorized travel modes (Weiss et al., 2015).

A limitation of this analysis is that one electric bicycle per car does not necessarily correspond to one electric bicycle per person traveling in a car. For example, it is possible that replacing one car trip with electric bicycles would result in multiple electric bicycle trips in order to carry multiple passengers. Our estimates should therefore be seen as approximate. 

It is also possible for total electric bicycle adoption and usage to exceed car use (i.e., electric bicycles also replace other modes of transportation or generate new trips). We do not consider this scenario in our adoption ceiling because additional adoption above car adoption would not produce a major climate benefit.

left_text_column_width

Table 6. Adoption ceiling.

Unit: 1,000 electric bicycles

Adoption ceiling 2022000

Unit: 1,000 electric bicycles

Adoption ceiling 1273000
Left Text Column Width
Achievable Adoption

Private electric bicycles are currently in use across the Asia-Pacific region at a rate of approximately 0.07 electric bicycles for every car. A low achievable adoption rate might see every country in the world achieve this same ratio, which would lead to a global electric bicycle fleet of 421 million (Table 7a). For a higher rate of adoption, we posit one electric bicycle in use for every two cars. This would see just more than 1 billion electric bicycles in use worldwide.

Using the median and 75th percentile of the ratio of shared electric bicycles to cars (for which we have data) as the rate of adoption seen in every city in the world leads to 22 to 69 million shared electric bicycles in cities worldwide (Table 7b).

Note: We based these estimates on electric bicycles per car rather than electric bicycles per person because the climate impact of electric bicycle adoption in a given place depends on the availability of cars to replace. 

left_text_column_width

Table 7. Range of achievable adoption levels.

Unit: 1,000 electric bicycles

Current adoption 277600
Achievable – low 421300
Achievable – high 1011000
Adoption ceiling 2022000

Unit: 1,000 electric bicycles

Current adoption 2000
Achievable – low 22010
Achievable – high 69260
Adoption ceiling 1273000
Left Text Column Width

If every motorist had an electric bicycle they used to replace at least some car trips, it would mitigate 224 Mt CO₂‑eq/yr – equal to the total global carbon emissions produced by cars, minus the emissions that would be produced due to electric bicycles traveling the same distance. If there were one electric bicycle for every two cars, it would avoid 117 Mt CO₂‑eq/yr. And if global electric bicycle adoption reached the rate currently seen in the Asia-Pacific region (China, India, Japan, South Korea, Australia, and New Zealand), it would avoid 47 Mt CO₂‑eq/yr (Table 8a).

Our Achievable – Low scenario of 22 million shared electric bicycles in cities worldwide would save 284 kt CO₂‑eq/yr (Table 8b). Our Achievable – High scenario of 69.3 million shared electric bicycles worldwide would save 895 kt CO₂‑eq/yr. The maximum possible shared electric bicycle deployment would save approximately 16.6 Mt CO₂‑eq/yr.

left_text_column_width

Table 8. Climate impact at different levels of adoption.

Unit: Gt CO-eq/yr, 100-yr basis

Current adoption 0.0307
Achievable – low 0.0466
Achievable – high 0.1117
Adoption ceiling 0.2235

Unit: Gt CO-eq/yr, 100-yr basis

Current adoption 0.00002584
Achievable – low 0.0002844
Achievable – high 0.0008949
Adoption ceiling 0.01645
Left Text Column Width
Additional Benefits

Income and Work

In addition to being cheaper than car travel, electric bicycles allow people to travel farther and faster than they could on foot, on a conventional bicycle, or (often) on public transit. Time savings from quick, longer trips, reduced traffic congestion, and money savings provide an economic benefit (Bourne, 2020). 

Health

Electric bicycles provide quality-of-life benefits for some people who use them (Bourne, 2020; Carracedo & Mostofi, 2022; Teixeira et al., 2022; Thomas, 2022). Electric assistance reduces the physical fitness and other health benefits of cycling. However, electric bicycles still require pedaling, and studies show that this level of effort required can still have substantial health benefits (Berjisian & Bigazzii, 2019; Langford et al., 2017). Electric bicycles can also enable people to cycle who might not otherwise be able to (Bourne et al., 2020). Additionally, electric bicycles can reduce total car traffic, which could reduce the risk of injury and death from car crashes, which kill 1.2 million people annually (WHO, 2023). Similarly, electric bicycles can reduce health impacts of traffic noise (de Nazelle et al., 2011).

Air Quality

The fossil fuel–powered vehicles most similar to electric bicycles (motorcycles, scooters, etc.) are extremely polluting (Platt et al., 2014). Substituting electric bicycles for these can substantially reduce air pollution.

left_text_column_width
Risks

Electric bicycles pose some safety concerns, centering on an ongoing debate over whether electric cyclists ride more recklessly than other cyclists (Fishman & Cherry, 2016; Langford et al., 2015). While electric bicycles have a lower injury rate than conventional bicycles, when injuries do happen during electric bicycle travel the health consequences tend to be more severe due to the higher speed (Berjisian & Bigazzi, 2019). There may also be risks related to the bicycles’ lithium-ion batteries catching fire. Strong regulations can minimize this risk (Pekow, 2024). Improved infrastructure, such as separated bike lanes and paths, can also reduce the safety risks associated with electric bicycles (Roberts, 2020).

left_text_column_width
Interactions with Other Solutions

Reinforcing

Electric bicycles can complement other forms of low-carbon mobility, especially those that reduce dependence on private cars. People who rely on public transit, conventional travel, pedestrian travel, carpools, or other sustainable modes of transportation for some kinds of trips can use electric bicycles to fill in some of the gaps in their personal transportation arrangements (Roberts, 2023). For public transit in particular, electric bicycles can play an important last-mile role, enabling transit riders to more easily access stops. This is important because research suggests that the key to a low-carbon mobility system is to enable people to live high-quality lives without owning cars (Van Acker & Witlox, 2010).

left_text_column_width

Electric bicycles require a lot less space than private cars. If sufficient adoption of electric bicycles and other alternatives to private cars enables a reduction in car lanes, parking spaces, and related infrastructure, then some of this space could be reallocated to ecosystem conservation through revegetation and other land-based methods of GHG sequestration (Rodriguez Mendez et al., 2024). 

left_text_column_width

Competing

Electric bicycles compete with electric and hybrid cars for adoption.

left_text_column_width
Dashboard

Solution Basics

1,000 electric bicycles

t CO₂-eq (100-yr)/unit/yr
055.87110.5
units
Current 277,600 0421,3001.01×10⁶
Achievable (Low to High)

Climate Impact

Gt CO₂-eq (100-yr)/yr
Current 0.031 0.0470.112
US$ per t CO₂-eq
-1,748
Gradual

CO₂, CH₄, N₂O, BC

Solution Basics

1,000 electric bicycles

t CO₂-eq (100-yr)/unit/yr
01.41514.44
units
Current 2,000 022,01069,260
Achievable (Low to High)

Climate Impact

Gt CO₂-eq (100-yr)/yr
Current 2.583×10⁻⁵ 2.843×10⁻⁴8.949×10⁻⁴
US$ per t CO₂-eq
22,860
Gradual

CO₂, CH₄, N₂O, BC

Trade-offs

If an electric bicycle replaces primarily car trips, it provides an unambiguous climate benefit. If it replaces public transit, the size of the benefit will depend on the specifics of the public transit system it replaces. If it replaces pedestrian trips or conventional cycling trips, or generates new trips, the net climate benefit is negative. Travel survey data suggest that electric bicycles replace enough car journeys to more than offset any journeys by the more sustainable modes of transportation they replace (Bigazzi & Wong, 2020; Bourne et al., 2020; Cairns et al., 2017; Fukushige et al., 2021). However, electric bicycles in cities that already have very low-carbon mobility systems, or in lower-income countries where car ownership is rare, might have a net negative climate impact. 

Electric bicycles also require batteries, the production and disposal of which generates pollution (Yang et al., 2021). However, electric bicycles require much less battery capacity than many other electrification technologies, such as electric vehicles (Weiss et al., 2015).

left_text_column_width
Mt CO2–eq
0–4
4–8
8–12
12–16
16–20
> 20
No data

Annual road transportation emissions, 2024

Cars are the largest source of road transportation vehicle emissions, which are shown here for urban areas.

Kott, T., Foster, K., Villafane-Delgado, M., Loschen, W., Sicurello, P., Ghebreselassie, M., Reilly, E., and Hughes, M. (2024). Transportation sector - Global road emissions [Data set]. The Johns Hopkins University Applied Physics Laboratory (JHU/APL), Climate TRACE Emissions Inventory. Retrieved March 12, 2025 from Link to source: https://climatetrace.org

Mt CO2–eq
0–4
4–8
8–12
12–16
16–20
> 20
No data

Annual road transportation emissions, 2024

Cars are the largest source of road transportation vehicle emissions, which are shown here for urban areas.

Kott, T., Foster, K., Villafane-Delgado, M., Loschen, W., Sicurello, P., Ghebreselassie, M., Reilly, E., and Hughes, M. (2024). Transportation sector - Global road emissions [Data set]. The Johns Hopkins University Applied Physics Laboratory (JHU/APL), Climate TRACE Emissions Inventory. Retrieved March 12, 2025 from Link to source: https://climatetrace.org

Maps Introduction

Electric bicycle effectiveness in mitigating climate change varies by region, depending on the carbon intensity of the charging electricity, the extent to which they replace higher-emission travel (such as cars, motorcycles, or taxis), and the need and type of vehicle used for rebalancing shared electric bicycles (International Transport Forum, 2020). They are most effective in areas with cleaner electricity grids and where they can substitute for cars. 

Since electric bicycles are more effective when replacing cars, this means that wider adoption of electric bicycles in car-dependent regions, such as North American suburbs, will have a much more significant climate impact than in a dense, pedestrianized European city center or in a low-income country where most people do not have access to a car (although in these contexts electric bicycles could still produce significant social and economic benefits) (Wamburu et al., 2021).

Socioeconomic and infrastructural factors play a major role in adoption. These include upfront costs of private electric bicycles, availability and affordability of shared electric bicycles, supportive cycling infrastructure, and policies such as subsidies or rebates. In many countries, electric bicycles increase the accessibility of nonmotorized transport for older adults, people with disabilities, and those commuting longer distances or in hilly areas by reducing physical effort (Bourne et al., 2020).

Future geographic targets for scaling adoption with strong climate and equity outcomes include South and Southeast Asian cities (e.g., Dhaka, Jakarta, Ho Chi Minh City) with high trip density, short trip lengths, and growing pollution concerns, all of which make them ideal for adoption. Sub-Saharan African cities (e.g., Kampala, Accra) where electric bicycles could complement or replace informal motorcycle taxis, reducing emissions and improving affordability and safety, are also important targets. North America has potential as both private and shared programs are beginning to expand in urban areas, helped by municipal investment and rising consumer interest.

Action Word
Mobilize
Solution Title
Electric Bicycles
Classification
Highly Recommended
Lawmakers and Policymakers
  • Establish policies that reduce the associated time, distance, risk, and risk perception for users and potential users.
  • Provide financial incentives such as tax breaks, subsidies, or grants for electric bicycle production and purchases.
  • Use targeted financial incentives to assist low-income communities in purchasing electric bicycles and to incentivize manufacturers to produce more affordable options.
  • Develop local bicycle and charging infrastructure, such as building physically separated bicycle lanes.
  • Have locking posts installed in public spaces that can accommodate electric bicycles.
  • Increase maintenance of bicycle infrastructure, such as path clearing.
  • Create international standards for the manufacturing and classification of electric bicycles.
  • Transition fossil fuel electricity production to renewables while promoting the transition to electric bicycles.
  • Offer one-stop shops for information on electric and non-motorized bicycles, including demonstrations and educational resources on cost savings, environmental impact, and maintenance.
  • Set regulations for sustainable use of electric bicycle batteries and improve recycling infrastructure.
  • Join international efforts to promote and ensure supply chain environmental and human rights standards – particularly, for the production of batteries.
  • Create, support, or join partnerships that offer information, training, and general support for electric and non-motorized bicycle adoption.
Practitioners
  • Share your experiences with electric bicycles, providing tips and reasons for choosing this mode of transportation..
  • Participate in local bike groups, public events, and volunteer opportunities.
  • Advocate tor local officials for infrastructure improvements and note specific locations where improvements can be made.
  • Encourage local businesses to create employee incentives.
  • Provide information and resources to help individuals, households, and business owners take advantage of state and local tax benefits or rebates for electric bicycle purchases.

Further information:

Business Leaders
  • Advocate for better cycling infrastructure and sharing systems with city officials.
  • Educate customers about local bicycle infrastructure and encourage them to engage public officials.
  • Offer employees who agree to forgo a free parking space the annualized cash value or cost of that parking space as a salary increase.
  • Provide battery recycling services.
  • Offer free classes for electric bicycle maintenance and repair; educate employees about what they should know before purchasing an electric bicycle.
  •  
  • Install locking posts, parking, and security for electric bicycles.
  • Provide adequate onsite storage and charging, create educational materials on best practices for commuting, and offer pre-tax commuter benefits to encourage employee ridership.
  • Encourage electric bicycle use in company fleets by replacing or supplementing vehicles for local deliveries or transiting between office locations.
  • Incorporate electric bicycle programs into company sustainability and emission reduction initiatives;communicate how those programs support broader company goals. 

Further information:

Nonprofit Leaders
  • Inform the public about the health and environmental benefits of electric bicycles.
  • Educate the public on government incentives for electric bicycles and how to take advantage of them.
  • Provide impartial information on local electric bicycle infrastructure, best practices for maintenance, and factors to consider when renting or buying electric bicycles.
  • Advocate to policymakers for improved infrastructure and incentives.
  • Administer public initiatives such as ride-share or buy-back programs.

Further information:

Investors
  • Invest in electric bicycle companies and start-ups, including battery and component suppliers.
  • Explore investment opportunities that address supply chain issues such as battery suppliers and maintenance providers.
  • Invest in companies conducting R&D to improve electric bicycle performance, decrease the need for materials, and reduce maintenance costs.
  • Invest in public or private electric bicycle sharing systems.
  • Finance electric bicycle purchases via low-interest loans.
  • Invest in charging infrastructure for electric bicycles.
Philanthropists and International Aid Agencies
  • Award grants to local organizations advocating for improved bicycle infrastructure and services.
  • Support access through the distribution or discounting of electric bicycles and help educate community members about relevant incentives.
  • Strengthen local infrastructure and build local capacity for infrastructure design and construction.
  • Ensure that donated bicycles are appropriate for the environment and that recipients have access to maintenance and supplies.
  • Sponsor community engagement programs such as group bike rides or free maintenance classes.
  • Assist with local policy design.
Thought Leaders
  • Lead by example and use an electric bicycle as a regular means of transport.
  • Focus public messages on key decision factors for commuters, such as associated health and fitness benefits, climate and environmental benefits, weather forecasts, and traffic information.
  • Showcase principles of safe urban design and highlight dangerous areas.
  • Share detailed information on local bike routes, general electric bicycle maintenance tips, items to consider when purchasing a bike, and related educational information.
  • Collaborate with schools to teach bicycle instruction, including safe riding habits and maintenance tips.
Technologists and Researchers
  • Examine and improve elements of battery design and maintenance.
  • Improve electric bicycle infrastructure design.
  • Improve circularity, repairability, and ease of disassembly for electric bicycles.
  • Increase the physical carrying capacities for users of electric bicycles to facilitate shopping and transporting children, pets, and materials.
  • Improve other variables that increase the convenience, safety, and comfort levels of nonmotorized transportation.
Communities, Households, and Individuals
  • Share your experiences with electric bicycles; provide tips and reasons for choosing this mode of transportation.
  • Participate in local bike groups, public events, and volunteer opportunities.
  • Advocate to employers and local businesses to provide incentives for electric bicycle usage and help start local initiatives.
  • Advocate to local officials for infrastructure improvements and note specific locations where improvements can be made.
  • Encourage local businesses to create employee incentives.

Further information:

Evidence Base

Consensus of effectiveness in reducing emissions: High

When people purchase electric bicycles, they tend to use them often, with many of the trips they take on electric bicycles replacing trips that would otherwise have been taken via private car (Bigazzi & Wong, 2020; Bourne et al., 2020; Cairns et al., 2017; Fukushige et al., 2021). The evidence is similarly conclusive regarding the ability of shared electric bicycles to replace a large number of car trips. However, evidence regarding the carbon benefits of shared electric bicycles is more mixed due to the additional emissions required to run a shared electric-bicycle system.

Berjiisian and Bigazzi (2019) reviewed much of the literature on electric bicycles. and found that electric bicycle trips are shifted from car trips (44%) and transit trips (12%) providing significant emissions benefits. Other net benefits include less travel by cars, lower GHG emissions and more physical activity. “E-bike adoption is expected to provide net benefits in the forms of reduced motor vehicle travel, reduced greenhouse gas emissions, and increased physical activity. A little more than half of e-bike trips are expected to shift travel from motor vehicles (44% car trips and 12% transit trips), which is sufficient to provide significant emissions benefits.”

Weiss et al. (2015) surveyed evidence of the economic, social, and environmental impacts of electric bicycles. They found that electric bicycles are more efficient and less polluting than cars. They reduce exposure to pollution as their environmental impacts come mainly from being produced and the electricity that they use, both of which are usually outside of urban areas.

Philips et al. (2022) investigated the potential for electric bicycles to replace car trips in the UK. Their geospatial model provided a good indication of what might be possible in other places and showed that electric bicycles have considerable potential in rural areas as well as urban ones. 

Li et al. (2023) reported that based on the mix of mode share replaced, shared electric bicycle trips decreased carbon emissions by 108–120 g/km carbon emissions than fossil fuel-powered cars per kilometer.”

This research is biased toward high-income countries. While there is substantial research on electric bicycles in China, that country often considers e-scooters (which do not have pedals) and throttle-assisted electric bikes as interchangeable with pedelecs electric bicycles. This made it hard to include Chinese research in our analysis. We recognize this limited geographic scope creates bias, and hope this work inspires research harmonization and data sharing on this topic in underrepresented regions in the future.

left_text_column_width
Updated Date

Enhance Public Transit

Image
Image
Train with city in the distance
Coming Soon
Off
Summary

We define the Enhance Public Transit solution as increasing the use of any form of passenger transportation that uses publicly available vehicles (e.g., buses, streetcars, subways, commuter trains, and ferries) operating along fixed routes. It does not include increasing the use of publicly available forms of transportation without fixed routes, such as taxis, except when these transport options supplement a larger public transit system (for example, to help passengers with disabilities). It also does not include increasing the use of vehicles traveling over long distances, such as intercity trains, intercity buses, or aircraft. The cost per climate unit is the cost to the transit provider, not the passenger.

Description for Social and Search
Enhance Public Transit is a Highly Recommended climate solution. In addition to reducing greenhouse gas emissions, public transit can ease congestion, support compact development, and reduce the need for private vehicles.
Overview

Public transit vehicles are far more fuel-efficient – and thus less GHG-intensive – on a per-pkm basis than fossil fuel–powered cars. Diesel-powered buses emit fewer GHGs/pkm than cars because of their much higher occupancy. Electric buses further reduce GHG emissions (Bloomberg New Energy Finance, 2018), as do forms of public transit that already run on electricity. Finally, a fleet of large, centralized public transit vehicles operating along fixed routes is usually easier to electrify than a fleet of fossil fuel–powered cars. 

Enhancing public transit to reduce emissions from transportation relies on two processes. First is increasing the modal share of existing public transit networks by encouraging people to travel by public transit rather than car. This requires building new public transit capacity while also overcoming political, sociocultural, economic, and technical hurdles. Second is improving the emissions performance of public transit networks through electrification and efficiency improvements. We accommodate the latter in this solution by assuming that all shifted trips to buses are electric buses.

These two processes are linked in complex ways. For example, construction of the new public transit networks needed to accommodate additional demand creates an opportunity to install low-carbon vehicles and infrastructures, and bringing additional passengers onto an underused public transit network generates close to zero additional GHG emissions. However, since these complexities are difficult to calculate, we assume that all increases in public transit ridership are supported by a linear increase in capacity.

Buses, trains, streetcars, subways, and other public-transit vehicles predate cars. During the 19th century, most cities developed complex and efficient networks of streetcars and rail that carried large numbers of passengers (Norton, 2011; Schrag, 2000). As a result, it’s clear that a good public transit network can provide for the basic mobility needs of most people, and can therefore substitute for most – if not all – transportation that fossil fuel–powered cars currently provide. Today, public transit networks worldwide already collectively deliver trillions of pkm, not only in big cities but also in small towns and rural areas. 

We identified several different types of public transit:

Buses

Low-capacity vehicles running on rubber tires on roads. Buses in the baseline are a mix of diesel and electric. For the purposes of this solution, we assume that all buses serving shifted trips are electric.

Trams or streetcars

Mid-capacity vehicles running on steel rails that for at least part of their routes run on roads with traffic, rather than in a dedicated rail corridor or tunnel.

Metros, subways, or light rail

High-capacity urban train systems using their own dedicated right-of-way that may or may not be underground.

Commuter rail

Large trains running mostly on the surface designed to bring large numbers of commuters from the suburbs into the core of a city that often overlap with regional or intercity rail.

Other modes

Ferries, cable cars, funiculars, and other forms of public transit that generally play a marginal role.

We assessed all modes together rather than individually because public transit relies on the interactions among different vehicles to maximize the reach, speed, and efficiency of the system. Public transit reduces emissions of CO₂,  methane, and nitrous oxide to the atmosphere by replacing fuel-powered cars, which emit these gases from their tailpipes. Some diesel-powered buses in regions that have low quality diesel emit black carbon. The black carbon global annual total emissions from transportation is negligible compared with carbon emissions and is therefore not quantified in our study. 

American Public Transit Association. (2020). Economic impact of public transportation investment – American Public Transportation Association. Link to source: https://www.apta.com/research-technical-resources/research-reports/economic-impact-of-public-transportation-investment/ 

American Public Transit Association. (2021). National Transit Database Tables. American Public Transportation Association. Link to source: https://www.apta.com/research-technical-resources/transit-statistics/ntd-data-tables/

Beaudoin, J., Farzin, Y. H., & Lin Lawell, C.-Y. C. (2015). Public transit investment and sustainable transportation: A review of studies of transit’s impact on traffic congestion and air quality. Research in Transportation Economics, 52, 15–22. Link to source: https://doi.org/10.1016/j.retrec.2015.10.004 

Bloomberg New Energy Finance. (2018). Electric buses in cities: Driving towards cleaner air and lower CO2. Link to source: https://about.bnef.com/insights/clean-transport/electric-buses-cities-driving-towards-cleaner-air-lower-co2/

Börjesson, M., Fung, C. M., & Proost, S. (2020). How rural is too rural for transit? Optimal transit subsidies and supply in rural areas. Journal of Transport Geography88, 102859. Link to source: https://doi.org/10.1016/j.jtrangeo.2020.102859

Borck, R. (2019). Public transport and urban pollution. Regional Science and Urban Economics, 77, 356–366. Link to source: https://doi.org/10.1016/j.regsciurbeco.2019.06.005

Brown, A. E. (2017). Car-less or car-free? Socioeconomic and mobility differences among zero-car households. Transport Policy, 60, 152–159. Link to source: https://doi.org/10.1016/j.tranpol.2017.09.016

Brunner, H., Hirz, M., Hirschberg, W., & Fallast, K. (2018). Evaluation of various means of transport for urban areas. Energy, Sustainability and Society8(1), 9. Link to source: https://doi.org/10.1186/s13705-018-0149-0

Christensen, L., & Vázquez, N. S. (2013). Post-harmonised European National Travel Surveys. Proceedings from the Annual Transport Conference at Aalborg University20(1), Article 1. Link to source: https://doi.org/10.5278/ojs.td.v1i1.5701

Department for Transport. (2024). Transport Statistics Finder: Interactive Dashboard. Department for Transport. Link to source: https://app.powerbi.com/view?r=eyJrIjoiMGE2YTQ5YTMtMDkwNC00MjBmLWFkNjUtMjBjZjUzZWU0ZjNmIiwidCI6IjI4Yjc4MmZiLTQxZTEtNDhlYS1iZmMzLWFkNzU1OGNlNzEzNiIsImMiOjh9

Ecke, L. (2023). German Mobility Panel—Startseite (KIT). Lisa Ecke. Link to source: https://mobilitaetspanel.ifv.kit.edu/english/

Federal Highway Administration. (2022). Summary of Travel Trends: 2022 National Household Travel Survey. US Department of Transportation. Link to source: https://nhts.ornl.gov/assets/2022/pub/2022_NHTS_Summary_Travel_Trends.pdf

Goel, D., & Gupta, S. (2017). The Effect of Metro Expansions on Air Pollution in Delhi. The World Bank Economic Review, 31(1), 271–294. Link to source: https://doi.org/10.1093/wber/lhv056

Gouldson, A., Sudmant, A., Khreis, H., & Papargyropoulou, E. (2018). The Economic and Social Benefits of Low-Carbon Cities: A Systematic Review of the Evidence. Link to source: https://urbantransitions.global/en/publication/the-economic-and-social-benefits-of-low-carbon-cities-a-systematic-review-of-the-evidence/ 

Guo, S., & Chen, L. (2019). Can urban rail transit systems alleviate air pollution? Empirical evidence from Beijing. Growth and Change, 50(1), 130–144. Link to source: https://doi.org/10.1111/grow.12266 

Health Affairs. (2021). Public Transportation in the U.S. RWJF. Link to source: https://www.rwjf.org/content/rwjf-web/us/en/insights/our-research/2021/07/public-transportation-in-the-us-a-driver-of-health-and-equity.html 

Hemmat, W., Hesam, A. M., & Atifnigar, H. (2023). Exploring noise pollution, causes, effects, and mitigation strategies: A review paper. European Journal of Theoretical and Applied Sciences, 1(5), Article 5. Link to source: https://doi.org/10.59324/ejtas.2023.1(5).86

Ilie, N., Iurie, N., Alexandr, M., & Vitalie, E. (2014). Rehabilitation of the tram DC traction with modern power converters. 2014 International Conference and Exposition on Electrical and Power Engineering (EPE), 704–709. Link to source: https://doi.org/10.1109/ICEPE.2014.6970000

International Transport Forum. (2020). Good to Go? Assessing the Environmental Performance of New Mobility (Corporate Partnership Board). OECD. Link to source: https://www.itf-oecd.org/sites/default/files/docs/environmental-performance-new-mobility.pdf

IPCC. (2023). Renewable Energy Sources and Climate Change Mitigation—IPCC. Link to source: https://www.ipcc.ch/report/renewable-energy-sources-and-climate-change-mitigation/

Kennedy, C. A. (2002). A comparison of the sustainability of public and private transportation systems: Study of the Greater Toronto Area. Transportation29(4), 459–493. Link to source: https://doi.org/10.1023/A:1016302913909

Kuminek, T. (2013). Energy Consumption in Tram Transport. Logistics and Transport. Link to source: https://www.semanticscholar.org/paper/Energy-Consumption-in-Tram-Transport-Kuminek/2aa2d97130a8e51ea7f64913c2065e8437126774

Lim, L. K., Muis, Z. A., Hashim, H., Ho, W. S., & Idris, M. N. M. (2021). Potential of Electric Bus as a Carbon Mitigation Strategies and Energy Modelling: A Review. Chemical Engineering Transactions89, 529–534. Link to source: https://doi.org/10.3303/CET2189089

Lovasi, G. S., Treat, C. A., Fry, D., Shah, I., Clougherty, J. E., Berberian, A., Perera, F. P., & Kioumourtzoglou, M.-A. (2023). Clean fleets, different streets: Evaluating the effect of New York City’s clean bus program on changes to estimated ambient air pollution. Journal of Exposure Science & Environmental Epidemiology, 33(3), 332–338. Link to source: https://doi.org/10.1038/s41370-022-00454-5

Litman, T. (2024). Evaluating Public Transit Benefits and Costs. Link to source: https://www.vtpi.org/tranben.pdf 

Loukaitou-Sideris, A. (2014). Fear and safety in transit environments from the women’s perspective. Security Journal27(2), 242–256. Link to source: https://doi.org/10.1057/sj.2014.9

Mahmoud, M., Garnett, R., Ferguson, M., & Kanaroglou, P. (2016). Electric buses: A review of alternative powertrains. Renewable and Sustainable Energy Reviews62, 673–684. Link to source: https://doi.org/10.1016/j.rser.2016.05.019

Martinez, D., Mitnik, O., Salgado, E., Yãnez-Pagans, P., & Scholl, L. (2020). Connecting to Economic Opportunity: The Role of Public Transport in Promoting Women’s Employment in Lima | Journal of Economics, Race, and Policy. Link to source: https://link.springer.com/article/10.1007/s41996-019-00039-9 

Mees, P. (2010). Transport for Suburbia: Beyond the Automobile Age. Earthscan. Link to source: https://www.routledge.com/Transport-for-Suburbia-Beyond-the-Automobile-Age/Mees/p/book/9781844077403?srsltid=AfmBOoqLpikgSll7C5BzwVRtvO9Ji0JgM1XAHe60uh_s1qGh3YxCr018 

Norton, P. D. (2011). Fighting Traffic: The Dawn of the Motor Age in the American City. MIT Press. Link to source: https://mitpress.mit.edu/9780262516129/fighting-traffic/ 

Ortiz, F. (2002). Biodiversity, the City, and Sprawl. Boston University Law Review, 82(1), 145–194. Link to source: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3499945 

Padeiro, M., Louro, A., & da Costa, N. M. (2019). Transit-oriented development and gentrification: A systematic review. Transport Reviews39(6), 733–754. Link to source: https://doi.org/10.1080/01441647.2019.1649316

Prieto-Curiel, R., & Ospina, J. P. (2024). The ABC of mobility. Environment International185, 108541. Link to source: https://doi.org/10.1016/j.envint.2024.108541

Qi, Y., Liu, J., Tao, T., & Zhao, Q. (2023). Impacts of COVID-19 on public transit ridership. International Journal of Transportation Science and Technology, 12(1), 34–45. Link to source: https://doi.org/10.1016/j.ijtst.2021.11.003

Rodrigues, A. L. P., & Seixas, Sonia. R. C. (2022). Battery-electric buses and their implementation barriers: Analysis and prospects for sustainability. Sustainable Energy Technologies and Assessments51, 101896. Link to source: https://doi.org/10.1016/j.seta.2021.101896

Rodriguez Mendez, Q., Fuss, S., Lück, S., & Creutzig, F. (2024). Assessing global urban CO2 removal. Nature Cities1(6), 413–423. Link to source: https://doi.org/10.1038/s44284-024-00069-x

Serulle, N. U., & Cirillo, C. (2016). Transportation needs of low income population: A policy analysis for the Washington D.C. metropolitan region. Public Transport, 8(1), 103–123. Link to source: https://doi.org/10.1007/s12469-015-0119-2 

Schaller, B. (2017). Unsustainable? The Growth of App-Based Ride Services and Traffic, Travel and the Future of New York City. Schaller Consulting. Link to source: http://schallerconsult.com/rideservices/unsustainable.htm 

Schrag, Z. M. (2000). “The Bus Is Young and Honest”: Transportation Politics, Technical Choice, and the Motorization of Manhattan Surface Transit, 1919-1936. Technology and Culture41(1), 51–79. Link to source: https://muse.jhu.edu/article/33496 

Sertsoz, M., Kusdogan, S., & Altuntas, O. (2013). Assessment of Energy Efficiencies and Environmental Impacts of Railway and Bus Transportation Options. In I. Dincer, C. O. Colpan, & F. Kadioglu (Eds.), Causes, Impacts and Solutions to Global Warming (pp. 921–931). Springer. Link to source: https://doi.org/10.1007/978-1-4614-7588-0_48

Statistics Netherlands. (2024). Mobility; per person, personal characteristics, modes of travel and regions [Webpage]. Statistics Netherlands. Link to source: https://www.cbs.nl/en-gb/figures/detail/84709ENG

Swanstrom, T., Winter, W., & Wiedlocher, L. (2010). The Impact of Increasing Funding for Public Transit. Link to source: https://librarysearch.adelaide.edu.au/discovery/fulldisplay/alma9928308820601811/61ADELAIDE_INST:UOFA 

Tayal, D., & Mehta, A. (2021). Working Women, Delhi Metro and Covid-19: A Case Study in Delhi-NCR | The Indian Journal of Labour Economics. Link to source: https://link.springer.com/article/10.1007/s41027-021-00313-1?fromPaywallRec=true 

UITP. (2024). A global analysis of transit data. CityTransit Data. Link to source: https://citytransit.uitp.org

US Department of Transportation. (2010). Public transportation’s role in responding to climate change. US Department of Transportation. Link to source: https://www.transit.dot.gov/sites/fta.dot.gov/files/docs/PublicTransportationsRoleInRespondingToClimateChange2010.pdf

Van Acker, V., & Witlox, F. (2010). Car ownership as a mediating variable in car travel behaviour research using a structural equation modelling approach to identify its dual relationship. Journal of Transport Geography18(1), 65–74. Link to source: https://doi.org/10.1016/j.jtrangeo.2009.05.006

Venter, C., Jennings, G., Hidalgo, D., & Pineda, A. (2017). The equity impacts of bus rapid transit: A review of the evidence and implications for sustainable transport: International Journal of Sustainable Transportation: Vol 12 , No 2—Get Access. Link to source: https://www.tandfonline.com/doi/full/10.1080/15568318.2017.1340528 

Xiao, C., Goryakin, Y., & Cecchini, M. (2019). Physical Activity Levels and New Public Transit: A Systematic Review and Meta-analysis. American Journal of Preventive Medicine, 56(3), 464–473. Link to source: https://doi.org/10.1016/j.amepre.2018.10.022 

Credits

Lead Fellow

  • Cameron Roberts, Ph.D.

Contributors

  • Ruthie Burrows, Ph.D.

  • James Gerber, Ph.D.

  • Yusuf Jameel, Ph.D. 

  • Daniel Jasper

  • Heather Jones, Ph.D.

  • Heather McDiarmid, Ph.D.

  • Alex Sweeney

Internal Reviewers

  • Aiyana Bodi

  • Hannah Henkin

  • Ted Otte

  • Amanda D. Smith, Ph.D.

  • Chrstina Swanson, Ph.D.

Effectiveness

Our calculations suggest that an efficiently designed public transit system using the best available vehicle technologies (especially battery-electric buses) would save 58 t CO₂‑eq /million pkm (0.000058 t CO₂‑eq /pkm) on a 100-yr basis compared with fossil fuel–powered cars, in line with the estimates by other large transportation focused organizations (International Transport Forum, 2020; US Department of Transportation, 2010). This number is highly sensitive to public transit vehicle occupancy, which we estimated using the most recent available data (American Public Transit Association, 2021). Increasing the number of trips taken via public transit would likely increase occupancy, although ideally not to the point of passenger discomfort. This elevated ridership would significantly reduce public transit’s pkm emissions.

To arrive at this figure, we first estimated the emissions of fossil fuel–powered cars as 115 t CO₂‑eq /million pkm (0.000115 t/pkm, 100-yr basis). We then separately calculated the emissions of commuter rail, metros and subways, trams and light rail systems, and electric buses. We used data on the modal share of different vehicles within public transit systems around the world (although much of the available data are biased towards systems in the United States and Europe) to determine what each transit system’s emissions would be per million pkm given our per-million-pkm values for different transit vehicles (UITP, 2024). The median of these city-level values is 58 t CO₂‑eq /pkm (0.000058 t/pkm, 100-yr basis). Subtracting this value from the per-pkm emissions for cars gives us the public transit GHG savings figure cited above. Note that none of these values includes embodied emissions (such as emissions from producing cars, buses, trains, roads, etc.), or upstream emissions (such as those from oil refineries).

Pessimistic assumptions regarding the emissions and occupancy of public transit vehicles, and optimistic assumptions about emissions from cars, can suggest a much more marginal climate benefit from public transit (see the 25th percentile row in Table 1). In most cases, however, well-managed public transit is likely to produce a meaningful climate benefit. Such an outcome will depend on increasing the average occupancy of vehicles, which faces a challenge because transit has seen declining occupancies since the COVID-19 pandemic (Qi et al., 2023). For this reason, encouraging additional use of public transit networks without expanding these networks can have an outsized impact because it will allow the substitution of fossil fuel–powered car trips by trips on public transit vehicles for which emissions would not change meaningfully as a result of adding passengers.

left_text_column_width

Table 1. Effectiveness at reducing emissions.

Unit: t CO₂‑eq/million pkm, 100-yr basis

25th percentile 0.127
Mean 61.76
Median (50th percentile) 58.27
75th percentile 106.7

The extremely large range of values between the 25th and 75th percentile is the result of 1) the large diversity of public transit systems in the world and 2) multiplying multiple layers of uncertainty (e.g., varying estimates for occupancy, energy consumption per vehicle kilometer (vkm), percent of pkm reliant on buses vs. trains).

Left Text Column Width
Cost

Under present-day public transit costs and revenues, it costs the transit provider US$0.23 to transport a single passenger one kilometer. In comparison, travel by car costs the consumer US$0.42/pkm. On a per passenger basis, for the transit provider, public transit is almost 50% cheaper than car transportation, costing US$0.20/pkm less. Combined with the emissions reductions from using public transit, this means that the emissions reductions from shifting people out of cars onto public transit has a net negative cost, saving US$3,300/t CO₂‑eq mitigated (Table 2). 

This figure includes all relevant direct costs for travel by public transit and by car, including the costs of infrastructure, operations, vehicle purchase, and fuel. It does not include external costs, such as medical costs resulting from car crashes. Capital costs (i.e., the large fixed costs of building public transit infrastructure) are accounted for via the annualized capital costs listed in public transit agencies’ financial reports. 

A very large proportion of the total costs of providing public transit is labor (e.g., wages for bus drivers and station attendants). This cost is unlikely to come down as a result of technological innovations (Bloomberg New Energy Finance, 2018).

For an individual passenger, however, the marginal costs of public transit (i.e., the fares they pay) can sometimes be higher than the marginal costs of driving. This is in large part due to many external costs of driving which are borne by society at large (Litman, 2024). However, increasing the public transit availability would likely increase occupancy, which would in turn drive costs down.

left_text_column_width

Table 2. Cost per unit of climate impact.

Unit: 2023 US$/t CO₂‑eq , 100-yr basis

Median –3300

Transit provider cost, not passenger cost.

Left Text Column Width
Learning Curve

Public transit is a largely mature technology with limited opportunities for radical cost-saving innovation. While our research did not find any papers reporting a learning curve in public transit as a whole, battery-electric buses are in fact subject to many of the same experience effects of other battery-electric vehicles. Although there are no studies assessing declines in the cost of electric buses as a whole, there are studies assessing learning curves for their batteries, which is the most costly component. The cost of batteries used in battery-electric buses has declined 19.25% with each doubling of installed capacity (Table 3).

left_text_column_width

Table 3. Learning rate: drop in cost per doubling of the installed solution base.

Unit: %

25th percentile 18.63
Mean 19.25
Median (50th percentile) 19.25
75th percentile 19.88

This applies only to the cost of batteries in electric buses, not to public transportation as a whole.

Left Text Column Width
Speed of Action

Speed of action refers to how quickly a climate solution physically affects the atmosphere after it is deployed. This is different from speed of deployment, which is the pace at which solutions are adopted.

At Project Drawdown, we define the speed of action for each climate solution as emergency brake, gradual, or delayed.

Enhance Public Transit is a GRADUAL climate solution. It has a steady, linear impact on the atmosphere. The cumulative effect over time builds as a straight line.

left_text_column_width
Caveats

Public transit competes for passengers not just with cars, but also with other transportation modes – some of which have lower emissions on average. If an increase in public transit’s modal share comes at the expense of nonmotorized transportation (i.e., pedestrian travel or cycling), or electric bicycles, this will result in a net increase in emissions. Similarly, public transit could generate additional trips that would not have occurred if the public transit network those trips were taken on did not exist. Under this scenario, a net increase in emissions would occur; however, these new trips might bring additional social benefits that would outweigh these new emissions.

Low occupancy could also diminish the climate benefit of enhancing public transit. While it is certainly possible to build effective and efficient public transit networks in suburban and rural areas, there is a risk that such networks could have high per-pkm GHG emissions if they have low average occupancy (Mees, 2010). It is therefore important to efficiently plan public transit networks, ensure vehicles are right-sized and have efficient powertrains, and promote high levels of ridership even in rural areas to maximize the climate benefit of these kinds of networks.

Upscaling public transit networks – and, crucially, convincing more motorists to use them – is an enduring challenge that faces cultural resistance in some countries, issues with cost, and sometimes a lack of political will. Successfully enhancing public transit will require that these hurdles are overcome.

left_text_column_width
Current Adoption

In cities around the world surveyed over the last 15 years, public transit has an average modal share of approximately 26.2% of trips. In comparison, fossil fuel–powered cars account for 51.4% of all trips, while nonmotorized transportation accounts for 22.4% (Prieto-Curiel & Ospina, 2024). The 26.2% of trips taken via public transit corresponds to approximately 7.2 trillion pkm traveled on public transit in cities every year (Table 4).

We calculated adoption from modal share data (i.e., the percentage of trips in a given city taken via various modes of transportation). We estimated total pkm traveled by assuming a global average daily distance traveled based on travel surveys from the United States as well as several European countries (Christensen & Vázquez, 2013; Department for Transport, 2024; Ecke, 2023; Federal Highway Administration, 2022; Statistics Netherlands, 2024). Most of these data did not account for population, and therefore gave too much weight to small cities and skewed the results. Therefore, we used Prieto-Curiel and Ospina’s (2024) global population-weighted mean modal share of the ITF’s (2021) urban passenger market as our global adoption value.

We assumed that Prieto-Curiel and Ospina’s data refer only to urban modal share. Public transit can be useful in rural areas (Börjesson et al., 2020), but we did not attempt to estimate rural public transit adoption in this assessment.

left_text_column_width

Table 4. Current (2024) adoption level.

Unit: million pkm/yr 

Population-weighted mean 6,784,000
Left Text Column Width
Adoption Trend

Based on data from Prieto-Curiel and Ospina (2024) and the UITP (2024) for 1,097 cities worldwide, the rate of adoption of public transit has not changed since 2010, with the median annual growth rate equal to 0 (Table 5). This was calculated using all of the cities in Prieto-Curiel and Ospina’s (2024) database for which modal share data exist.

Despite the lack of a global trend in public transit use, some cities, including Amsterdam, Edinburgh, and Leeds, report double-digit growth rates in the use of public transit.

left_text_column_width

Table 5. 2023–2024 adoption trend.

Unit: million pkm/yr

25th percentile -301,100
Mean 30,802
Median (50th percentile) 0.00
75th percentile 774,100
Left Text Column Width
Adoption Ceiling

Public transit could theoretically replace all trips currently undertaken by fossil fuel–powered cars. This would amount to 23 trillion pkm on public transit annually, worldwide (Table 6). This would not be feasible to achieve in practice, as it would require construction of new public transit vehicles and infrastructure on an unfeasibly large scale, and massive changes to living patterns for many people. It would also be much more expensive than we calculated above, because such a change would require extending public transit coverage into areas where it would be highly uneconomic. Public transit is capable of providing a good transportation option in rural areas, but there is a limit to its benefits when population densities are low even by rural standards. Even in cities, this scenario would require a radical redesign of some neighborhoods to prioritize public transit. Such large public transit coverage would also inevitably shift other modes of transportation, such as pedestrian travel and cycling, leading to an even higher pkm total than that suggested by current adoption of fossil fuel–powered cars.

left_text_column_width

Table 6. Adoption ceiling.

Unit: million pkm/yr

Median (50th percentile) 22,502,000
Left Text Column Width
Achievable Adoption

The achievable range of public transit adoption is 12.0 to 17.7 trillion pkm traveled by public transit in cities globally.

To estimate the upper bound of achievable adoption, we assumed that urban trips taken by fossil fuel–powered car (currently 51.4% of trips globally) can be shifted to public transit until public transit increases to 76.6% of trips (the current highest modal share of public transit in any city with a population of more than 1 million) or until car travel decreases to 12.0% of trips (the current lowest modal share of fossil fuel–powered cars in any city with a population of more than 1 million). This equals a shift of 10.9  trillion pkm from fossil fuel–powered car travel to public transit, which, added to present-day public transit trips (6.8 trillion trips/yr), equals 17.7 trillion pkm/yr (Table 7).

To set the lower bound, we performed the same calculation as above, but on a regional basis, adding up all the resultant modal shifts to get a global figure. For example, every northern European city might reach the public transit modal share of London (44.5% of trips), while every South Asian city might reach that of Mumbai (52.0% of trips). Having done that, we then added together the public transit adoption rates from all world regions, apart from three (Polynesia, Micronesia, and Melanesia) for which we did not find any modal share data. This corresponds to a shift of 5.3 trillion pkm/yr from cars to public transit, and a total achievable public transit adoption rate of 12.0 trillion pkm/yr.

Achieving both of these levels of adoption would require not only major investments in expanding public transit networks, but also major changes in how cities are planned so as to allow more areas to be effectively served by transit. These levels of adoption would also require overcoming cultural and political resistance to abandoning cars in favor of public modes. However, unlike the scenario discussed under Adoption Ceiling, these scenarios are feasible, since they are based on real achievements by cities around the world.

left_text_column_width

Table 7. Range of achievable adoption levels.

Unit: million pkm/yr

Current adoption 6,784,000
Achievable – low 12,030,000
Achievable – high 17,670,000
Adoption ceiling 22,500,000
Left Text Column Width

If all public transit trips were taken by fossil fuel–powered cars instead of by public transit, they would result in an additional 0.40 Gt CO₂‑eq/yr of emissions (Table 8).

The global potential climate impact of enhancing public transit, if all car trips were shifted onto public transit systems, is 1.31 Gt. As discussed under Adoption Ceiling, this is an unrealistic scenario.

In a more realistic scenario, if every city in the world shifted car traffic onto public transit until it reached the public transit modal share of Hong Kong (i.e., the high estimate of achievable adoption), it would save 1.03 Gt CO₂‑eq/yr globally. Meanwhile, if every city shifts car trips to public transit until it reaches the car modal share of the region’s least car-dependent city (i.e., the low estimate of achievable adoption), it would save 0.701 Gt CO₂‑eq/yr.

left_text_column_width

Table 8. Climate impact at different levels of adoption.

Unit: Gt CO₂‑eq/yr, 100-yr basis

Current adoption 0.395
Achievable – low 0.701
Achievable – high 1.029
Adoption ceiling 1.311
Left Text Column Width
Additional Benefits

Income and Work

Investment in enhancing public transit can also generate substantial economic returns. The APTA estimated that each US$1 billion invested in transit can create 49,700 jobs and yield a five-to-one economic return (APTA, 2020). According to another study, shifting 50% of highway funds to mass transit systems in 20 U.S. metropolises could generate more than 1 million new transit jobs within five years (Swanstrom et al., 2010). 

Health

Improved air quality due to enhanced public transit has direct health benefits, such as lowering cardiovascular disease risk, and secondary health benefits, such as increased physical activity (Xiao et al., 2019), fewer traffic-related injuries, lower rates of cancer, and enhanced access to health-care facilities and nutritious food (Gouldson et al., 2018; Health Affairs, 2021).

Equality

Limited access to transportation restricts labor participation, particularly for women. Expanding public transit can foster gender equity by improving women’s access to employment opportunities. For example, in Peru expansion of public transit has led to improvements in women’s employment and earnings (Martinez et al., 2020). Similarly, in India, the extension of the light rail system in Delhi has increased women’s willingness to commute for work (Tayal & Mehta, 2021).

Public transit enhances community connectivity by providing accessible transportation options. Expanded mobility allows individuals to reach employment, health-care, education, and recreational sites with greater ease, heightening social inclusion. The social equity benefits of public transit are especially significant for low-income people in terms of time and cost savings and safety and health benefits (Serulle & Cirillo, 2016; Venter et al., 2017). 

Nature Protection

An indirect benefit of enhanced public transit is its contribution to reducing resource consumption, such as the minerals used in manufacturing personal vehicles. Enhanced public transit can also improve land-use efficiency by curbing urban sprawl, which helps reduce pollution and limit biodiversity loss (Ortiz, 2002). 

Air Quality

GHG emissions from transportation are often emitted with other harmful air pollutants. Consequently, reducing fuel consumption by replacing transport by fossil fuel–powered cars with public transit can lead to cleaner air. The scale of this benefit varies by location and is influenced by differences in emission levels between private and public transit travels and the relative demand substitutability between modes (Beaudoin et al., 2015). For U.S. cities, significant investment in public transit could cut pollution around 1.7% on average (Borck, 2019). The benefits are more significant in low- and middle-income countries, where fossil fuel–powered cars are more polluting due to lenient air quality regulations (Goel & Gupta, 2017; Guo & Chen, 2019).

left_text_column_width
Risks

If expanded service on high-quality public transit systems replaced journeys from nonmotorized transportation or electric bicycles rather than from cars – or if expanded service on high-quality public transit systems generated journeys that would not have otherwise happened – this will have a net-negative climate impact, since public transit has higher per-pkm GHG emissions than electric bicycles or not traveling (International Transport Forum, 2020). 

There may be cases where public transit networks cannot be implemented efficiently enough to provide a meaningful benefit compared to fossil fuel–powered cars in terms of GHG emissions. This would occur in places where there are so few potential riders that most trips would have a very low occupancy. The result would be a much higher rate of emissions per pkm. However, effective public transit networks can be built in suburban and even rural areas (Börjesson et al., 2020; Mees, 2010).

Finally, expanding public transit networks has proven very difficult in recent years. Entrenched preferences for car travel, reluctance on the part of governments to invest heavily in new transit infrastructure, and local political challenges over land use, noise, gentrification, and similar issues are all obstacles to increased public transit use. Public transit expansion has faced stronger headwinds in recent years in particular, due to both the impact of the COVID-19 pandemic and competition from new (and mostly less sustainable) mobility services, such as app-based ride-hailing (Shaller, 2017).

left_text_column_width
Interactions with Other Solutions

Reinforcing

For people living without cars, public transit provides a crucial service that is hard to replace for certain kinds of trips, such as trips over long distances, with small children, or carrying large objects. As a result, public transit plays a large role in making it more viable for people to live without owning a car (Brown, 2017). Research suggests that the key to a low-carbon mobility system is to reduce the need for people to own cars altogether (Van Acker & Witlox, 2010).

left_text_column_width

Public transit requires a lot less space than cars. Some of this space could be reallocated to ecosystem conservation through revegetation and other land-based methods of GHG sequestration (Rodriguez Mendez et al., 2024).

left_text_column_width

Competing 

Electric cars and public transit compete for pkm. Consequently, increased use of public transit could reduce kilometers traveled using electric cars. 

left_text_column_width
Dashboard

Solution Basics

million passenger kilometers (million pkm)

t CO₂-eq (100-yr)/unit
00.12758.27
units/yr
Current 6.784×10⁶ 01.203×10⁷1.767×10⁷
Achievable (Low to High)

Climate Impact

Gt CO₂-eq (100-yr)/yr
Current 0.395 0.7011.029
US$ per t CO₂-eq
-3,300
Gradual

CO₂, CH₄, N₂O, BC

Trade-offs

Public transit vehicles are sometimes unsafe, particularly for vulnerable groups such as women (Loukaitou-Sideris, 2014). In some circumstances – although this remains controversial – new public transit routes can also lead to gentrification of neighborhoods, forcing people to move far away from city centers and use cars for travel (Padeiro et al., 2019). 

Expansion of public transit networks could also have negative consequences in areas directly adjacent to transit infrastructure. Diesel buses create air pollution (Lovasi et al., 2022), and public transit networks of all types can create noise pollution (Hemmat et al., 2023).

left_text_column_width
Population (millions)
1
10
30
Active Mobility
Public Transport
Private Cars

Primary mode of transport

Mapping the primary mode of transportation reveals mobility patterns and opportunities to shift travel toward lower-emitting modes.

Prieto-Curiel, R. and Ospina, Juan P. (2024). The ABC of mobility [Data set]. Environmental International, Link to source: https://doi.org/10.1016/j.envint.2024.108541. Retrieved May 9, 2025 from Link to source: https://github.com/rafaelprietocuriel/ModalShare

Population (millions)
1
10
30
Active Mobility
Public Transport
Private Cars

Primary mode of transport

Mapping the primary mode of transportation reveals mobility patterns and opportunities to shift travel toward lower-emitting modes.

Prieto-Curiel, R. and Ospina, Juan P. (2024). The ABC of mobility [Data set]. Environmental International, Link to source: https://doi.org/10.1016/j.envint.2024.108541. Retrieved May 9, 2025 from Link to source: https://github.com/rafaelprietocuriel/ModalShare

Maps Introduction

Public transit is most effective in urban areas with high population density, where buses, subways, trams, and commuter rail can efficiently carry large numbers of passengers. Electrified or low-emission transit modes achieve the greatest climate impact, especially in regions with clean electricity grids (Bloomberg New Energy Finance, 2018). However, even diesel-based public transit systems can outperform fossil fuel-powered cars on a per-pkm basis if they have high ridership and operate efficiently.

Socioeconomic and political factors, including investment capacity, institutional coordination, and public perceptions of reliability, safety, and comfort, highly influence the adoption and effectiveness of public transit. Regions with well-funded public infrastructure, integrated fare systems, and strong governance tend to have the highest adoption and climate benefits. Conversely, underinvestment, informal transit dominance, or poorly maintained systems can undermine public transit’s potential (Börjesson et al., 2020; Mees, 2010).

High public transit adoption is seen in Western and Northern Europe, Post-Soviet countries, East Asia (including Japan, South Korea, and China), and some Latin American cities, like Bogotá and Santiago. In contrast, many developing regions face barriers to public transit expansion, such as inadequate funding, urban sprawl, or a reliance on informal minibus systems. However, these same areas offer some of the highest potential for impact. Rapid urbanization, growing demand for mobility, and severe air quality challenges create strong incentives to expand and modernize transit networks.

Action Word
Enhance
Solution Title
Public Transit
Classification
Highly Recommended
Lawmakers and Policymakers
  • Use public transit and create incentive programs for government employees to use public transit.
  • Improve and invest in local public transit infrastructure, increasing routes and frequency while improving onboard safety, especially for women.
  • Electrify public buses, vans, and other vehicles used in the public transit system.
  • Implement the recommendations of transit-oriented development, such as increasing residential and commercial density, placing development near stations, and ensuring stations are easily accessible.
  • Provide online information, ticketing, and payment services.
  • Implement regional or nationwide public transit ticketing systems.
  • Consider a wide range of policy options that include demand-side options, such as free fare or fare reductions, and that are informed by citizen-centered approaches.
  • Create dedicated coordinating bodies across government agencies, businesses, and the public to develop public transit.
  • Disincentivize car trips in areas serviced by public transit through reduced access, increases in parking fares, congestion charges, taxes, or other means.
  • Incorporate social signaling in public transit information and signage, such as smiley faces and “sustainable transport” labels.
  • Develop public transit awareness campaigns – starting from early childhood – focusing on internally motivating factors such as money saved, health benefits, reduced pollution, free time while traveling, and lifestyle sustainability.

Further information:

Practitioners
  • Use public transit and create incentive programs for government employees to utilize public transit.
  • Increase routes and frequency while also improving onboard safety, especially for women.
  • Electrify public buses, vans, and other vehicles used in the public transit system.
  • Incorporate social signaling in public transit information and signage, such as smiley faces and “sustainable transport” labels.
  • Provide online information, ticketing, and payment services
  • Implement regional or nationwide public transit ticketing systems.
  • Consider a wide range of policy options that include demand-side options, such as free fare or fare reductions, and that are informed through citizen-centered approaches.
  • Create dedicated coordinating bodies across government agencies, businesses, and the public to develop public transit.
  • Develop public transit awareness campaigns – starting from early childhood – focusing on internally motivating factors such as money saved, health benefits, reduced pollution, free time while traveling, and a sustainable lifestyle.

Further information:

Business Leaders
  • Use public transit and encourage employees to do so when feasible.
  • Encourage public transit use for company purposes.
  • Offer employees who agree to forego a free parking space the annualized cash value or cost of that parking space as a salary increase.
  • Incorporate company policies on public transit use into company sustainability and emission reduction initiatives and communicate how they support broader company goals.
  • Ensure your business is accessible via public transit and offer information on nearest access points both online and in person.
  • Offer employees pre-tax commuter benefits to include reimbursement for public transit expenses.
  • Create and distribute educational materials for employees on commuting best practices.
  • Partner with, support, and/or donate to infrastructure investments and public transit awareness campaigns.
  • Advocate for better public transit systems with city officials.

Further information:

Nonprofit Leaders
  • Use public transit and encourage staff to do so when feasible.
  • Offer staff pre-tax commuter benefits to include reimbursement for public transit expenses.
  • Offer employees who agree to forego a free parking space the annualized cash value or cost of that parking space as a salary increase.
  • Expand access to underserved communities by providing fare assistance through microgrants and/or public-private partnerships.
  • Create, support, or partner with existing public transit awareness campaigns that – starting from early childhood – focus on internally motivating factors such as money saved, health benefits, reduced pollution, free time while traveling, and a sustainable lifestyle.
  • Ensure your office is accessible via public transit and offer information – online and in person – on the nearest access points.
  • Advocate to policymakers for improved infrastructure and incentives for riders.
  • Advocate for infrastructure improvements and note specific locations where improvements can be made.
  • Encourage local businesses to create employee incentives.
  • Host or support community participation in local public transit infrastructure design.
  • Join public-private partnerships to encourage, improve, or operate public transit.

Further information:

Investors
  • Use public transit and encourage staff to do so when feasible.
  • Encourage public transit use for company purposes.
  • Invest in electric battery and component suppliers for public buses and vehicle fleets.
  • Deploy capital to efforts that improve public transit comfort, convenience, access, and safety.
  • Seek investment opportunities that reduce material and maintenance costs for public transit.

Further information:

Philanthropists and International Aid Agencies
  • Use public transit and encourage staff to do so when feasible.
  • Award grants to local organizations advocating for improved public transit and services.
  • Expand access to underserved communities by providing fare assistance through microgrants and/or public-private partnerships.
  • Improve and finance local infrastructure and public transit capacity.
  • Build local capacity for infrastructure design, maintenance, and construction.
  • Assist with local policy design or provide means for assessments, data collection, citizen participation, and other steps in the policymaking process.
  • Create, support, or partner with existing public transit awareness campaigns that – starting from early childhood – focus on internally motivating factors such as money saved, health benefits, reduced pollution, free time while traveling, and a sustainable lifestyle.

Further information:

Thought Leaders
  • Lead by example and use public transit regularly.
  • Create, support, or partner with existing public transit awareness campaigns that – starting from early childhood – focus on internally motivating factors such as money saved, health benefits, reduced pollution, free time while traveling, and a sustainable lifestyle.
  • Share detailed information on local public transit routes.
  • Assist with local policy design or provide means for assessments, data collection, citizen participation, and other steps in the policymaking process.
  • Advocate to policymakers for improved infrastructure, noting specific locations that need improvements and incentives for riders.

Further information:

Technologists and Researchers
  • Use public transit and encourage your colleagues to use public transit when feasible.
  • Improve electric batteries and electrification infrastructure for public buses and vehicles.
  • Develop models for policymakers to demonstrate the impact of public transit policies on pollutant emissions, health, and other socioeconomic variables.
  • Conduct randomized control trials and collect longitudinal data on the impacts of interventions to increase public transit usage.
  • Innovate better, faster, and cheaper public transit networks – focusing on infrastructure, operations, and public transit vehicles.

Further information:

Communities, Households, and Individuals
  • Use public transit and encourage your household and neighbors to use public transit when feasible.
  • Share your experiences with public transit, as well as tips and reasons for choosing this mode of transportation.
  • Advocate to local officials for infrastructure improvements and note specific locations where improvements can be made.
  • Advocate to employers and local businesses to provide incentives and start local initiatives.

Further information:

Evidence Base

Consensus of effectiveness in reducing transportation emissions: High

Experts agree that public transit usually produces fewer GHG/pkm than fossil fuel–powered cars (Bloomberg New Energy Finance, 2018; Brunner et al., 2018; Ilie et al., 2014; International Transport Forum, 2020; Kennedy, 2002; Kuminek, 2013; Lim et al., 2021; Mahmoud et al., 2016; Rodrigues & Seixas, 2022; Sertsoz et al., 2013). There is also consensus on two points: First, shifting people from cars to public transit even under status-quo emissions levels will reduce transport emissions overall; second, opportunities exist to decarbonize the highest-emitting parts of public transit systems through electrification, especially buses (Bloomberg New Energy Finance, 2018).

According to the Intergovernmental Panel on Climate Change (IPCC, 2023), public transit can help decrease vehicle travel and lower GHG emissions by reducing both the number and length of trips made in fossil fuel–powered cars (medium confidence). Adjustments to public transportation operations – such as increasing bus stop density, reducing the distance between stops and households, improving trip duration and frequency, and lowering fares – can encourage a shift from fossil fuel–powered car use to public transit.

Bloomberg New Energy Finance (2018) provides a good overview of the state of electric buses – a technology crucial to reduce the public transit fleet’s fossil fuel consumption, and help transition these fleets entirely to electric power. It determined that electric buses have significantly lower operating costs and can be more cost-effective than conventional buses when considering total ownership costs.

Litman (2024) found that “High quality (relatively fast, convenient, comfortable, and integrated) transit can attract discretionary passengers who would otherwise drive, which reduces traffic problems including congestion, parking costs, accidents, and pollution emissions. This provides direct user benefits, since they would not change mode if they did not consider themselves better off overall.”

The results presented in this document summarize findings from 28 reviews and meta-analyses and 23 original studies reflecting current evidence from 32 countries, primarily the American Public Transit Association (APTA, 2020), Bloomberg New Energy Finance (2018), International Transport Forum (2020), and UITP (2024). We recognize this limited geographic scope creates bias, and hope this work inspires research and data sharing on this topic in underrepresented regions.

left_text_column_width
Updated Date

Increase Carpooling

Image
Image
Carpool lane sign
Coming Soon
On
Summary

Carpooling entails increasing the occupancy of passenger cars, including taxis, pickup trucks, motorhomes, passenger vans and other such vehicles but not including two- or three-wheeled, freight, public transit, or commercial vehicles, such as buses, heavy trucks, and commercial vans. It replaces the practice of driving alone.

We define Increase Carpooling as having at least one passenger per car in addition to the driver (two passengers for ride-hailing). We consider a fully adopted carpool trip as having 2 passengers for a car occupancy of three. New adoption is considered as any passenger kilometer (pkm)/yr avoided from an increase in the 2023 current adoption baseline (average occupancy of 1.5).

Description for Social and Search
Carpooling is a Highly Recommended climate solution. By increasing car occupancy, it cuts per-capita GHG emissions, reduces congestion, maximizes the use of existing infrastructure, and saves money.
Overview

Carpooling involves transporting multiple people in a single car. Because carpooling increases the number of passengers per vehicle, it reduces emissions per pkm (International Transport Forum [ITF], 2021). However, the actual impact depends on how the carpool trip is organized – for example, whether it replaces solo car trips or shifts people away from public or active transport.

Carpooling is generally more efficient when ride-matching is optimized. If trips involve detours to pick up passengers, the benefits can be reduced. Similarly, carpooling may offer less advantage in areas with strong public transportation systems if it replaces public transport use (Schaller, 2021).

In addition to reducing emissions of CO₂, methane, nitrous oxide, and black carbon) (ITF, 2023), carpooling can help alleviate traffic congestion and reduce demand for parking (Dong et al., 2025). It may also lower transportation costs for participants (Fulton et al., 2020). However, the full benefits depend on usage patterns, geographic context, and integration with other transport modes.

AAA. (2022). AAA’s your driving costs. Link to source: https://exchange.aaa.com/automotive/aaas-your-driving-costs 

Adelé, S., & Dionisio, C. (2020). Learning from the real practices of users of a smart carpooling app. European Transport Research Review, 12(1), Article 39. Link to source: https://doi.org/10.1186/s12544-020-00429-3  

Anenberg, S., Miller, J., Henze, D., & Minjares, R. (2019). A global snapshot of the air pollution-related health impacts of transportation sector emissions in 2010 and 2015. International Council on Clean Transportation. Link to source: https://theicct.org/publication/a-global-snapshot-of-the-air-pollution-related-health-impacts-of-transportation-sector-emissions-in-2010-and-2015/  

Anthopoulos, L. G., & Tzimos, D. N. (2021). Carpooling platforms as smart city projects: a bibliometric analysis and systematic literature review. Sustainability, 13(19), Article 10680. Link to source: https://doi.org/10.3390/su131910680  

Armoogum, J., Borgato, S., Fiorello, D., Garcia, C., Gopal, Y., Maffii, S., Mars, K.-J., Popovska, T., Vincent, V., Bogaert, M., Gayda, S., & Schlemmer, L. (2022). Study on new mobility patterns in European cities: EU-wide passenger mobility survey. IFSTTAR - Institut Français des Sciences et Technologies des Transports, de l’Aménagement et des Réseaux. Link to source: https://doi.org/10.2832/728583  

Bachmann, F., Hanimann, A., Artho, J., & Jonas, K. (2018). What drives people to carpool? Explaining carpooling intention from the perspectives of carpooling passengers and drivers. Transportation Research Part F: Traffic Psychology and Behaviour, 59, 260–268. Link to source: https://doi.org/10.1016/j.trf.2018.08.022  

Beed, R. S., Sarkar, S., Roy, A., Biswas, S. D., & Biswas, S. (2020). A hybrid multi-objective carpool route optimization technique using genetic algorithm and A* algorithm (No. arXiv:2007.05781). arXiv. Link to source: https://doi.org/10.48550/arXiv.2007.05781  

Burnham, A., Gohike, D., Rush, L., Stephens, T., Zhou, Y., Delucchi, M. A., Birky, A., Hunter, C., Lin, Z., Ou, S., Xie, F., Proctor, C., Wiryadinata, S., Liu, N., & Boloor, M. (2021). Comprehensive total cost of ownership quantification for vehicles with different size classes and powertrains. Argonne National Laboratory. Link to source: https://publications.anl.gov/anlpubs/2021/05/167399.pdf 

Cellina, F., Derboni, M., Giuffrida, V., Tomic, U., & Hoerler, R. (2024). Trust me if you can: practical challenges affecting the integration of carpooling in Mobility-as-a-Service platforms. Travel Behaviour and Society, 37, Article 100832. Link to source: https://doi.org/10.1016/j.tbs.2024.100832 

Chan, N. D., & Shaheen, S. A. (2012). Ridesharing in North America: past, present, and future. Transport Reviews, 32(1). Link to source: https://doi.org/10.1080/01441647.2011.621557 

Chang, X., Wu, J., Kang, Z., Pan, J., Sun, H., & Lee, D.-H. (2024). Estimating emissions reductions with carpooling and vehicle dispatching in ridesourcing mobility. Npj Sustainable Mobility and Transport, 1(1), Article 16. Link to source: https://doi.org/10.1038/s44333-024-00015-3 

Davis, S. C., & Boundy, R. G. (2022). Transportation energy data book: edition 40. Oak Ridge: Oak Ridge National Laboratory. Link to source: https://tedb.ornl.gov/wp-content/uploads/2022/03/TEDB_Ed_40.pdf 

Dong, X., Liu, H., & Gayah, V. V. (2025). An analytical model of many-to-one carpool system performance under cost-based detour limits. International Journal of Transportation Science and Technology, 18, 80–95. Link to source: https://doi.org/10.1016/j.ijtst.2024.05.007 

European Environment Agency. (2000). Are we moving in the right direction? Indicators on transport and environmental integration in the EU: TERM 2000. Link to source: https://www.eea.europa.eu/publications/ENVISSUENo12/page029.html 

EV Database. (2024). Energy consumption of full electric vehicles. (v5.1.0) [Dataset]. Link to source: https://ev-database.org/cheatsheet/energy-consumption-electric-car  

Fiorello, D., Martino, A., Zani, L., Christidis, P., & Navajas-Cawood, E. (2016). Mobility data across the EU 28 member states: results from an extensive CAWI survey. Transportation Research Procedia, 14, 1104–1113. Link to source: https://doi.org/10.1016/j.trpro.2016.05.181 

Franckx, L. (2024). Increasing the occupancy rates of cars: carrot, stick or both? Case Studies on Transport Policy, 15, Article 101132. Link to source: https://doi.org/10.1016/j.cstp.2023.101132 

Friman, M., Lättman, K., & Olsson, L. E. (2020). Carpoolers’ perceived accessibility of carpooling. Sustainability, 12(21), Article 8976. Link to source: https://doi.org/10.3390/su12218976 

Fulton, L., Brown, A., & Compostella, J. (2020). Generalized costs of travel by solo and pooled ridesourcing vs. privately owned vehicles, and policy implications. UC Office of the President: University of California Institute of Transportation Studies. Link to source: https://doi.org/10.7922/G2WD3XTK 

Gössling, S., Choi, A., Dekker, K., & Metzler, D. (2019). The social cost of automobility, cycling and walking in the European Union. Ecological Economics, 158, 65–74. Link to source: https://doi.org/10.1016/j.ecolecon.2018.12.016 

Gössling, S., Kees, J., & Litman, T. (2022). The lifetime cost of driving a car. Ecological Economics, 194, Article 107335. Link to source: https://doi.org/10.1016/j.ecolecon.2021.107335 

Graba, M., Mamala, J., Bieniek, A., Augustynowicz, A., Czernek, K., Krupińska, A., Włodarczak, S., & Ochowiak, M. (2023). Assessment of energy demand for PHEVs in year-round operating conditions. Energies, 16(14), Article 5571. Link to source: https://doi.org/10.3390/en16145571 

Guarnieri, M., & Balmes, J. R. (2014). Outdoor air pollution and asthma. The Lancet, 383(9928), 1581–1592. Link to source: https://www.thelancet.com/journals/lancet/article/PIIS0140-6736(14)60617-6/abstract 

International Energy Agency. (2021). Global fuel economy initiative 2021 data explorer [Data Tool]. Link to source: https://www.iea.org/data-and-statistics/data-tools/global-fuel-economy-initiative-2021-data-explorer 

International Energy Agency. (2024). Global EV outlook 2024. Link to source: https://www.iea.org/reports/global-ev-outlook-2024/outlook-for-emissions-reductions 

Intergovernmental Panel on Climate Change. (2006). Mobile combustion. In S. Eggelston, L. Buendia, K. Miwa, T. Ngara, & K. Tanabe (Eds.), 2006 IPCC guidelines for national greenhouse gas inventories (Vol. 2 Energy, pp. 3.1–3.78). Institute for Global Environmental Strategies (IGES) for the IPCC. Link to source: https://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/2_Volume2/V2_3_Ch3_Mobile_Combustion.pdf 

International Transport Forum. (2020). Good to go? Assessing the environmental performance of new mobility [Corporate Partnership Board Report]OECD/ITF Publishing. Link to source: https://www.itf-oecd.org/good-to-go-environmental-performance-new-mobility 

International Transport Forum. (2021). ITF transport outlook 2021. OECD Publishing. Link to source: https://doi.org/10.1787/16826a30-en 

International Transport Forum. (2023). ITF transport outlook 2023. OECD Publishing. Link to source: https://doi.org/10.1787/b6cc9ad5-en 

International Transport Workers’ Federation Global. (2025). Understanding informal transport in Africa. Link to source: https://www.itfglobal.org/en/resources/understanding-informal-transport-in-africa 

Jacobson, S. H., & King, D. M. (2009). Fuel saving and ridesharing in the US: motivations, limitations, and opportunities. Transportation Research Part D: Transport and Environment, 14(1), 14–21. Link to source: https://doi.org/10.1016/j.trd.2008.10.001 

Jalali, R., Koohi-Fayegh, S., El-Khatib, K., Hoornweg, D., & Li, H. (2017). Investigating the potential of ridesharing to reduce vehicle emissions. Urban Planning, 2(2), 26–40. Link to source: https://doi.org/10.17645/up.v2i2.937 

Kerr, G. H., Goldberg, D. L., & Anenberg, S. C. (2021). COVID-19 pandemic reveals persistent disparities in nitrogen dioxide pollution. Proceedings of the National Academy of Sciences, 118(30), Article e2022409118. Link to source: https://doi.org/10.1073/pnas.2022409118  

Kinney, P. L., Gichuru, M. G., Volavka-Close, N., Ngo, N., Ndiba, P. K., Law, A., Gachanja, A., Gaita, S. M., Chillrud, S. N., & Sclar, E. (2011). Traffic impacts on PM2.5 air quality in Nairobi, Kenya. Environmental Science & Policy, 14(4), 369–378. Link to source: https://doi.org/10.1016/j.envsci.2011.02.005

Li, R., Liu, Z., & Zhang, R. (2018). Studying the benefits of carpooling in an urban area using automatic vehicle identification data. Transportation Research Part C: Emerging Technologies, 93, 367–380. Link to source: https://doi.org/10.1016/j.trc.2018.06.012 

Liu, C. Y., & Painter, G. (2012). Travel behavior among Latino immigrants. Journal of Planning Education and Research, 32(1), 62–80. Link to source: https://doi.org/10.1177/0739456X11422070 

Malodia, S., & Singla, H. (2016). A study of carpooling behaviour using a stated preference web survey in selected cities of India. Transportation Planning and Technology, 39(5), 538–550. Link to source: https://doi.org/10.1080/03081060.2016.1174368 

Mamala, J., Graba, M., Bieniek, A., Prażnowski, K., Augustynowicz, A., & Śmieja, M. (2021). Study of energy consumption of a hybrid vehicle in real-world conditions. Eksploatacja i Niezawodność – Maintenance and Reliability, 23(4), 636–645. Link to source: https://doi.org/10.17531/ein.2021.4.6 

Manik, D., & Molkenthin, N. (2020). Topology dependence of on-demand ride-sharing. Applied Network Science, 5(1), Article 49. Link to source: https://doi.org/10.1007/s41109-020-00290-2 

Molina, J. A., Giménez-Nadal, J. I., & Velilla, J. (2020). Sustainable commuting: results from a social approach and international evidence on carpooling. Sustainability, 12(22), Article 9587. Link to source: https://doi.org/10.3390/su12229587 

Pan, S., Yu, W., Fulton, L. M., Jung, J., Choi, Y., & Gao, H. O. (2023). Impacts of the large-scale use of passenger electric vehicles on public health in 30 US. metropolitan areas. Renewable and Sustainable Energy Reviews, 173, Article 113100. Link to source: https://doi.org/10.1016/j.rser.2022.113100 

Pennington, A. F., Cornwell, C. R., Sircar, K. D., & Mirabelli, M. C. (2024). Electric vehicles and health: A scoping review. Environmental Research, 251, Article 118697. Link to source: https://doi.org/10.1016/j.envres.2024.118697 

Requia, W. J., Mohamed, M., Higgins, C. D., Arain, A., & Ferguson, M. (2018). How clean are electric vehicles? Evidence-based review of the effects of electric mobility on air pollutants, greenhouse gas emissions and human health. Atmospheric Environment, 185, 64-77. Link to source: https://doi.org/10.1016/j.atmosenv.2018.04.040 

Rodriguez Mendez, Q., Fuss, S., Lück, S., & Creutzig, F. (2024). Assessing global urban CO2 removal. Nature Cities, 1(6), 413–423. Link to source: https://doi.org/10.1038/s44284-024-00069-x 

Santi, P., Resta, G., Szell, M., Sobolevsky, S., Strogatz, S. H., & Ratti, C. (2014). Quantifying the benefits of vehicle pooling with shareability networks. Proceedings of the National Academy of Sciences, 111(37), 13290–13294. Link to source: https://doi.org/10.1073/pnas.1403657111 

Schaller, B. (2021). Can sharing a ride make for less traffic? Evidence from Uber and Lyft and implications for cities. Transport Policy, 102, 1–10. Link to source: https://doi.org/10.1016/j.tranpol.2020.12.015 

Shaheen, S., Cohen, A., & Bayen, A. (2024). The benefits of carpooling. UC Berkeley: Transportation Sustainability Research Center. Link to source: http://dx.doi.org/10.7922/G2DZ06GF 

Szyszkowicz, M., Kousha, T., Castner, J., & Dales, R. (2018). Air pollution and emergency department visits for respiratory diseases: a multi-city case crossover study. Environmental Research, 163, 263–269. Link to source: https://doi.org/10.1016/j.envres.2018.01.043 

Tomás, R., Fernandes, P., Macedo, J., & Coelho, M. C. (2021). Carpooling as an immediate strategy to post-lockdown mobility: a case study in university campuses. Sustainability, 13(10), Article 5512. Link to source: https://doi.org/10.3390/su13105512 

Tsai, J.-H., Yao, Y.-C., Huang, P.-H., & Chiang, H.-L. (2018). Fuel economy and volatile organic compound exhaust emission for motorcycles with various running mileages. Aerosol and Air Quality Research, 18(12), 3056–3067. Link to source: https://doi.org/10.4209/aaqr.2018.07.0264 

United Nations Development Programme. (2024). A closer look at informal (popular) transportation: an emerging portrait. Link to source: https://www.undp.org/acceleratorlabs/publications/closer-look-informal-popular-transportation-emerging-portrait 

United Nations Economic Commission for Europe. (2023). Road vehicle fleet at 31 December by fuel type, type of vehicle,country and year [Dataset]. Link to source: https://w3.unece.org/PXWeb2015/pxweb/en/STAT/STAT__40-TRTRANS__03-TRRoadFleet/03_en_TRRoadFuelFlt_r.px/ 

Union of Concerned Scientists. (2023). Cars, trucks, buses and air pollution. Link to source: https://www.ucs.org/resources/cars-trucks-buses-and-air-pollution

United States Department of Energy. (2017). Fuel economy guide. Link to source: https://www.fueleconomy.gov/feg/download.shtml

World Health Organization. (2022). Number of registered vehicles. Link to source: https://www.who.int/data/gho/data/indicators/indicator-details/GHO/number-of-registered-vehicles 

Wolfram, P., Tu, Q., Hertwich, E., & Pauliuk, S. (2020). Documentation of the transport-sector model within the RECC model framework v1.0. Link to source: https://doi.org/10.5281/zenodo.3631938 

Yan, L., Luo, X., Zhu, R., Santi, P., Wang, H., Wang, D., Zhang, S., & Ratti, C. (2020). Quantifying and analyzing traffic emission reductions from ridesharing: a case study of Shanghai. Transportation Research Part D: Transport and Environment, 89, Article 102629. Link to source: https://doi.org/10.1016/j.trd.2020.102629 

Zhou, Y., Aeschliman, S., & Gohlke, D. (2020). Affordability of household transportation fuel costs by region and socioeconomic factors. Article ANL/ESD--20/11. Argonne National Laboratory. Link to source: https://doi.org/10.2172/1760477

Credits

Lead Fellows

  • Heather Jones, Ph.D.

Contributors

  • Ruthie Burrows, Ph.D.

  • James Gerber, Ph.D.

  • Daniel Jasper

  • Alex Sweeney

Internal Reviewers

  • Aiyana Bodi

  • Hannah Henkin

  • James Gerber, Ph.D.

  • Amanda D. Smith, Ph.D.

  • Heather McDiarmid, Ph.D.

Effectiveness

Every million pkm shifted from car trips (at the current car occupancy) to fully adopted carpool trips avoids 54.71 t CO₂‑eq on a 100-year basis (Table 1) or 55.28 t CO₂‑eq on a 20-year basis. 

We found this by calculating baseline car GHG emissions from the global private vehicle fleet, by multiplying the tailpipe emissions intensities of different types of fuels (g/MJ) by the energy intensity of travel by vehicles using those fuels (MJ/vkm) (EV Database, 2024; Graba et al., 2023; International Energy Agency [IEA], 2021; Intergovernmental Panel on Climate Change [IPCC], 2006; ITF, 2020; Mamala et al., 2021; Tsai et al., 2018; U.S. Department of Energy [DOE], 2017). These equaled 112.4 t CO₂‑eq /million pkm on a 100-year basis (113.6 t CO₂‑eq /million pkm on a 20-year basis). We multiplied these emissions by the average occupancy of each vehicle type (ITF, 2020) to produce an average emissions intensity for CO₂, methane, and nitrous oxide for every vehicle type. We then combined these into a global weighted average based on the percentage of each type of vehicle (electric, hybrid and fossil fuel–powered) in the global fleet (United Nations Economic Commission for Europe [UNECE], 2023). The result is a car baseline for the global average emissions intensity of passenger cars. 

We then used the global GHG emissions intensity to calculate carpool emissions based on the carpool car occupancy and subtracted them from the baseline car occupancy to determine emissions avoided.

left_text_column_width

Table 1. Effectiveness at reducing emissions.

Unit: t CO₂‑eq (100-year basis)/million pkm avoided

25th percentile 48.77
Mean 57.72
Median (50th percentile) 54.71
75th percentile 66.72
Left Text Column Width
Cost

It costs US$0.34/pkm to run a car (at current global average occupancy of 1.5 (ITF, 2020)), including car purchase and maintenance costs, fuel, etc., but excluding indirect costs such as the value of time spent driving a car. It costs US$0.17/pkm for a fully adopted carpool ride (car occupancy of 3). This is a savings of US$170,662/million pkm) (AAA, 2022; Burnham et al., 2021; Gössling et al., 2019, 2022). These direct financial costs do not include estimates of additional fuel needed due to additional weight of passengers or additional mileage due to pick up and drop off.

This amounts to savings of US$3,119 t CO₂‑eq on a 100-year basis (Table 2) or US$3,087 t CO₂‑eq avoided emissions on a 20-year basis). 

left_text_column_width

Table 2: Cost per unit climate impact.

Unit: US$ (2023) per mtCO₂‑eq (100-year basis)

Median -3,119
Left Text Column Width
Learning Curve

Carpooling is a behavioral solution, so its performance can improve over time through scaling, experience, and social normalization but not at a quantifiable learning rate

The most important mechanism for increasing carpooling is behavioral familiarity. As people become accustomed to carpooling, social and psychological barriers decline (Adelé & Dionisio, 2020; Malodia & Singla, 2016). Another mechanism that can improve carpooling performance is platform optimization. As apps and algorithms improve, matching riders becomes faster and more efficient (Beed et al., 2020; Santi et al., 2014). Network effects can also improve performance. More users increase the chance of shared trips, reducing wait times and detours (Dong et al., 2025; Manik & Molkenthin, 2020). Over time, through policy support and incentives, cities may develop dedicated lanes, subsidies, or integration with public transport, improving performance (Anthopoulos & Tzimos, 2021; Bachmann et al., 2018).

left_text_column_width
Speed of Action

Speed of action refers to how quickly a climate solution physically affects the atmosphere after it is deployed. This is different from speed of deployment, which is the pace at which solutions are adopted.

At Project Drawdown, we define the speed of action for each climate solution as emergency brake, gradual, or delayed.

Increase Carpooling is a GRADUAL climate solution. It has a steady, linear impact on the atmosphere. The cumulative effect over time builds as a straight line.

left_text_column_width
Caveats

Carpooling often falters due to the difficulty of aligning multiple participants’ schedules. Commuters face mismatched work hours, unexpected delays, or shifting routines, raising stress and reducing reliability. Comfort and privacy are additional deterrents because many travelers prefer the autonomy and personal space of driving alone. Trust and safety concerns also play a major role – riding with strangers raises worries about reliability and personal security (Cellina et al., 2024).

Accessibility further complicates adoption. In low-density areas, the limited pool of potential passengers makes ride-matching impractical, while in urban areas cultural resistance and ingrained travel habits hinder uptake (Friman et al., 2020). Finally, digital divides restrict participation in app-based systems, excluding those without reliable smartphone or internet access.

When carpooling uses platform operators it generates some emissions from server use, data processing, and administrative activities. These operational emissions are small compared to the reductions achieved.

left_text_column_width
Current Adoption

The current car occupancy is 1.5 persons per car (ITF, 2020). Approximately 2 billion cars are in use worldwide (WHO, 2022). To convert this number into pkm traveled by car, we needed to determine the average pkm that each passenger car travels per year. Using population-weighted data from several countries, we found that the average car carries 1.5 people and travels about 19,500 vkm/yr, or an average of 29,250 pkm/yr. Multiplying this by the number of cars in use gives the total travel distance by cars with the current occupancy. This corresponds to about 59 trillion pkm traveled by car worldwide each year (Table 3). 

Current car occupancy is from a global average (ITF, 2020), and adoption trend and achievable adoption are based on reported car occupancy from Belgium, Canada, China, Denmark, France, Germany, India, Italy, Japan, Latvia, Romania, United Kingdom, United States, and the European Union (Armoogum et al., 2022; Davis & Boundy, 2022; European Environment Agency [EEA], 2000; Fiorello et al., 2016; Franckx, 2024; Wolfram et al., 2020)

Since 1.5 persons per car is the current occupancy average, we define adoption as the increase in avoided pkm/yr as a result of increased occupancy above 1.5. For this reason, current adoption is represented as zero, and potential adoption in Table 6 is the increase in million pkm avoided each year.

left_text_column_width

Table 3. Current (2024) adoption level.

Unit: million pkm/yr avoided above current levels

Median, or population-weighted mean 0
Left Text Column Width
Adoption Trend

Average world car occupancy has been flat since the 1990s after declining from higher occupancy in the 1970s. Therefore, we set the adoption trend to zero (Table 4). 

For example, car occupancy in the United States decreased from 1.9 in 1977 to 1.7 in 2009 and held steady at 1.7 in 2017 (Davis & Boundy, 2022). The European Union car occupancy decreased from 2.0 in 1970 to 1.5 in 1990, where it has held steady (EEA, 2000). Despite the emergence of carpooling platforms like BlaBlaCar, Carpoolworld, Liftshare, Participation, Lyft, and (formerly known as) Uber Pool, overall car occupancy has remained largely unchanged. These advances have improved convenience and access, but structural barriers such as travel time mismatches, privacy preferences, and urban sprawl continue to limit adoption. 

left_text_column_width

Table 4. Adoption trend (2023–2024).

Unit: million pkm/yr avoided above current levels

Median, or population-weighted mean 0
Left Text Column Width
Adoption Ceiling

The adoption ceiling for increasing carpooling is equal to the pkm/yr avoidance if every car trip is a fully adopted carpool trip instead of the baseline adoption. Using a population-weighted mean of the average distance (in pkm) traveled per car annually, this translates to about 19.71 trillion pkm/yr avoided (Table 5). We assume that all of these trips can be made by carpool, regardless of purpose or distance. 

Romania reports a car occupancy of 2.7 (Fiorello et al., 2016), more than double the multi-occupancy of countries like the United States, where occupancy has remained around 1.5–1.7 for decades (Davis & Boundy, 2022; ITF, 2020; Wolfram et al., 2020). This demonstrates that significantly higher occupancy is not only possible but already practiced in certain contexts.

left_text_column_width

Table 5. Adoption ceiling: upper limit for adoption level. 

Unit: million pkm/yr avoided above current levels

Median, or population-weighted mean 19,710,000
Left Text Column Width
Achievable Adoption

Current car occupancy is useful for identifying globally achievable occupancy (Armoogum et al., 2022; Davis & Boundy, 2022; EEA, 2000; Fiorello et al., 2016; Franckx, 2024; ITF, 2023; Wolfram et al., 2020). 

To determine the high achievable level of carpool adoption, we assumed that every country could reach the highest adoption for any country. Romania had the highest reported average car occupancy at 2.7 (Fiorello et al., 2016) in 2016. We therefore set our high adoption at 2.7. This corresponds to 17.5 trillion pkm/yr avoided (Table 6). 

To identify a lower feasible level of carpool adoption, we took the historical average reported estimates for global car occupancy. This corresponds to a car occupancy of 1.7, or 5 trillion pkm/yr avoided by carpooling (Table 6).

left_text_column_width

Table 6. Range of achievable adoption levels.

Unit: million pkm/yr avoided above current levels

Current adoption 0.00
Achievable – low 4,638,000
Achievable – high 17,520,000
Adoption ceiling (physical limit) 19,710,000
Left Text Column Width

If average car occupancy globally reaches the low end of the achievable range of 1.7, it will avoid 0.254 Gt CO₂‑eq/yr GHG emissions (100-yr basis) over the current state.

If average car occupancy reaches 2.7 (the high end of the achievable range), it will avoid 0.959 Gt CO₂‑eq/yr GHG emissions (100-yr basis) over the current state.

If carpooling is fully adopted at a global average car occupancy of 3.0 (adoption ceiling), it would avoid 1.079 Gt CO₂‑eq/yr GHG emissions on a 100-yr basis.

left_text_column_width

Table7. Climate impact at different levels of adoption above current levels.

Unit: Gt CO₂‑eq per year avoided, 100-yr basis

Current adoption 0.000
Achievable – low 0.254
Achievable – high 0.959
Adoption ceiling (physical limit) 1.079
Left Text Column Width
Additional Benefits

Income and Work

Carpooling can save money through shared travel costs between passengers (Chan & Shaheen, 2012; Molina et al., 2020; Shaheen et al., 2024). One study estimated that adding one passenger for every 100 vehicles, excluding any additional travel, could avoid 800–820 million gallons of gasoline each year in the United States (Jacobson & King, 2009). Actual cost savings would depend on the price of gasoline and any additional travel required to pick up passengers. These savings may be especially beneficial for low-income households (Zhou et al., 2020). 

Health

Tailpipe emissions from internal combustion engine cars are associated with asthma, lung cancer, increased emergency department visits for respiratory disease, and increased mortality (Anenberg et al., 2019; Guarnieri & Balmes, 2014; Pan et al., 2023; Pennington et al., 2024; Requia et al., 2018; Szyszkowicz et al., 2018). Urban areas, and often those in low- and middle-income countries, experience disproportionately higher vehicle emissions and higher health impacts (Anenberg et al., 2019; Kinney et al., 2011). By reducing vehicle miles traveled, carpooling can reduce vehicle emissions and associated health impacts (Shaheen et al., 2024). A reduction in vehicle miles traveled can improve traffic congestion and road safety (Shaheen et al., 2024). Carpooling is associated with several psychological benefits, including improved sociability and reduced commute stress (Chan & Shaheen, 2012; Molina et al., 2020).

Equality

Communities that are lower income or rich in racial and ethnic minorities tend to be located near highways and major traffic corridors, and so are disproportionately exposed to air pollution (Kerr et al., 2021). Carpooling can reduce the impacts of air pollution on these populations (Shaheen et al., 2024). In the United States, carpooling can increase the accessibility of transportation for low-income, racial and ethnic minority, or immigrant populations who cannot afford personal vehicles or cannot attain driver’s licenses (Liu & Painter, 2012; Shaheen et al., 2024). Enhanced access to transportation broadly is important for increasing economic equality by providing households with income-earning opportunities.

Air Quality

Tailpipe emissions from internal combustion engine cars contain particulate matter, sulfur oxides, nitrous oxides, carbon monoxide, and volatile organic compounds (Union of Concerned Scientists, 2023). Carpooling is associated with reduced energy consumption and reduced emissions from internal combustion engine cars (Molina et al., 2020; Shaheen et al., 2024). Carpooling can reduce traffic congestion, though the magnitude of this reduction is uncertain (Chan & Shaheen, 2011). One study in Langfang, China, found that carpooling can reduce trips during the morning and evening commuting hours, reducing vehicle volume and increasing travel speeds for both carpooling and non-carpooling cars (Li et al., 2018).

left_text_column_width
Risks

Carpooling services could induce additional car use, especially if they offer convenience and low costs that attract people who would otherwise not have traveled or would have used lower-emission modes. This is a form of the rebound effect, where efficiency gains are offset by increased travel demand.

Carpooling may raise safety and security concerns, particularly in informal or app-based systems where passengers share rides with strangers. Concerns around personal safety, especially for women and marginalized groups, can limit adoption or require regulatory oversight.

Promoting carpooling without coordination with public transport policy could erode ridership on bus or rail systems. This could weaken investment in public transit and make systems less viable, especially in low-density or suburban areas.

left_text_column_width
Interactions with Other Solutions

Reinforcing

Carpooling reinforces non-car transportation modes by extending reach, offering first- and last-mile connections, and providing flexible options where fixed-route services are limited.

left_text_column_width

Carpooling reinforces the benefits of electric and hybrid cars by maximizing each vehicle’s efficiency, spreading battery and fuel savings across more passengers, and further reducing per-capita emissions.

left_text_column_width

Competing 

Carpooling, electric bicycles, and public transit compete for pkm. Consequently, increased use of carpooling could reduce kilometers traveled using public transit or electric bicycles. 

left_text_column_width
Dashboard

Solution Basics

million pkm avoided

t CO₂-eq (100-yr)/unit
048.7754.71
units/yr
Current 0 04.638×10⁶1.752×10⁷
Achievable (Low to High)

Climate Impact

Gt CO₂-eq (100-yr)/yr
Current Not Determined 0.2540.959
US$ per t CO₂-eq
-3,119
Gradual

CO₂ , CH₄, N₂O, BC

Trade-offs

Carpooling reduces the number of vehicles on the road per trip but still relies on cars rather than shifting demand toward lower-impact modes such as public transit or nonmotorized transportation.

Carpooling requires changes in user behavior and social norms, rather than technological innovation. While this avoids the environmental and financial costs of new infrastructure or vehicles, it can be challenging because it depends on people being willing to alter their travel habits, coordinate with others, and potentially sacrifice convenience or privacy.

The extent of emission reduction depends on how many people share the ride and whether the carpool replaces trips that would have otherwise been made using more sustainable transport modes (e.g., walking, cycling, or public transport).

The environmental benefits of carpooling vary based on travel behavior and context. If carpooling fills otherwise empty seats in cars already on the road, it can be highly efficient. However, if it results in route detours or deadheading or if people shift from using transit to carpooling, the net benefit may be smaller or even negative.

Carpooling can reduce the overall number of cars needed for transportation, which in turn can decrease congestion and urban parking demand. However, this benefit is limited if carpooling is only used during peak hours or if it competes with active or public transport options.

left_text_column_width
Action Word
Increase
Solution Title
Carpooling
Classification
Highly Recommended
Lawmakers and Policymakers
  • Incorporate carpooling into government transportation policy; facilitate carpooling systems, encourage and incentivize employee participation, and ensure leaders are committed to and participate in carpooling.
  • Create dedicated coordinating bodies across government agencies, businesses, and the public to develop carpooling systems; conduct regular movement planning to identify changes in participation and opportunities to increase adoption.
  • Reduce the number of fleet vehicles and increase passenger capacity as much as possible.
  • Use a combination of policies that both incentivizes carpooling and disincentivizes single occupancy trips.
  • Implement disincentives for driving such as congestion tolls, fuel taxes, and smog fees (based on how much a car pollutes and is driven).
  • Implement targeted support measures such as carpool lanes, the option to use bus lanes, and dedicated parking spots.
  • Deploy financial incentives such as tax breaks, reduced or waived toll fare, and subsidies for carpoolers.
  • Fund public carpooling schemes or subsidize private carpooling initiatives.
  • Fund free “guaranteed ride home” initiatives for carpoolers via public transit or private taxis/rideshares.
  • Integrate private and individual carpooling initiatives into Mobility as a Service (MaaS) systems, allowing for seamless transfers between public and private transportation systems.
  • Clarify legal structures around carpooling to allow drivers to accept reimbursement while remaining noncommercial operators; ensure the maximum allowable fees are enough to incentivize drivers while not outcompeting public transportation.
  • Develop regulatory structures for web-based carpooling applications that focus on minimum standards related to security, data privacy, and consumer protection; mandate user verification, create a registration system for users, and offer ongoing support for safety and security.
  • Encourage carpooling platforms to enact data-sharing agreements; mandate trip details be shared with regulatory agencies, and cross-reference user identities with national databases to screen for relevant criminal backgrounds.
  • Work with universities, businesses, and other large institutions to encourage carpooling schemes; engage in public-private partnerships with carpooling matching services to increase adoption.
  • Report on success of carpooling efforts including number of drivers and users, fuel reductions, and emissions avoidance.
  • Develop carpooling awareness campaigns focusing on internally motivating factors such as money saved, health benefits, reduced pollution, social connection, and lifestyle sustainability.

Further information:

Practitioners
  • Conduct mobility planning with local government agencies and the public to optimize routes and decrease waiting times.
  • Cluster pick-up and drop-off zones near freeways, residential areas, parking, public transit, and/or popular commercial areas – ensuring well-lit environments.
  • Host events for carpoolers, create in-person carpooling clubs, and start social media groups for carpoolers to build trust.
  • Offer incentives for joining and participating in carpooling programs; collaborate with local government and businesses to offer incentives.
  • Create web applications and websites for matching services that are easy to use, have a professional user interface, and have built-in chat features to build trust for participants.
  • Integrate carpooling initiatives into MaaS systems, allowing for seamless transfers between public and private transportation systems.
  • Use a carpool application screening process to increase trust and safety; gather information on motivations for carpooling to help match like-minded participants.
  • Allow drivers to set their own fees (within a maximum allowable range) or to waive fees for passengers; allow for nonmonetary compensation.
  • Ensure drivers and passengers have public profiles with ratings to allow participants to select drivers and passengers; create filters for categories such as gender, preferred levels of socialization, trip purpose, etc; allow for women-only trips.
  • Designate clear responsibilities for both drivers and passengers.
  • Encourage participants to socialize with each other and to share their experiences and insights with their community.
  • Collect feedback from participants and update web-based matching applications to accommodate local preferences and culture.
  • Create features on web applications that show how much money, fuel, and emissions participants have avoided by carpooling; create competitions for biggest avoiders and most active participants; develop gamification methods appropriate for the local context.
  • Ensure applications offer real-time support and ride tracking to enhance safety and trust.
  • Collaborate with insurance companies to offer carpooling policies that cover injury, property damage, and liability during trips.
  • Develop carpooling awareness campaigns focusing on factors such as money saved, health benefits, reduced pollution, social connection, and lifestyle sustainability.
Business Leaders
  • Develop company policies promoting carpooling; communicate to employees and the public how they support broader company goals; ensure leadership is committed and participates in carpooling.
  • Develop systems to track and plan fleet routes that encourage carpooling.
  • Reduce the number of fleet vehicles and increase passenger capacity.
  • Ask staff, including senior management, to identify barriers and opportunities for carpooling.
  • Work with large institutions such as universities, businesses, and public agencies to coordinate wider carpooling schemes; partner with carpooling matching services.
  • Report on success of carpooling efforts, including number of drivers and users, fuel reductions, and emissions avoidance.
  • Pay a cash bonus or offer pretax benefits for staff who carpool or take public transportation.
  • If your company offers employees courtesy rides via rideshare platforms, incentivize carpooling by covering 100% of carpool trips but only a portion of individual trips.
  • Offer other perks for employees who carpool such as preferred parking.
  • Partner with local and/or private carpooling initiatives to offer promotional incentives such as gift cards or discounts.
  • Create and distribute educational materials for employees on carpooling and commuting best practices.
  • Partner with, support, and/or donate to carpooling infrastructure investments and awareness campaigns.
  • Advocate for better public carpooling policies and integrated services with public transit systems.

Further information:

Nonprofit Leaders
  • Develop policies promoting carpooling; communicate to employees and the public how they support broader organizational goals; ensure leadership is committed and participates in carpooling.
  • Develop systems to track and plan fleet routes that encourage carpooling.
  • Reduce the number of vehicles and increasing passenger capacity as much as possible.
  • Ask staff, including senior management to identify barriers and opportunities for carpooling.
  • Report on success of carpooling efforts including number of drivers and users, fuel reductions, and emissions avoided.
  • Pay a cash bonus or provide pretax benefits for staff who carpool (or take public transportation).
  • Offer other perks for employees who carpool such as preferred parking.
  • Administer carpooling schemes using web-based applications; expand carpooling services to underserved communities by creating matching services or subsidizing participation.
  • Work with large institutions such as universities, businesses, and public agencies to coordinate wider carpooling schemes; partner with carpooling matching services.
  • Advocate for better public carpooling regulations and services with local officials.
  • Help design local regulations to clarify legal classification for carpool drivers or provide means for assessments, data collection, citizen participation, and other steps in the policymaking process.
  • Host or support carpooling clubs, events, social media groups, and other strategies for promoting carpooling.
  • Create, support, or partner with carpooling awareness campaigns that focus on motivating factors such as money saved, health benefits, reduced pollution, social connection, and a sustainable lifestyle.
Investors
  • Encourage employees to carpool.
  • Encourage portfolio companies to incentivize, provide, or promote carpooling opportunities and infrastructure, and to share fleet management plans.
  • Invest in companies that are improving the comfort, accessibility, and cost of carpooling infrastructure.
  • Invest in companies that provide or are developing web-based carpooling matching algorithms or services.
  • Invest in companies that provide MaaS and integration with existing mobility services.
  • Invest in carpooling models, supportive technology, and infrastructure.
  • Deploy capital to efforts that increase safety, trust, and convenience of web-based applications that support carpooling, such as methods of encryption and ways to integrate services into public transportation systems.

Further information:

Philanthropists and International Aid Agencies
  • Develop organizational policies promoting carpooling; communicate to employees and the public how they support broader organizational goals; ensure leadership is committed and participates in carpooling.
  • Develop systems to track and plan fleet routes to enable carpooling.
  • Reduce the number of fleet vehicles and increase passenger capacity.
  • Award grants to organizations developing or organizing carpooling services and/or advocating for improved carpooling regulations; fund projects that pilot carpooling in underserved areas and transit deserts.
  • Invest in companies that provide or are developing web-based carpooling matching services or integration with public transit infrastructure and existing mobility services.
  • Deploy capital to efforts that increase safety, trust, and convenience of web-based applications that support carpooling such as methods of encryption and ways to integrate services into public transportation systems.
  • Administer carpooling schemes usng web-based applications; expand carpooling services to underserved communities by creating matching services or subsidizing participation.
  • Advocate for better public carpooling policies and integrated services with public transit systems.
  • Work with large institutions such as universities, businesses, and public agencies to coordinate wider carpooling schemes; partner with carpooling matching services.
  • Create, support, or partner with carpooling awareness campaigns that focus on motivating factors such as money saved, health benefits, reduced pollution, social connection, and a sustainable lifestyle.
  • Host or support carpooling clubs, events, social media groups, and other strategies for promoting carpooling.
  • Improve and finance local infrastructure such as high-occupancy vehicle (HOV) lanes and carpooling capacity.
  • Help design local regulations to clarify legal classification for carpool drivers or provide means for assessments, data collection, citizen participation, and other steps in the policymaking process.
  • Develop carpooling awareness campaigns focusing on motivating factors such as money saved, health benefits, reduced pollution, social connection, and lifestyle sustainability.
Thought Leaders
  • Lead by example and carpool regularly.
  • Share information on carpooling initiatives.
  • Develop carpooling awareness campaigns focusing on motivating factors such as money saved, health benefits, reduced pollution, social connection, and lifestyle sustainability.
  • Help design regulations to clarify legal classification for carpool drivers or provide means for assessments, data collection, citizen participation, and other steps in the policymaking process.
  • Advocate for better public carpooling regulations and services with local officials.
  • Conduct local market research on specific demographics and professions to understand what incentives or disincentives will drive adoption.
  • Host events for carpoolers, create in-person carpooling clubs, and start social media groups for local carpoolers to build trust and community offline.
Technologists and Researchers
  • Develop applications that match users with carpooling opportunities based on routes, time, and location, and integrate them with local public transportation and other mobility services.
  • Use data from mobile phones, GPS trackers, and social networking to identify travelers with similar patterns and suggest carpooling routes.
  • Develop safety protocols for data usage in carpooling apps; create options for women-only rides.
  • Research the impact of incentives and disincentives on modal choice in specific metropolitan areas, regions, and countries; identify the most effective means of increasing adoption.
  • Research what impacts trust between users and carpooling platforms and between users and drivers; investigate differences in trust by local demographic characteristics; examine mechanisms for increasing trust and safety for users.
  • Research the impact of vehicle ownership on willingness to carpool, and how participating as both a driver and passenger can influence adoption.
  • Develop ways to maintain data privacy for participants while also allowing for transparency and safety; examine applications of encryption methods such as homomorphic encryption.
Communities, Households, and Individuals
  • Carpool regularly and encourage your household, neighbors, and community to carpool when feasible.
  • Take advantage of financial incentives such as tax breaks, subsidies, or grants for carpooling.
  • Share information on local carpooling initiatives with your community.
  • Host events for carpoolers, create carpooling clubs, and start social media groups for local carpoolers to build trust offline.
  • Advocate for better public carpooling regulations and services with local officials.
  • Encourage employers and local businesses to provide incentives for carpooling.
  • Participate in or develop carpooling awareness campaigns focusing on motivating factors such as money saved, health benefits, reduced pollution, social connection, and lifestyle sustainability.
Evidence Base

Consensus of effectiveness in decarbonizing the transport sector: Mixed

There is a high level of consensus among major organizations working in the area of climate solutions that carpooling can substantially reduce GHG emissions. Fewer vehicles mean less fuel burned per pkm. However, research on the real-world effectiveness of carpooling is mixed. Carpooling has remained largely flat for decades despite policy incentives and the advent of ride-sharing platforms, limiting its overall contribution to emission reductions. Additionally, rebound effects may occur or if carpoolers would otherwise have taken public transit, walked, or biked, thereby offsetting some emission avoidance. 

Globally, cars and vans were responsible for 3.8 Gt CO₂‑eq emissions in 2023 – more than 60% of road transport emissions (IEA, 2024).

Large-scale carpooling can significantly reduce fuel consumption and emissions, with studies in Shanghai showing reductions of 15–23% depending on adoption scenarios, and additional efficiency gains from improved traffic flow (Yan et al., 2020).

Carpooling can substantially reduce vehicle activity. Jalali et al. (2017) found up to a 24% decrease in total distance driven and a 40% reduction in vehicle trips under optimal conditions in Changsha, China, which translates into daily CO₂ emission reductions of around 4 tons.

Simulations on university campuses showed potential reductions of 5% in CO₂ and 7% in nitrous oxide emissions, alongside a 7% increase in average speed and an 8% reduction in travel time with increased adoption of carpooling (Tomas et al., 2021).

The results presented in this document summarize findings from 15 reviews and meta-analyses and 24 original studies reflecting current evidence from 52 countries. We recognize this limited geographic scope creates bias, and hope this work inspires research and data sharing on this topic in underrepresented regions.

left_text_column_width
Updated Date

Improve Nonmotorized Transportation

Image
Image
Many people in a crosswalk viewed from above
Coming Soon
Off
Summary

We define Improve Nonmotorized Transportation as increasing any form of travel that does not use a motor or engine. In theory, this includes a huge range of transportation modes, including horses, cross-country skis, sailboats, hand-operated rickshaws, and animal-drawn carriages. In practice, pedestrian travel and cycling account for most nonmotorized utilitarian passenger travel.

Description for Social and Search
Improve Nonmotorized Transportation is a Highly Recommended climate solution. Walking and cycling produce zero operational greenhouse gas emissions, promote health, and require minimal infrastructure.
Overview

Travel shifted from motorized to nonmotorized transportation saves GHG emissions – mostly CO₂, but also small amounts of nitrous oxide and methane (Center for Sustainable Systems, 2023) – that a fossil fuel-powered car would otherwise emit. 

We divided nonmotorized transportation into three subcategories: 1) pedestrian travel, including walking and the use of mobility aids such as wheelchairs; 2) private bicycles owned by the user, meaning that they are typically used for both the outgoing and return legs of a trip; and 3) shared bicycles, which are sometimes used for only one leg of a trip and so have to be repositioned by other means.

Pedestrian travel

Pedestrian travel (including both walking and travel using mobility aids such as wheelchairs) has the advantage of being something that most people can do and often does not require special equipment or dedicated infrastructure (although some infrastructure, such as sidewalks, can be helpful). Pedestrian travel is 81.7% of global urban nonmotorized pkm

Private bicycles

Private bicycles cost money and require maintenance but enable travel at much faster speeds and therefore longer distances. Private bicycles are 13% of global urban nonmotorized pkm.

Shared bicycles 

Shared bicycles eliminate the financial overhead of bicycle ownership, but usually only permit travel within specific urban areas and sometimes between established docking stations. Shared bicycles are 5.1% of global urban nonmotorized pkm. 

Note that we did not include electric bicycles in this analysis. Electric bicycles are analyzed as a separate solution.

While improving nonmotorized transportation can be a valuable climate solution virtually anywhere, we limit our analysis to cities due to the high number of relatively short-distance trips and the abundance of available data compared with rural locations.

The fuel for cycling and pedestrian travel is the food the traveler eats. When the traveler metabolizes the food, they produce CO₂. Some studies factor the GHG emissions produced by the added metabolism required by nonmotorized transportation into its climate impact because of the emissions that come from the food system (Mizdrak et al., 2020). This is controversial, however, because it is unclear whether pedestrians and cyclists have a higher calorie intake than people who travel in other ways (Noussan et al., 2022). Furthermore, additional food eaten to fuel physical labor is not typically counted in life-cycle analyses. This analysis, therefore, does not consider the upstream climate impacts of food calories that fuel cycling, pedestrian travel, driving, or any other activity.

AAA. (2024). AAA’s Your driving costs – AAA Exchange. Link to source: https://exchange.aaa.com/automotive/aaas-your-driving-costs/

Adamos, G., Nathanail, E., Theodoridou, P., & Tsolaki, T. (2020). Investigating the effects of active travel in health and quality of life. Transport and Telecommunication Journal21(3), 221–230. Link to source: https://doi.org/10.2478/ttj-2020-0018

Blondiau, T., van Zeebroeck, B., & Haubold, H. (2016). Economic benefits of increased cycling. Transportation Research Procedia14, 2306–2313. Link to source: https://doi.org/10.1016/j.trpro.2016.05.247

Bonilla-Alicea, R. J., Watson, B. C., Shen, Z., Tamayo, L., & Telenko, C. (2020). Life cycle assessment to quantify the impact of technology improvements in bike-sharing systems. Journal of Industrial Ecology24(1), 138–148. Link to source: https://doi.org/10.1111/jiec.12860

Bopp, M., Sims, D., & Piatkowski, D. (2018). Benefits and risks of bicycling. 21–44. Link to source: https://doi.org/10.1016/B978-0-12-812642-4.00002-7

Brand, C., Dons, E., Anaya-Boig, E., Avila-Palencia, I., Clark, A., de Nazelle, A., Gascon, M., Gaupp-Berghausen, M., Gerike, R., Götschi, T., Iacorossi, F., Kahlmeier, S., Laeremans, M., Nieuwenhuijsen, M. J., Pablo Orjuela, J., Racioppi, F., Raser, E., Rojas-Rueda, D., Standaert, A., … Int Panis, L. (2021). The climate change mitigation effects of daily active travel in cities. Transportation Research Part D: Transport and Environment93, 102764. Link to source: https://doi.org/10.1016/j.trd.2021.102764

Burnham, A., Gohlke, D., Rush, L., Stephens, T., Zhou, Y., Delucci, M. A., Birky, A., Hunter, C., Lin, Z., Ou, S., Xie, F., Proctor, C., Wiryadinata, S., Liu, N., & Boloor, M. (2021). Comprehensive total cost of ownership quantifications for vehicles with different size classes and powertrains (ANL/ESD-21/4). Argonne National Laoratory. Link to source: https://publications.anl.gov/anlpubs/2021/05/167399.pdf

Center for Sustainable Systems. (2023). Personal transportation factsheet (CSS01-07). University of Michigan. Link to source: https://css.umich.edu/publications/factsheets/mobility/personal-transportation-factsheet

Christensen, L., & Vázquez, N. S. (2013). Post-harmonised european national travel surveys. Proceedings from the Annual Transport Conference at Aalborg University20(1), Article 1. Link to source: https://doi.org/10.5278/ojs.td.v1i1.5701

CityTransit Data. (2025). A global analysis of transit data. CityTransit Data. Link to source: https://citytransit.uitp.org/ 

DeMaio, P. (2009). Bike-sharing: History, impacts, models of provision, and future. Journal of Public Transportation, 12(4), 41–56. Link to source: https://doi.org/10.5038/2375-0901.12.4.3

Department for Transport. (2024). Department for transport statistics NTS 0101: Trips, distance travelled, and time taken: England, 1972 onwards [Dataset]. Link to source: https://app.powerbi.com/view?r=eyJrIjoiMGE2YTQ5YTMtMDkwNC00MjBmLWFkNjUtMjBjZjUzZWU0ZjNmIiwidCI6IjI4Yjc4MmZiLTQxZTEtNDhlYS1iZmMzLWFkNzU1OGNlNzEzNiIsImMiOjh9

European Commission. (2019). Handbook on the external costs of transport. European Commission. Link to source: https://cedelft.eu/wp-content/uploads/sites/2/2021/03/CE_Delft_4K83_Handbook_on_the_external_costs_of_transport_Final.pdf

Federal Highway Administration. (2022). Summary of travel trends: 2022 National Household Travel Survey. US Department of Transportation. Link to source: https://nhts.ornl.gov/assets/2022/pub/2022_NHTS_Summary_Travel_Trends.pdf

Fishman, E., & Schepers, P. (2016). Global bike share: What the data tells us about road safety. Journal of Safety Research, 56, 41–45. Link to source: https://doi.org/10.1016/j.jsr.2015.11.007 

Flanagan, E., Lachapelle, U., & El-Geneidy, A. (2016). Riding tandem: Does cycling infrastructure investment mirror gentrification and privilege in Portland, OR and Chicago, IL? Research in Transportation Economics60, 14–24. Link to source: https://doi.org/10.1016/j.retrec.2016.07.027

Glazener, A., & Khreis, H. (2019). Transforming our cities: Best practices towards clean air and active transportation. Current Environmental Health Reports6(1), 22–37. Link to source: https://doi.org/10.1007/s40572-019-0228-1

Gössling, S., Neger, C., Steiger, R., & Bell, R. (2023). Weather, climate change, and transport: A review. Natural Hazards, 118(2), 1341–1360. Link to source: https://doi.org/10.1007/s11069-023-06054-2

Gössling, S., Choi, A., Dekker, K., & Metzler, D. (2019). The social cost of automobility, cycling and walking in the European Union. Ecological Economics158, 65–74. Link to source: https://doi.org/10.1016/j.ecolecon.2018.12.016

Günther, M., & Krems, J. (2022). The liveable city—How effective planning for infrastructure and personal mobility can improve people’s experiences of urban life. 13th International Conference on Applied Human Factors and Ergonomics (AHFE 2022). Link to source: https://doi.org/10.54941/ahfe1002372

International Transport Forum. (2020). Good to go? Assessing the environmental performance of new mobility (Corporate Partnership Board). OECD. Link to source: https://www.itf-oecd.org/sites/default/files/docs/environmental-performance-new-mobility.pdf

International Transport Forum. (2021). ITF Transport Outlook 2021. OECD. Link to source: https://www.itf-oecd.org/itf-transport-outlook-2021 

Hymel, K. M., Small, K. A., & Dender, K. V. (2010). Induced demand and rebound effects in road transport. Transportation Research Part B: Methodological, 44(10), 1220–1241. Link to source: https://doi.org/10.1016/j.trb.2010.02.007

IPCC. (2023). Renewable energy sources and climate change mitigation—IPCCLink to source: https://www.ipcc.ch/report/renewable-energy-sources-and-climate-change-mitigation/

Litman, T. (2011). Environmental reviews & case studies: Why and how to reduce the amount of land paved for roads and parking facilities. Environmental Practice, 13(1), 38–46. Link to source: https://doi.org/10.1017/S1466046610000530

Litman, T. (2024). Evaluating active transport benefits and costs: Guide to valuing walking and cycling improvements and encouragement programs. Victoria Transport Policy Institute. Link to source: https://www.vtpi.org/nmt-tdm.pdf

Mailloux, N. A., Henegan, C. P., Lsoto, D., Patterson, K. P., West, P. C., Foley, J. A., & Patz, J. A. (2021). Climate solutions double as health interventions. International Journal of Environmental Research and Public Health18(24), Article 24. Link to source: https://doi.org/10.3390/ijerph182413339

Mizdrak, A., Cobiac, L. J., Cleghorn, C. L., Woodward, A., & Blakely, T. (2020). Fuelling walking and cycling: Human powered locomotion is associated with non-negligible greenhouse gas emissions. Scientific Reports10(1), Article 1. Link to source: https://doi.org/10.1038/s41598-020-66170-y

Montoya-Torres, J., Akizu-Gardoki, O., & Iturrondobeitia, M. (2023). Measuring life-cycle carbon emissions of private transportation in urban and rural settings. Sustainable Cities and Society96, 104658. Link to source: https://doi.org/10.1016/j.scs.2023.104658

Mueller, N., Rojas-Rueda, D., Cole-Hunter, T., de Nazelle, A., Dons, E., Gerike, R., Götschi, T., Int Panis, L., Kahlmeier, S., & Nieuwenhuijsen, M. (2015). Health impact assessment of active transportation: A systematic review. Preventive Medicine76, 103–114. Link to source: https://doi.org/10.1016/j.ypmed.2015.04.010

Münzel, T., Molitor, M., Kuntic, M., Hahad, O., Röösli, M., Engelmann, N., Basner, M., Daiber, A., & Sørensen, M. (2024). Transportation noise pollution and cardiovascular health. Circulation Research, 134(9), 1113–1135. Link to source: https://doi.org/10.1161/CIRCRESAHA.123.323584

de Nazelle, A., Nieuwenhuijsen, M., Antó, J., Brauer, M., Briggs, D., Charlotte Braun-Fahrlander, C., Cavill, N., Cooper, A., Desqueyroux, H., Fruin, S., Hoek, G., Panis, L., Janssen, N., Jerrett, M., Joffe, M., Andersen, Z., van Kempen, E., Kingham, S., Kubesch, N., Leyden, K., Marshall, J., Matamala, J., Mellios, G., Mendez, M., Nassif, H., Ogilvie, D., Peiró, R., Pérez, K., Rabl, A., Ragettli, M., Rodríguez, D., Rojas, D., Ruiz, P., Sallis, J., Terwoert, J., Toussaint, J., Tuomisto, J., Zuurbier, M., & Lebret, E. (2011). Improving health through policies that promote active travel: A review of evidence to support integrated health impact assessment. Environment International, 37(4), 767-777. Link to source: https://doi.org/10.1016/j.envint.2011.02.003 

Noussan, M., Campisi, E., & Jarre, M. (2022). Carbon intensity of passenger transport modes: A review of emission factors, their variability and the main drivers. Sustainability14(17), Article 17. Link to source: https://doi.org/10.3390/su141710652

Prieto-Curiel, R., & Ospina, J. P. (2024). The ABC of mobility. Environment International185, 108541. Link to source: https://doi.org/10.1016/j.envint.2024.108541

Pro Cycling Coaching. (2025). Bike Time Calculator: How Long Does It Take to Bike Any Distance. Link to source: https://www.procyclingcoaching.com/resources/bike-time-calculator 

Rodriguez Mendez, Q., Fuss, S., Lück, S., & Creutzig, F. (2024). Assessing global urban CO2 removal. Nature Cities, 1(6), 413–423. Link to source: https://doi.org/10.1038/s44284-024-00069-x

Roser, M. (2024). Data review: How many people die from air pollution? Our World in DataLink to source: https://ourworldindata.org/data-review-air-pollution-deaths

Seum, S., Schulz, A., & Phleps, P. (2020). The future of driving in the BRICS countries (study update 2019). Institute for Mobility Research. Link to source: https://elib.dlr.de/135710/1/2019_ifmo_BRICS_reloaded_en1.pdf

Shindell, D. T., Lee, Y., & Faluvegi, G. (2016). Climate and health impacts of US emissions reductions consistent with 2 °C. Nature Climate Change6(5), 503–507. Link to source: https://doi.org/10.1038/nclimate2935

Staatsen, B., Nijland, H., Kempen, E., van Hollander, A., de Franssen, A., & Kamp, I. (2004). Assessment of health impacts and policy options in relation to transport-related noise exposures (815120002).

State of Colorado. (2016). Economic and health benefits of cycling and walking. Colorado Office of Economic Development and International Trade. Link to source: https://choosecolorado.com/wp-content/uploads/2016/06/Economic-and-Health-Benefits-of-Bicycling-and-Walking-in-Colorado-4.pdf

Statistics Netherlands. (2024). Mobility; per person, personal characteristics, modes of travel and regions [webpage]. Statistics Netherlands. Link to source: https://www.cbs.nl/en-gb/figures/detail/84709ENG

TNMT. (2021). The environmental impact of today’s transport types. TNMTLink to source: https://tnmt.com/infographics/carbon-emissions-by-transport-type/

Van Acker, V., & Witlox, F. (2010). Car ownership as a mediating variable in car travel behaviour research using a structural equation modelling approach to identify its dual relationship. Journal of Transport Geography, 18(1), 65–74. Link to source: https://doi.org/10.1016/j.jtrangeo.2009.05.006

Verma, S., Dwivedi, G., & Verma, P. (2022). Life cycle assessment of electric vehicles in comparison to combustion engine vehicles: A review. Materials Today: Proceedings49, 217–222. Link to source: https://doi.org/10.1016/j.matpr.2021.01.666

Volker, J. M. B., & Handy, S. (2021). Economic impacts on local businesses of investments in bicycle and pedestrian infrastructure: A review of the evidence. Transport Reviews41(4), 401–431. Link to source: https://doi.org/10.1080/01441647.2021.1912849

WHO. (2023). Despite notable progress, road safety remains urgent global issueLink to source: https://www.who.int/news/item/13-12-2023-despite-notable-progress-road-safety-remains-urgent-global-issue

Xia, T., Zhang, Y., Crabb, S., & Shah, P. (2013). Cobenefits of replacing car trips with alternative transportation: A review of evidence and methodological issues. Journal of Environmental and Public Health2013(1), 797312. Link to source: https://doi.org/10.1155/2013/797312

Credits

Lead Fellow

  • Cameron Roberts, Ph.D.

Contributors

  • James Gerber, Ph.D.

  • Yusuf Jameel , Ph.D.

  • Daniel Jasper

  • Heather Jones, Ph.D.

  • Heather McDiarmid, Ph.D.

  • Alex Sweeney

Internal Reviewers

  • Aiyana Bodi

  • Hannah Henkin

  • Yusuf Jameel, Ph.D. 

  • Heather McDiarmid, Ph.D.

  • Ted Otte

  • Amanda D. Smith, Ph.D.
Effectiveness

Nonmotorized transportation can save 115.6 t CO₂‑eq /million pkm, compared with fossil fuel–powered cars (Table 1). This makes it a highly effective climate solution. Every trip shifted from a fossil fuel–powered car to cycling or pedestrian travel avoids most, if not all, of the GHG emissions associated with car travel. Nonmotorized transportation effectiveness is calculated by taking the share of each mode and multiplying it by its effectiveness, and adding this value from all three modes. 

Cars produce 116 t CO₂‑eq /million pkm (International Transport Forum, 2020; IPCC, 2023; Montoya-Torres et al., 2023; TNMT, 2021; Verma et al., 2022). Note that this value does not correspond directly to the estimates arrived at in most of these references because it is common practice to include embodied and upstream emissions in life-cycle calculations. Because we do not include embodied and upstream emissions (which are accounted for in other solutions), our estimate for the current emissions from the global vehicle fleet comes from an original calculation using values from these sources and arrives at a lower figure than they do.

Pedestrian travel and private bicycles have negligible direct emissions (Bonilla-Alicea et al., 2020; Brand et al., 2021; International Transport Forum, 2020; Noussan et al., 2022; TNMT, 2021). This means people avoid all direct GHG emissions from driving fossil fuel–powered cars when they use nonmotorized transportation instead. Thus, shifting from cars to nonmotorized transportation saves 116 t CO₂‑eq /million pkm, not including indirect emissions, such as those from manufacturing the equipment and infrastructure necessary for those forms of mobility. Life-cycle emissions from cycling are approximately 12 t CO₂‑eq /million pkm, most of which come from manufacturing bicycles (Bonilla-Alicea et al., 2019; Brand et al., 2021; ITF, 2020; Montoya-Torres et al., 2023; Noussan et al., 2020; TNMT, 2021), while emissions from pedestrian travel are negligible (TNMT, 2021). These life-cycle emissions are not quantified for this analysis, but may be addressed by other solutions in the industrial sector.

Shared bicycles provide fewer emissions savings than privately owned bicycles do. Shared bicycle schemes have direct GHG emissions of 7.49 t CO₂‑eq /million pkm, about 109 fewer than the average fossil fuel-powered car. Because people sometimes use shared bicycles for one-way trips, the bike-sharing system can become unbalanced, with fewer bicycles in places where people start their journeys and more bicycles in places where people end them. This is fixed by driving the shared bicycles from places with surplus to places with shortage, which increases emissions. The total increase in emissions caused by this can be mitigated through measures such as using electric vehicles to reposition the bikes or incentivizing riders to reposition the bicycles themselves without the use of a vehicle. 

left_text_column_width

Table 1. Effectiveness at reducing emissions.

Unit: t CO₂‑eq /million pkm, 100-yr basis

Nonmotorized transportation
25th percentile 99.33
Mean 118.8
Median (50th percentile) 115.6
75th percentile 136.9
Left Text Column Width
Cost

Driving a fossil fuel–powered car has private costs (i.e., those that accrue to the motorist themselves) of US$0.25/pkm and public costs (for roads, lights, traffic enforcement, etc.) of US$0.11/pkm. It generates public revenues of US$0.03/pkm from taxes, fees, fines, etc. (AAA, 2024; Burnham et al., 2021; Gössling et al., 2019). This means that its net cost to the passenger is US$0.32/pkm. Cars also have externality costs, such as the cost of health care due to road injuries or air pollution (Litman, 2024). We do not factor these externalities into our cost analysis.

Nonmotorized transportation (costs weighted by mode share) has private costs of US$0.08/pkm and public costs US$0.04/pkm. It produces no revenues to the user. It has a net cost of US$0.12/pkm and saves US$0.21/pkm compared with car travel. This equals a savings of US$1,771/t CO₂‑eq (Table 2).

Pedestrian travel has private costs of US$0.09/pkm (mostly for shoes) and public costs of US$0.1/pkm (for sidewalks, staircases, bridges, etc.). It produces no new revenues. It has a net cost of US$0.10/pkm and saves US$0.23/pkm compared to car travel (Gössling et al., 2019; Litman, 2024). 

Private bicycles have private costs of US$0.06/pkm (for the cost of the bicycle itself, as well as repairs, clothing, etc.) and public costs of US$0.002/pkm (for bike lanes and other infrastructure). They produce no new revenues. They have net costs of US$0.07/pkm and save US$0.26/pkm compared to car travel (Gössling et al., 2019; Litman, 2024). These costs are cheaper than those of pedestrian travel on a per-pkm basis because, while a bicycle costs more than a pair of shoes, it can also travel much farther.

Shared bicycle systems have different cost structures. They can be very expensive (US$9.00/km in London), free (Buenos Aires) and very inexpensive (less than US$0.00 in Tehran) based on what operators charge users. Rides are usually priced by time rather than distance (DeMaio, 2009). Calculations were made as to distance covered by time to arrive at a price per km (CityTransit Data, 2025; Fishman & Schepers, 2016; Pro Cycling Coaching, 2025). Assuming that this roughly covered operating costs, it means that these systems cost US$0.22/pkm more than car travel.

An important consideration for each of these is that we must divide the cost of a bicycle, car, pair of shoes, or piece of infrastructure (road, bike lane, sidewalk) by the pkm of travel it supports over its lifespan. This means that nonmotorized transportation, which is cheaper but slower than cars, can have less of a cost advantage per pkm than might seem intuitive, and is part of the reason why cycling is cheaper per pkm than pedestrian travel. In addition, all of these estimates are based on very limited data and research and should be treated as approximate. Lastly, per-pkm infrastructural costs of cycling and pedestrian travel will decrease as cyclists and pedestrians use the infrastructure more intensively.

left_text_column_width

Table 2. Cost per unit of climate impact.

Unit: 2023 US$/t CO₂‑eq , 100-yr basis

Nonmotorized transportation
Median -1,771
Left Text Column Width
Learning Curve

Walking and cycling are mature technologies, so the concept of a learning rate is not applicable.

There is also limited opportunity for cost reductions in cycling or pedestrian infrastructure built using construction techniques very similar to those used in the road industry. However, while learning effects might not do much to reduce the costs of nonmotorized transportation infrastructure, they could do a great deal to improve its effectiveness. Safe cycling infrastructure, in particular, has improved considerably over the past few decades. This could continue into the future as best practices are further improved.

left_text_column_width
Speed of Action

Speed of action refers to how quickly a climate solution physically affects the atmosphere after it is deployed. This is different from speed of deployment, which is the pace at which solutions are adopted.

At Project Drawdown, we define the speed of action for each climate solution as emergency brake, gradual, or delayed.

Improve Nonmotorized Transportation is a GRADUAL climate solution. It has a steady, linear impact on the atmosphere. The cumulative effect over time builds as a straight line.

left_text_column_width
Caveats

Increases to the modal share of nonmotorized transportation only have the benefits discussed here if they replace travel by car. Replacing public transit travel with travel using nonmotorized transportation will have a much smaller climate benefit. The climate benefit of nonmotorized mobility will also diminish if the average emissions of the global car fleet shrink, for example, due to the wider adoption of electric vehicles. 

There are also uncertainties around trip length. A small number of long trips taken by car will not be replaceable by nonmotorized transportation. Replacing the average trip by car with cycling or pedestrian travel will, in many cases, require that trip to be shortened (for example, by placing businesses closer to people’s homes). If this is not possible, increased adoption of nonmotorized transportation will apply to only some trips, reducing the impact on both emissions and costs.

Weather and climate pose significant challenges and risks for nonmotorized transportation. Extreme heat or cold, wind, rain, or storms can make people reluctant to travel without the protection of a vehicle and, in some cases, can make doing so unsafe (Gössling et al., 2023). This will reduce the adoption of nonmotorized transportation in some places, although it can be mitigated through measures such as providing information and subsidies for proper clothing, removing or grooming snow on bicycle paths, and providing indoor/covered paths that allow pedestrians to travel through a city without exposure to the elements.

left_text_column_width
Current Adoption

Analysts most frequently report adoption of nonmotorized transportation as a percentage modal share of all trips taken in a city. Cities around the world have radically different modal shares of bicycle and pedestrian trips. Cities in LMICs often have a high nonmotorized modal share because many people cannot afford cars. Cities in high-income countries are often difficult to navigate without a car, resulting in low modal shares for nonmotorized transportation (Prieto-Curiel & Ospina, 2024). 

Prieto-Curiel and Ospina (2024) estimated that northern North America (the United States and Canada) had the lowest modal share of nonmotorized transportation, at 3.5%. Western Europe reached 29% modal share, while Western and Eastern Africa reached 42.9% and 46%, respectively.

Converting these numbers into vehicle-kilometers traveled on a national level for various countries requires assumptions. A population-weighted average of data available from the United States and several Western European countries finds that people take approximately three 13.2 km trips per day, totaling 39.7 km of daily travel with considerable variation between countries (Christensen & Vázquez, 2013; Department for Transport, 2024; Federal Highway Administration, 2022; Statistics Netherlands, 2024). For example, English people in 2022 traveled an average of 25.5 km/day, while Americans in 2020 traveled 53.5 km/day. The value we use in our analysis comes from a population-weighted average that excludes data from 2020 and 2021 to exclude data skewed by the COVID-19 pandemic. Because the United States has by far the highest population of the countries for which we found data, it skews the average much higher than many of the European countries. World data (ITF, 2021) reports that nonmotorized transportation is 14.4% of all urban pkm.

We assumed that in urban environments, each trip taken by nonmotorized transportation corresponds to one fewer car trip of this average length. This implies that nonmotorized transportation currently shifts approximately 5.6 trillion pkm from cars (Table 3). However, it should be noted that this figure includes low-income countries, where some residents have less access to private vehicles.

left_text_column_width

Table 3. Current (2024) adoption level.

Unit: million pkm/yr*

25th percentile 826,600
Mean 5,556,000
Median (50th percentile) 3,723,000
75th percentile 9,652,000

*These data are extrapolated from a range of individual city estimates from 2010 to 2020 (Prieto-Curiel and Ospina, 2024) and world data (ITF, 2021).

Left Text Column Width
Adoption Trend

In all cities for which appropriate data exist, nonmotorized transportation showed a growth rate of 0.45% of all passenger trips per year (Prieto-Curiel & Ospina, 2024). This amounts to 49 billion pkm (Table 4) according to our estimation procedure outlined above. In some cities, adoption has grown much more quickly. For example, Hanover, Germany, achieved an average growth of 7.8%/yr in 2011–2017, which amounts to approximately 593 million additional pkm traveled by bicycle every year during that time. However, the rate of adoption is extremely variable. The 25th percentile of estimates shows a global decline in nonmotorized transportation to the tune of 135 billion fewer pkm shifted to nonmotorized modes every year.

Adoption rates of nonmotorized transportation vary widely within a country and between different years within the same city (Prieto-Curiel & Ospina, 2024).

Many people, particularly in LMICs, walk or cycle because they have limited access to a vehicle. When countries become wealthier, travel often shifts from nonmotorized transportation to cars (Seum et al., 2020). If transportation policy in these countries prioritizes car-free mobility, high levels of nonmotorized transportation adoption could potentially be preserved even as living standards increase.

left_text_column_width

Table 4. 2023–2024 adoption trend.

Unit: million pkm/yr

25th percentile -134,700
Mean 29,570
Median (50th percentile) 49,400
75th percentile 296,900
Left Text Column Width
Adoption Ceiling

We estimated that 20.2% of all trips in cities worldwide, or approximately 5.6 trillion pkm/yr, are traveled by nonmotorized transportation, while 66.2%, or approximately 18.2 trillion pkm/yr, are traveled by fossil fuel–powered car. This suggests that switching all urban trips currently taken by car to nonmotorized transportation would lead to a nonmotorized modal share of 86.4% in cities globally, or 19.7 trillion pkm/yr (Table 5).

This calculation uses the same assumptions discussed under Current Adoption above. In this case, however, our assumption that every nonmotorized trip is shifted from a car trip of the same length requires further justification. We are not assuming that very long car trips, trips on highways, etc., are replaced directly by bicycle or pedestrian trips. Instead, we assume that shorter nonmotorized trips can substitute for longer car trips with appropriate investment in better urban planning and infrastructure. So, for example, a 10 km drive to a large grocery store could be replaced by a 1 km walk to a neighborhood grocery store. 

This would require replanning many cities so they better accommodate shorter trips. It would also require improving options for people with disabilities or those carrying heavy loads. And it would face climatic and topographic constraints. Furthermore, it is unlikely that all car traffic would ever be substituted by any single alternative mode. Other sustainable modes, particularly public transit, are likely to play a role.

It is also possible for rural trips to be undertaken by nonmotorized transportation. Indeed, this is already very common in low-and middle-income countries. However, rural data are sparse, and discerning how many trips could be shifted to nonmotorized travel in these areas is highly speculative. Therefore, we omit rural areas from our analysis.

left_text_column_width

Table 5. Adoption ceiling.

Unit: million pkm/yr

Median (50th percentile) 19,690,000
Left Text Column Width
Achievable Adoption

To estimate the upper bound of feasible adoption, we assumed that urban trips taken by fossil fuel–powered cars can be shifted to nonmotorized transportation until the latter accounts for 65% of trips (the current highest modal share of nonmotorized transportation in any city with a population of more than one million) or until car travel decreases to 7% of trips (the current lowest modal share of fossil fuel–powered cars in any city with a population of more than one million). This corresponds to a total achievable nonmotorized transportation modal share of 16.3 trillion pkm/yr (Table 6).

To set the lower bound, we do the same calculation as above, but for each individual region, adding up all the resultant modal shifts to get a global figure. So, for example, every East Asian city might reach the nonmotorized transportation modal share of Singapore (23% of trips), while every northern European city might reach that of Copenhagen, Denmark (41% of trips). This corresponds to a total achievable nonmotorized transportation modal share of 12.4 trillion pkm/yr.

left_text_column_width

Table 6. Range of achievable adoption levels.

Unit: million pkm/yr

Current adoption 5,556,000
Achievable – low 12,369,000
Achievable – high 16,340,000
Potential adoption 19,690,000
Left Text Column Width

If all cycling and pedestrian trips undertaken today would otherwise have happened by car, they are currently displacing approximately 0.6 Gt CO₂‑eq/yr emissions (Table 7). This is an overestimate, however, since this figure includes data from places where most people have low access to cars.

Walking and private bicycles have a different effectiveness than shared bicycles. To calculate the climate impacts of different levels of adoption, we applied the effectiveness in the share of each mode of nonmotorized transportation. Walking and private bicycling are 94.4% of nonmotorized pkm and shared bicycling is 5.3%. This gives nonmotorized transportation effectiveness at reducing emissions 115.6 t CO₂‑eq /million pkm.

On the lower end, if every city achieved a pedestrian and cycling modal share equivalent to the least-motorized city in its region, it would save 1.4 Gt CO₂‑eq/yr. On the higher end, if every city shifted enough passenger car traffic to achieve a car modal share as low as Hong Kong, China, it would save 1.9 Gt CO₂‑eq/yr. If all trips taken by car were shifted onto nonmotorized transportation (an unrealistic scenario), it would save 2.3 Gt CO₂‑eq/yr.

left_text_column_width

Table 7. Climate impact at different levels of adoption.

Unit: Gt CO₂‑eq/yr, 100-yr basis

Current adoption 0.642
Achievable – low 1.430
Achievable – high 1.889
Adoption ceiling 2.276
Left Text Column Width
Additional Benefits

Health and Air Quality

Air pollution kills approximately 7 million people yearly (Roser, 2024). By reducing vehicle emissions, nonmotorized transportation can alleviate related air pollution (Mailloux et al., 2021) and thereby reduce premature deaths. For example, cutting U.S. transportation emissions by 75% by 2030 could prevent 14,000 premature deaths annually due to decreased exposure to PM2.5 and ozone (Shindell et al., 2016). 

Nonmotorized transportation has other health and safety benefits (Blondiau et al., 2016; European Commission, 2019; Glazener & Khreis, 2019; Gössling et al., 2023; Mueller et al., 2015; State of Colorado, 2016; Xia et al., 2013). Switching from driving to walking or cycling boosts health by promoting physical activity and decreasing risks of cardiovascular issues, diabetes, and mental disorders (Mailloux et al., 2021).

Noise pollution from motorized vehicles has significant impacts on cardiovascular health, mental health, and sleep disturbances, contributing to 1.6 million lost healthy life years in 2004 and up to 1,100 deaths attributable to hypertension in Europe in 2024 (Staatsen et al., 2004; Munzel et al., 2024). Enhancing nonmotorized transportation can reduce the health impacts of traffic noise (de Nazelle et al., 2011).

Finally, nonmotorized transportation improves quality of life. It increases opportunities for human connection, integrates physical activity and fun into daily commutes, and increases the autonomy of less mobile groups such as children and elders. Cities with high modal shares for nonmotorized transportation generally have high quality of life (Adamos et al., 2020; Günther & Krems, 2022; Glazener and Khreis, 2019).

The use of nonmotorized transportation can reduce car crashes, which kill around 1.2 million people annually (WHO, 2023).

Income and Work

Nonmotorized transportation infrastructure tends to be good for local businesses. Cyclists and pedestrians are more likely to stop at businesses they pass and therefore spend more money locally, creating more jobs (Volker & Handy, 2021). 

Nature Protection

In 2011, roads and associated infrastructure accounted for 10–30% of land in residential areas and 50–70% of land in commercial areas (Litman, 2011). Transforming these lands into green spaces could provide additional habitats and reduce biodiversity loss while increasing the protection of land, soil, and water resources (European Commission, 2019).

left_text_column_width
Risks

Some literature suggested that nonmotorized transportation can lead to gentrification because bike lanes and pleasant walkable streets can increase property values, driving people who used to live in a neighborhood into other places that might still be car-dependent (Flanagan et al., 2016). This risk can be addressed by ensuring that nonmotorized transportation infrastructure is built in an equitable way, connecting different neighborhoods regardless of their social and economic status. Increasing the number of neighborhoods accessible without a car will mean that people do not have to pay a premium to live in those neighborhoods. This will avoid making accessibility without a car a privilege that only the wealthy can afford.

Cycling in a city with lots of traffic and poor cycling infrastructure puts cyclists at risk of injury from collisions with cars. This risk, however, comes mainly from the presence of cars on roads. Reducing the number of cars on the road by shifting trips to other modes can improve safety for cyclists and pedestrians (Bopp et al., 2018).

The positive impacts that nonmotorized transportation have on traffic congestion could be self-defeating if not managed well. This is because less congestion will make driving more appealing, which can, in turn, lead to additional induced demand, increasing car use and congestion (Hymel et al., 2010).

left_text_column_width
Interactions with Other Solutions

Reinforcing

Nonmotorized transportation can help passengers access public transit systems, train stations, and carpool pickup pointsThis is important because research suggests that the key to a low-carbon mobility system is to reduce the need for people to own cars (Van Acker & Witlox, 2010).

left_text_column_width

Electric bicycles use the same infrastructure as nonmotorized transportation – especially conventional bicycles. Building bike lanes, bike paths, mixed-use paths, and similar infrastructure for cyclists and pedestrians can also help with the uptake of electric bicycles. This is even more true for shared electric bicycles, which can and often do use the same sharing systems as shared conventional bicycles.

left_text_column_width

One way to encourage the adoption of electric cars is through electric car–sharing services, in which people can access a communal electric car when they need it. This has the additional benefit of reducing the need for car ownership, which is closely correlated with car use (Van Acker and Witlox, 2010). Good nonmotorized transportation infrastructure can make it easier for users of these services to access shared vehicles parked at central locations.

left_text_column_width

Nonmotorized transportation requires a lot less space than cars. Some of this space could be reallocated to ecosystem conservation and other land-based methods of GHG sequestration. In 2011, roads and parking accounted for 10–30% of land in residential areas and 50–70% of land in commercial areas (Litman, 2011). Transforming 35% of the land area of European cities alone into green spaces could sequester an additional 26 Mt CO₂‑eq/yr. Globally, this kind of effort could sequester 0.1–0.3 Gt CO₂‑eq/yr (Rodriguez Mendez et al., 2024).

left_text_column_width

Competing

Electric cars, hybrid cars, and nonmotorized transportation compete for the same pool of total pkm. Increased use of nonmotorized transportation could reduce kilometers traveled using electric cars. 

left_text_column_width
Consensus

Consensus of effectiveness in decarbonizing the transportation sector: High

The large reductions in emissions that come from shifting passenger transportation from fossil fuel-powered cars to nonmotorized modes are not controversial. There is some disagreement, however, over how many pkm traveled by car can be realistically shifted to nonmotorized transportation.

Brand et al. (2021) compared the GHG emissions of active transportation with those of cars. They concluded that “locking in, investing in and promoting active travel should be a cornerstone of sustainability strategies, policies and planning.”

The Intergovernmental Panel on Climate Change (IPCC, 2023) sixth assessment report mentioned nonmotorized transportation as a solution in its transportation chapter. The authors expressed high confidence in the potential of these transportation modes to reduce emissions and recommended policy and infrastructural measures to support them.

Litman’s (2024) study of the costs and benefits of active transportation summarized the direct financial costs as well as externalities associated with pedestrian and bicycle travel compared with travel by fossil fuel–powered car. Litman noted that “active transport can provide relatively large energy savings if it substitutes for short urban trips that have high emission rates per mile due to cold starts (engines are inefficient during the first few minutes of operation) and congestion. As a result, each 1% shift from automobile to active travel typically reduces fuel consumption 2–4%.”

This research is, unfortunately, heavily biased toward richer countries, especially in Europe and North America, even though nonmotorized transportation plays a very important role in low- and middle-income countries (LMICs). The research on this topic is also biased toward cities, even though nonmotorized transportation can be a valuable means of mobility in rural areas. 

The results presented in this document summarize findings from 19 reviews and meta-analyses and 14 original studies reflecting current evidence from 84 countries, primarily the United States, the United Kingdom, and the European Union. We recognize this limited geographic scope creates bias, and hope this work inspires research and data sharing on this topic in underrepresented regions.

left_text_column_width
Dashboard

Solution Basics

million passenger kilometers (million pkm)

t CO₂-eq (100-yr)/unit
099.33115.6
units/yr
Current 5.556×10⁶ 01.236×10⁷1.634×10⁷
Achievable (Low to High)

Climate Impact

Gt CO₂-eq (100-yr)/yr
Current 0.642 1.431.889
US$ per t CO₂-eq
-1,771
Gradual

CO₂, CH₄, N₂O, BC

Trade-offs

Production of equipment (such as bicycles) and infrastructure (such as sidewalks) creates some emissions, but these are small when divided by the total distance traveled by pedestrians and cyclists. On a per-pkm basis, this makes little difference in the emissions saved by nonmotorized transportation. 

left_text_column_width
% population
0–20
20–40
40–60
60–80
> 80

Percentage of city population living near protected bikeways, 2023

Proximity to related infrastructure, such as protected bikeways, facilitates the safe and convenient use of nonmotorized modes of transportation.

Reich, D. T. & Braga, K. (2024). Atlas of Sustainable City Transport [Data set]. Institute for Transportation and Development Policy. Retrieved June 2, 2025 from atlas.itdp.org

% population
0–20
20–40
40–60
60–80
> 80

Percentage of city population living near protected bikeways, 2023

Proximity to related infrastructure, such as protected bikeways, facilitates the safe and convenient use of nonmotorized modes of transportation.

Reich, D. T. & Braga, K. (2024). Atlas of Sustainable City Transport [Data set]. Institute for Transportation and Development Policy. Retrieved June 2, 2025 from atlas.itdp.org

Maps Introduction

Nonmotorized transportation effectiveness is high across all geographic regions, though the built environment, safety, and socio-cultural norms heavily shape its adoption and impact. Key determinants of effectiveness include the extent of safe and connected infrastructure (e.g., sidewalks, bike lanes, protected intersections), land-use patterns supporting short trips, and public policies prioritizing nonmotorized transportation.

Overall, effectiveness depends on adoption. In many cities across Europe and Asia, walking and cycling remain integral to daily travel. Cities like Amsterdam, Copenhagen, and Tokyo have successfully integrated nonmotorized modes into their broader transport systems through dedicated infrastructure and supportive urban design. In contrast, cities in North America, Sub-Saharan Africa, and parts of Latin America often lack safe, accessible infrastructure, which limits adoption.

Socioeconomic factors, including income levels, urban design, and perceptions of status, also influence the adoption of nonmotorized transport. In wealthier regions, cycling may be viewed as a lifestyle choice or an environmental statement, whereas in lower-income settings, it may be perceived as a necessity or even a sign of economic disadvantage, influencing user behavior and policy support (Seum et al., 2020).

Although shared bicycles have a lower effectiveness than walking or private bicycles, they are much more effective than cars. Increasing the number of shared bicycle systems in any geographic area can increase adoption and, therefore, make them more effective. This is particularly effective in lower-income areas where owning a private bicycle might be cost-prohibitive (Litman, 2024). Increasing shared systems in less urban and more suburban areas can be more effective, as they often replace trips made by car (Brand et al., 2021).

Nonmotorized modes are generally resilient and functional in a wide range of climates. Extreme weather conditions, including high heat, heavy rainfall, or snow, can reduce walking and cycling, although these can be mitigated through appropriate infrastructure (e.g., shaded or covered walkways, snow clearing, bike shelters).

Action Word
Improve
Solution Title
Nonmotorized Transportation
Classification
Highly Recommended
Lawmakers and Policymakers
  • Use nonmotorized transportation.
  • Reduce the associated time, distance, risk, and risk perception of nonmotorized transportation.
  • Improve infrastructure such as sidewalks, footpaths, and bike lanes.
  • Implement traffic-calming methods such as speed bumps.
  • Increase residential and commercial density.
  • Use a citizen-centered approach when designing infrastructure.
  • Enact infrastructure standards for nonmotorized transportation, such as curb ramp designs, and train contractors to implement them.
  • Establish public bike-sharing programs.
  • Create dedicated coordinating bodies across government agencies, businesses, and the public to develop nonmotorized infrastructure.
  • Disincentivize car ownership through reduced access, increases in parking fares, taxes, or other means. 

Further information:

Practitioners
  • Use nonmotorized transportation.
  • Share your experiences, tips, and reasons for choosing your modes of transportation.
  • Participate in local bike groups, public events, and volunteer opportunities.
  • Advocate to local officials for infrastructure improvements and note specific locations for improvements.
  • Encourage local businesses to create employee incentives.
  • Create “bike buses” or “walking buses” for the community and local schools.

Further information:

Business Leaders
  • Use nonmotorized transportation.
  • Ensure your business is accessible via nonmotorized transportation.
  • Advocate for better infrastructure for nonmotorized transportation.
  • Educate customers about the local infrastructure.
  • Partner with other businesses to encourage employees to cycle or walk.
  • Encourage employees to walk or cycle to and from work as their circumstances allow.
  • Create educational materials for employees on commuting best practices.
  • Offer employees pre-tax commuter benefits to include reimbursement for nonmotorized travel expenses.
  • Organize staff bike rides to increase familiarity and comfort with bicycling.
  • Install adequate bike storage, such as locking posts.
  • Emphasize walking and biking as part of company-wide sustainability initiatives and communicate how walking and biking support broader GHG emission reduction efforts.

Further information:

Nonprofit Leaders
  • Use nonmotorized transportation.
  • Ensure your office is accessible to nonmotorized transportation.
  • Advocate for infrastructure improvements and note specific locations where improvements can be made.
  • Encourage local businesses to create employee incentives.
  • Create “bike buses” or “walking buses” for the community and/or local schools.
  • Offer free classes on subjects such as bike maintenance, local bike routes, or what to know before purchasing a bike.
  • Host or support community participation in local infrastructure design.
  • Join public-private partnerships to encourage biking and walking, emphasizing the health and savings benefits.
Investors
  • Use nonmotorized transportation.
  • Deploy capital to efforts that improve bicycle and walking comfort, convenience, access, and safety.
  • Invest in public or private bike-sharing systems.
  • Invest in local supply chains for bicycles and other forms of nonmotorized transportation.
  • Seek investment opportunities that reduce material and maintenance costs for bicycles.
  • Finance bicycle purchases via low-interest loans.
  • Consider investments in nonmotorized transportation start-ups.

Further information:

Philanthropists and International Aid Agencies
  • Use nonmotorized transportation.
  • Award grants to local organizations advocating for improved walking and bicycle infrastructure.
  • Build capacity for walking and bicycle infrastructure design and construction.
  • Support organizations that distribute, refurbish, and/or donate bikes in your community.
  • Facilitate access to bicycle maintenance and supplies.
  • Host or support community education or participation efforts.
  • Donate fixtures such as street lights, guardrails, and road signs.
  • Educate the public and policymakers on the benefits and best practices of nonmotorized transportation.
Thought Leaders
  • Use nonmotorized transportation.
  • Focus messages on key decision factors for nonmotorized commuters, such as the associated health benefits and importance of fitness, climate and environmental benefits, weather forecasts, and traffic information.
  • Highlight principles of safe urban design and point out dangerous areas.
  • Share information on local bike and walking routes, general bike maintenance tips, items to consider when purchasing a bike, and related educational information.
  • Collaborate with schools on bicycle instruction, including safe riding habits and maintenance.

Further information:

Technologists and Researchers
  • Use nonmotorized transportation.
  • Examine and improve elements of infrastructure design.
  • Improve circularity, repairability, and ease of disassembly for bikes.
  • Increase the physical carrying capacities (storage) for walkers and bicyclists to facilitate shopping and transporting children, pets, and materials.
  • Identify and encourage the deployment of messaging that enhances nonmotorized transportation use.

Further information:

Communities, Households, and Individuals
  • Use nonmotorized transportation.
  • Share your experiences, tips, and reasons for choosing nonmotorized transportation.
  • Participate in local bike groups, public events, and volunteer opportunities.
  • Advocate to local officials for infrastructure improvements and note specific locations where improvements can be made.
  • Encourage local businesses to create employee incentives for using nonmotorized transportation.
  • Create “bike buses” or “walking buses” for the community and local schools.

Further information:

Sources
Evidence Base

Consensus of effectiveness in decarbonizing the transport sector: High

The large reductions in emissions that come from shifting passenger transportation from fossil fuel-powered cars to nonmotorized modes are not controversial. There is some disagreement, however, over how many pkm traveled by car can be realistically shifted to nonmotorized transportation.

Brand et al. (2021) compared the GHG emissions of active transportation with those of cars. They concluded that “locking in, investing in and promoting active travel should be a cornerstone of sustainability strategies, policies and planning.”

The Intergovernmental Panel on Climate Change (IPCC, 2023) sixth assessment report mentioned nonmotorized transportation as a solution in its transportation chapter. The authors expressed high confidence in the potential of these transportation modes to reduce emissions and recommended policy and infrastructural measures to support them.

Litman’s (2024) study of the costs and benefits of active transportation summarized the direct financial costs as well as externalities associated with pedestrian and bicycle travel compared with travel by fossil fuel–powered car. Litman noted that “active transport can provide relatively large energy savings if it substitutes for short urban trips that have high emission rates per mile due to cold starts (engines are inefficient during the first few minutes of operation) and congestion. As a result, each 1% shift from automobile to active travel typically reduces fuel consumption 2–4%.”

This research is, unfortunately, heavily biased toward richer countries, especially in Europe and North America, even though nonmotorized transportation plays a very important role in low- and middle-income countries (LMICs). The research on this topic is also biased toward cities, even though nonmotorized transportation can be a valuable means of mobility in rural areas. 

The results presented in this document summarize findings from 19 reviews and meta-analyses and 14 original studies reflecting current evidence from 84 countries, primarily the United States, the United Kingdom, and the European Union. We recognize this limited geographic scope creates bias, and hope this work inspires research and data sharing on this topic in underrepresented regions.

left_text_column_width
Updated Date

Mobilize Hybrid Cars

Image
Image
Start button on a hybrid vehicle
Coming Soon
Off
Summary

The Mobilize Hybrid Cars solution entails shifting trips from fossil fuel–powered internal combustion engine (ICE) cars to more efficient, lower emitting hybrid cars. Hybrid cars include hybrid electric cars (HEVs) and plug-in hybrid electric cars (PHEVs). They are four-wheeled passenger cars that combine an ICE with an electric motor and battery to improve fuel efficiency and reduce emissions. This definition includes hybrid sedans, sport utility vehicles (SUVs), and pickup trucks, but excludes fully electric cars, two-wheeled vehicles, and hybrid commercial or freight vehicles, such as hybrid buses and delivery trucks. Hybrid cars are a transitional climate solution because they are more efficient and produce fewer emissions per distance traveled than do fossil fuel–powered ICE cars but still rely on fossil fuel combustion.

Description for Social and Search
Mobilize Hybrid Cars is a Highly Recommended climate solution. By combining internal combustion engines with electric motors, hybrids reduce fuel use and air pollution.
Overview

Hybrid cars reduce fuel consumption and tailpipe emissions by relying on electric propulsion for part of their operation. There are currently more than 45 million hybrids making up 2.2% of the more than two billion global car stock. HEVs provide the same functionality as fossil fuel–powered ICE cars, but combine an ICE with an electric motor and battery to improve fuel efficiency. Unlike electric cars, HEVs do not require external charging; instead, they recharge their battery using regenerative braking and energy from the engine. This allows them to use electric power at low speeds and in stop-and-go traffic, reducing fuel consumption and emissions compared to traditional gasoline or diesel cars. PHEVs work similarly but have larger batteries that can be charged using the electricity grid. This enables them to operate in full-electric mode for a limited distance before switching to hybrid mode when the battery is depleted.

Hybrid cars typically offer better acceleration than their purely fossil fuel–powered ICE counterparts, especially at lower speeds. This is because electric motors deliver instant torque, allowing hybrids to respond quickly when accelerating from a stop. PHEVs tend to have stronger electric motors and thus better acceleration. The high torque at low speeds eliminates the need for inefficient gear changes and allows near-constant operation at optimal conditions because the ICE is usually engaged at efficient conditions. This improves the real-world fuel economy 39–58% compared to fossil fuel–powered ICE cars of similar size (Zhang et al., 2025).

While hybrid cars reduce fuel consumption and tailpipe emissions by relying on electric propulsion for part of their operation, their overall emissions depend on how much they use the ICE versus the electric motor, and, for PHEVs, on the emissions intensity of the electricity source used for charging. PHEVs can offer greater potential for emission reductions if charged from low-carbon electricity sources. If driven primarily in electric mode, PHEVs can significantly reduce GHG emissions compared to fossil fuel–powered ICE cars, but if the battery is not regularly charged, their fuel consumption may be similar to or even higher than standard HEVs (Dornoff, 2021; Plötz et al., 2020).

Hybrid technologies also improve car efficiency by reducing energy losses. First, both HEVs and PHEVs recover energy through regenerative braking, converting kinetic energy into electricity and storing it in the battery (Yang et al., 2024). Second, their electric powertrains are more efficient than those of traditional ICEs, particularly in urban driving conditions where frequent stops and starts are common (Verma et al., 2022). These advantages contribute to lower fuel consumption and emissions compared to fossil fuel–powered ICE cars. However, the environmental benefits of hybrids depend on driving patterns, battery charging habits, and the carbon intensity of the electricity grid used to charge PHEVs.

Hybrid cars reduce emissions of CO₂, methane, and nitrous oxide to the atmosphere by increasing fuel efficiency compared to fossil fuel–powered ICE cars, which emit these gases from their tailpipes. Because they are typically fueled by gasoline, hybrid cars produce more methane than any diesel-fueled cars they might be replacing. As a result, their 20-yr effectiveness at addressing climate change is lower than their 100-yr effectiveness. 

Agusdinata, D. B., Liu, W., Eakin, H., & Romero, H. (2018). Socio-environmental impacts of lithium mineral extraction: Towards a research agenda. Environmental Research Letters, 13(12). Article 123001. Link to source: https://doi.org/10.1088/1748-9326/aae9b1

Alberini, A., Di Cosmo, V., & Bigano, A. (2019). How are fuel efficient cars priced? Evidence from eight EU countries. Energy Policy, 134, Article 110978. Link to source: https://doi.org/10.1016/j.enpol.2019.110978

Anenberg, S., Miller, J., Henze, D., & Minjares, R. (2019). A global snapshot of the air pollution-related health impacts of transportation sector emissions in 2010 and 2015. International Council on Clean Transportation. Link to source: https://theicct.org/publication/a-global-snapshot-of-the-air-pollution-related-health-impacts-of-transportation-sector-emissions-in-2010-and-2015/

Asia-Pacific Economic Cooperation. (2024). Connecting traveler choice with climate outcomes: Innovative greenhouse gas emissions reduction policies and practices in the APEC region through traveler behavioral change. Link to source: https://www.apec.org/docs/default-source/publications/2024/9/224_tpt_connecting-traveler-choice-with-climate-outcomes.pdf 

Bell-Pasht, A. (2024). Combined energy burdens: Estimating total home and transportation energy burdens [Topic brief]. American Council for an Energy-Efficient Economy. Link to source: https://www.aceee.org/topic-brief/2024/05/combined-energy-burdens-estimating-total-home-and-transportation-energy-burdens

BEUC. (2021). Electric cars: Calculating the total cost of ownership for consumers [Technical report]. The European Consumer Organisation. Link to source: https://www.beuc.eu/reports/electric-cars-calculating-total-cost-ownership-consumers-technical-report

BloombergNEF. (2024). Electric vehicle outlook 2024. Bloomberg Finance L.P. Link to source: https://about.bnef.com/electric-vehicle-outlook/

Carey, J. (2023, January 11). The other benefit of electric vehicles [News feature]. Proceedings of the National Academy of Sciences, 120(3), Article e2220923120. Link to source: https://doi.org/10.1073/pnas.2220923120

Castelvecchi, D. (2021, August 17). Electric cars and batteries: How will the world produce enough? [News feature]. Nature, 596(7872), 336–339. Link to source: https://doi.org/10.1038/d41586-021-02222-1

Choma, E. F., Evans, J. S., Hammitt, J. K., Gómez-Ibáñez, J. A., & Spengler, J. D. (2020). Assessing the health impacts of electric vehicles through air pollution in the United States. Environment International, 144, Article 106015. Link to source: https://doi.org/10.1016/j.envint.2020.106015 

Dornoff, J. (2021). Plug-in hybrid vehicle CO2 emissions: How they are affected by ambient conditions and driver mode selection [White paper]. International Council on Clean Transportation. Link to source: https://theicct.org/publication/plug-in-hybrid-vehicle-co2-emissions-how-they-are-affected-by-ambient-conditions-and-driver-mode-selection/

Duncan, D., Ku, A. L., Julian, A., Carley, S., Siddiki, S., Zirogiannis, N., & Graham, J. D. (2019). Most consumers don’t buy hybrids: Is rational choice a sufficient explanation? Journal of Benefit-Cost Analysis, 10(1), 1–38. Link to source: https://doi.org/10.1017/bca.2018.24

Fortune Business Insights. (2025). Hybrid vehicle market size, share & growth report, 2024–2032. Link to source: https://www.fortunebusinessinsights.com/hybrid-vehicle-market-105435

Fulton, L. (2020). A publicly available simulation of battery electric, hybrid electric, and gas-powered vehicles. Energies13(10), Article 2569. Link to source: https://doi.org/10.3390/en13102569

Furch, J., Konečný, V., & Krobot, Z. (2022). Modelling of life cycle cost of conventional and alternative vehicles. Scientific Reports, 12(1), Article 10661. Link to source: https://doi.org/10.1038/s41598-022-14715-8

Garcia, E., Johnston, J., McConnell, R., Palinkas, L., & Eckel, S. P. (2023). California’s early transition to electric vehicles: Observed health and air quality co-benefits. Science of The Total Environment, 867, Article 161761. Link to source: https://doi.org/10.1016/j.scitotenv.2023.161761

International Energy Agency. (2021). Global fuel economy initiative 2021 data explorer [Data tool].Link to source: https://www.iea.org/data-and-statistics/data-tools/global-fuel-economy-initiative-2021-data-explorer

International Energy Agency. (2022). Electric vehicles: Total cost of ownership tool [Data tool]. Link to source: https://www.iea.org/data-and-statistics/data-tools/electric-vehicles-total-cost-of-ownership-tool

International Energy Agency. (2023). Energy technology perspectives 2023. Link to source: https://www.iea.org/reports/energy-technology-perspectives-2023

International Energy Agency. (2024). Global EV outlook 2024. Link to source: https://www.iea.org/reports/global-ev-outlook-2024

International Transport Forum. (2020). Good to go? Assessing the environmental performance of new mobility [Corporate Partnership Board Report]. OECD/ITF Publishing. Link to source: https://www.itf-oecd.org/sites/default/files/docs/environmental-performance-new-mobility.pdf

Isenstadt, A., & Slowik, P. (2025). Hybrid vehicle technology developments and opportunities in the 2025–2035 time frame [Working paper]. International Council on Clean Transportation. Link to source: https://theicct.org/publication/hybrid-vehicle-technology-developments-and-opportunities-in-the-2025-2035-time-frame-feb25/

Jones, S. J. (2019). If electric cars are the answer, what was the question? British Medical Bulletin, 129(1), 13–23. Link to source: https://doi.org/10.1093/bmb/ldy044

Kerr, G. H., Goldberg, D. L., & Anenberg, S. C. (2021). COVID-19 pandemic reveals persistent disparities in nitrogen dioxide pollution. Proceedings of the National Academy of Sciences, 118(30), Article e2022409118. Link to source: https://doi.org/10.1073/pnas.2022409118

Kittner, N., Tsiropoulos, I., Tarvydas, D., Schmidt, O., Staffell, I., & Kammen, D. M. (2020). Electric vehicles. In M. Junginger & A. Louwen (Eds.), Technological learning in the transition to a low‑carbon energy system: Conceptual issues, empirical findings, and use in energy modeling (pp. 145–163). Academic Press. Link to source: https://doi.org/10.1016/B978-0-12-818762-3.00009-1

Larson, E., Greig, C., Jenkins, J., Mayfield, E., Pascale, A., Zhang, C., Drossman, J., Williams, R., Pacala, S., Socolow, R., Baik, E., Birdsey, R., Duke, R., Jones, R., Haley, B., Leslie, E., Paustain, K., & Swan, A. (2020). Net-zero America: Potential pathways, infrastructure, and impacts [Interim report]. Princeton University, Andlinger Center for Energy and the Environment. Link to source: https://netzeroamerica.princeton.edu/the-report

Lutsey, N., Cui, H., & Yu, R. (2021). Evaluating electric vehicle costs and benefits in China in the 2020–2035 time frame [White paper]. International Council on Clean Transportation. Link to source: https://theicct.org/publication/evaluating-electric-vehicle-costs-and-benefits-in-china-in-the-2020-2035-time-frame/

Menes, M. (2021). Two decades of hybrid electric vehicle market. Journal of Civil Engineering and Transport, 3(1), 29–37. Link to source: https://doi.org/10.24136/tren.2021.003

Milovanoff, A., Posen, I. D., & MacLean, H. L. (2020). Electrification of light-duty vehicle fleet alone will not meet mitigation targets. Nature Climate Change, 10(12), 1102–1107. Link to source: https://doi.org/10.1038/s41558-020-00921-7

Mittal, V., & Shah, R. (2024). Modeling and comparing the total cost of ownership of passenger automobiles with conventional, electric, and hybrid powertrains. SAE International Journal of Sustainable Transportation, Energy, Environment, & Policy, 5(2), 179–192. Link to source: https://doi.org/10.4271/13-05-02-0013

Mustapa, S. I., Ayodele, B. V., Mohamad Ishak, W. W., & Ayodele, F. O. (2020). Evaluation of cost competitiveness of electric vehicles in Malaysia using life cycle cost analysis approach. Sustainability, 12(13), Article 5303. Link to source: https://doi.org/10.3390/su12135303

Ouyang, D., Zhou, S., & Ou, X. (2021). The total cost of electric vehicle ownership: A consumer-oriented study of China’s post-subsidy era. Energy Policy, 149, Article 112023. Link to source: https://doi.org/10.1016/j.enpol.2020.112023

Pennington, A. F., Cornwell, C. R., Sircar, K. D., & Mirabelli, M. C. (2024). Electric vehicles and health: A scoping review. Environmental Research, 251, Article 118697. Link to source: https://doi.org/10.1016/j.envres.2024.118697

Peters, D. R., Schnell, J. L., Kinney, P. L., Naik, V., & Horton, D. E. (2020). Public health and climate benefits and trade‐offs of U.S. vehicle electrification. GeoHealth, 4(10), Article e2020GH000275. Link to source: https://doi.org/10.1029/2020GH000275

Petrauskienė, K., Galinis, A., Kliaugaitė, D., & Dvarionienė, J. (2021). Comparative environmental life cycle and cost assessment of electric, hybrid, and conventional vehicles in Lithuania. Sustainability, 13(2), Article 957. Link to source: https://doi.org/10.3390/su13020957

Plötz, P., Moll, C., Li, Y., Bieker, G., & Mock, P. (2020). Real-world usage of plug-in hybrid electric vehicles: Fuel consumption, electric driving, and CO2 emissions [White paper]. International Council on Clean Transportation. Link to source: https://theicct.org/publication/real-world-usage-of-plug-in-hybrid-electric-vehicles-fuel-consumption-electric-driving-and-co2-emissions

Requia, W. J., Mohamed, M., Higgins, C. D., Arain, A., & Ferguson, M. (2018). How clean are electric vehicles? Evidence-based review of the effects of electric mobility on air pollutants, greenhouse gas emissions and human health. Atmospheric Environment185, 64–77. Link to source: https://doi.org/10.1016/j.atmosenv.2018.04.040

Roberts, C. (2022). Easy street for low-carbon mobility? The political economy of mass electric car adoption. In G. Parkhurst & W. Clayton (Eds.), Electrifying mobility: Realising a sustainable future for the car (Vol. 15, pp. 13–31). Emerald Publishing Limited. Link to source: https://doi.org/10.1108/S2044-994120220000015004

Romm, J. J., & Frank, A. A. (2006, April). Hybrid vehicles gain traction. Scientific American, 294(4), 72–79. https://doi.org/10.1038/scientificamerican0406-72

Sovacool, B. K. (2019). The precarious political economy of cobalt: Balancing prosperity, poverty, and brutality in artisanal and industrial mining in the Democratic Republic of the Congo. The Extractive Industries and Society, 6(3), 915–939. Link to source: https://doi.org/10.1016/j.exis.2019.05.018

Suttakul, P., Wongsapai, W., Fongsamootr, T., Mona, Y., & Poolsawat, K. (2022). Total cost of ownership of internal combustion engine and electric vehicles: A real-world comparison for the case of Thailand. Energy Reports, 8, 545–553. Link to source: https://doi.org/10.1016/j.egyr.2022.05.213

Vega-Perkins, J., Newell, J. P., & Keoleian, G. (2023). Mapping electric vehicle impacts: Greenhouse gas emissions, fuel costs, and energy justice in the United States. Environmental Research Letters, 18(1), Article 014027. Link to source: https://doi.org/10.1088/1748-9326/aca4e6

Verma, S., Dwivedi, G., & Verma, P. (2022). Life cycle assessment of electric vehicles in comparison to combustion engine vehicles: A review. Materials Today: Proceedings, 49, 217–222. Link to source: https://doi.org/10.1016/j.matpr.2021.01.666

Weiss, M., Zerfass, A., & Helmers, E. (2019). Fully electric and plug-in hybrid cars - An analysis of learning rates, user costs, and costs for mitigating CO2 and air pollutant emissions. Journal of Cleaner Production, 212, 1478–1489. Link to source: https://doi.org/10.1016/j.jclepro.2018.12.019

World Health Organization. (2022). Number of registered vehicles [Data set]. The Global Health Observatory. https://www.who.int/data/gho/data/indicators/indicator-details/GHO/number-of-registered-vehicles

Yang, C., Sun, T., Wang, W., Li, Y., Zhang, Y., & Zha, M. (2024). Regenerative braking system development and perspectives for electric vehicles: An overview. Renewable and Sustainable Energy Reviews, 198, Article 114389. Link to source: https://doi.org/10.1016/j.rser.2024.114389

Zhang, Y., Fan, P., Lu, H., & Song, G. (2025). Fuel consumption of hybrid electric vehicles under real-world road and temperature conditions. Transportation Research Part D: Transport and Environment, 142, Article 104691. Link to source: https://doi.org/10.1016/j.trd.2025.104691 

Credits

Lead Fellow

  • Heather Jones, Ph.D.

  • Cameron Roberts, Ph.D.

Contributors

  • Ruthie Burrows, Ph.D.

  • James Gerber, Ph.D.

  • Yusuf Jameel, Ph.D.

  • Daniel Jasper

  • Alex Sweeney

Internal Reviewers

  • Aiyana Bodi

  • Hannah Henkin

  • Zoltan Nagy, Ph.D. 

  • Ted Otte

  • Amanda D. Smith, Ph.D.

  • Christina Swanson, Ph.D.

Effectiveness

Each million pkm shifted from fossil fuel–powered cars to hybrid cars saves 27.11 t CO₂‑eq on a 100-yr basis (26.94 t CO₂‑eq on a 20-yr basis, Table 1). Fossil fuel–powered cars emit 115.3 t CO₂‑eq/million pkm on a 100-yr basis (116.4 t CO₂‑eq/million pkm on a 20-yr basis). The emissions from fossil fuel–powered ICE cars are calculated from the current global fleet mix which is mostly gasoline and diesel powered cars. PHEVs have lower emissions in countries with large shares of renewable, nuclear, or hydropower generation in their electricity grids (International Transport Forum, 2020; Verma et al., 2022).

We found this by collecting data on fuel consumption per kilometer for a range of HEV and PHEV models (International Energy Agency [IEA], 2021; International Transport Forum, 2020) and multiplying it by the emissions intensity of the fuel the vehicle uses (weighting PHEVs for percentage traveled using fuel). Simultaneously, we collected data on electricity consumption for a range of PHEV models (IEA, 2021; International Transport Forum, 2020), and multiplied them by the global average emissions per kWh of electricity generation. This was then weighted by the share of HEVs (73.4%) and PHEVs (26.6%) of the global hybrid car stock.

The amount of emissions savings for PHEVs depends on how often they are charged, the distance traveled using the electric motor, and the emissions intensity of the electrical grid from which they are charged. Hybrid cars today are disproportionately used in high and upper-middle income countries, where electricity grids emit less than the global average per unit of electricity generated (IEA, 2024). HEVs and PHEVs benefit from braking so are more efficient (relative to fossil fuel–powered ICE cars) in urban areas.

Hybrid cars have higher embodied emissions than fossil fuel–powered ICE cars due to the presence of both an ICE and electric motor with a battery that has a GHG-intensive manufacturing process. This gives them a carbon payback period of 2.6 to under 16 years (Alberini et al., 2019; Duncan et al., 2019) for HEVs and as low as one year for PHEVs (Fulton, 2020). Embodied emissions are outside the scope of this assessment. 

left_text_column_width

Table 1. Effectiveness at reducing emissions.

Unit: t CO‑eq/million pkm, 100-yr basis

25th percentile 19.51
Mean 22.36
Median (50th percentile) 27.11
75th percentile 65.85
Left Text Column Width
Cost

Hybrid cars cost on average US$0.01 more per pkm (US$7,200/million pkm) than fossil fuel–powered ICE cars, including purchase price, financing, fuel and electricity costs, and maintenance costs. This is based on a population-weighted average of the cost differential between hybrid and fossil fuel–powered ICE cars in the EU and 11 other countries: Argentina, China, Czechia, India, Indonesia, Lithuania, Malaysia, South Africa, Thailand, Ukraine, and the United States (BEUC, 2021; Furch et al., 2022; IEA, 2022; Isenstadt & Slowik, 2025; Lutsey et al., 2021; Mittal & Shah, 2024; Mustapa et al., 2020; Ouyang et al., 2021; Petrauskienė et al., 2021; Suttakul et al., 2022). The hybrid cost is weighted by the share of car stock of HEVs and PHEVs. 

While this analysis found that hybrid cars are slightly more expensive than fossil fuel–powered ICE cars almost everywhere, the margin is often quite small and hybrids are less expensive in China, Czechia, India, Thailand, and the United States.

This amounts to a cost of US$264/t CO₂‑eq on a 100-yr basis (US$266/t CO₂‑eq avoided emissions on a 20-yr basis, Table 2).

This analysis did not include costs that are the same for both hybrid and fossil fuel–powered ICE cars, including taxes, insurance costs, public costs of building road infrastructure, etc.

left_text_column_width

Table 2. Cost per unit of climate impact.

Unit: 2023 US$/t CO₂‑eq , 100-yr basis

Median 264
Left Text Column Width
Learning Curve

Hybrid car prices are declining. For every doubling in hybrid car production, costs decline in accordance with the learning rate of approximately 10% (Table 3).

The learning curve for hybrids is expected to continue its historical trend of 6–17% declines in production costs with each generation (Kittner et al., 2020; Ouyang et al., 2021; Weiss et al., 2019). For hybrid cars, production costs are driven more by the integration of electric and internal combustion powertrain components than by advancements in battery technology. Because they still rely on ICEs, hybrids do not experience the same rapid cost declines from battery improvements as fully electric cars. Instead, their cost reductions stem from manufacturing efficiencies, economies of scale, and advancements in hybrid powertrain efficiency and electric components (Weiss et al., 2019).

left_text_column_width

Table 3. Learning rate: drop in cost per doubling of the installed solution base %.

Unit: %

25th percentile 8.00
Mean 11.00
Median (50th percentile) 10.00
75th percentile 13.50
Left Text Column Width
Speed of Action

Speed of action refers to how quickly a climate solution physically affects the atmosphere after it is deployed. This is different from speed of deployment, which is the pace at which solutions are adopted. 

At Project Drawdown, we define the speed of action for each climate solution as emergency brake, gradual, or delayed.

Mobilize Hybrid Cars is a GRADUAL climate solution. It has a steady, linear impact on the atmosphere. The cumulative effect over time builds as a straight line.

left_text_column_width
Caveats

Hybrid cars are often considered a transitional technology for climate change mitigation. While they offer immediate reductions in fuel consumption and emissions compared to fossil fuel–powered ICE cars as the world transitions to fully electric transportation, hybrids still rely on the combustion of fossil fuels. The Mobilize Hybrid Cars solution is a move toward lower emissions – not zero emissions. By combining electric and gasoline powertrains, hybrids improve efficiency and reduce GHG emissions without requiring extensive charging infrastructure, making them a practical short-term solution (IEA, 2021). However, as battery costs decline, renewable energy expands, and charging networks improve, fully electric cars (EVs) are expected to replace hybrids as the dominant low-emission transportation option (Plӧtz et al., 2020).

The effectiveness of hybrid cars in reducing fuel consumption and emissions depends significantly on their ability to use electric power, which is influenced by charging habits and regenerative braking efficiency. PHEVs achieve the greatest fuel savings and emissions reductions when they are regularly charged from a low-emissions-intensity electricity grid because this maximizes their electric driving capability and minimizes reliance on the ICE. However, studies show that real-world charging behaviors vary, with some PHEV users failing to charge frequently, leading to higher-than-expected fuel consumption. Regenerative braking also plays a crucial role because it recaptures kinetic energy during deceleration and converts it into electricity to recharge the battery, improving overall efficiency. The extent of these benefits depends on driving conditions, with stop-and-go urban traffic allowing for more energy recovery than highway driving, where regenerative braking opportunities are limited (Plötz et al., 2020).

Hybrid car adoption faces a major obstacle in the form of constraints on battery production. While electric car battery production is being aggressively upscaled (IEA, 2024), building enough batteries to build enough cars to replace a significant fraction of fossil fuel–powered ICE cars is an enormous challenge. This will likely slow down a transition to hybrids, even if consumer demand is high (Milovanoff et al., 2020). This suggests that EV batteries should be prioritized for users whose transport needs are harder to serve with other forms of low-emissions transportation (such as nonmotorized transportation, public transit, etc.). This could include emergency vehicles, commercial vehicles, and vehicles for people who live in rural areas or have disabilities. 

left_text_column_width
Current Adoption

Approximately 12 million PHEVs (IEA, 2024) and more than 33 million HEVs (IEA, 2023) are in use worldwide. This corresponds to about 2.2% of the total car stock of 2,022,057,847 (World Health Organization [WHO], 2022) and means that hybrid cars worldwide travel about 1.3 trillion pkm/yr. We assumed this travel would occur in a fossil fuel–powered ICE car if the car’s occupants did not use a hybrid car. Adoption is much higher in some countries, such as Japan, where the global hybrid car stock share was 20–30% in 2023.

To convert this number into pkm traveled by hybrid car, we need to determine the average passenger-distance that each passenger car travels per year. Using population-weighted data from several different countries, the average car carries 1.5 people and travels about 19,500 vehicle-kilometers (vkm)/yr, or an average of 29,250 pkm/yr. Multiplying this number by the number of hybrid cars in use (48.5 million) gives the total travel distance shifted (1.3 trillion pkm) from fossil fuel–powered ICE cars to hybrid cars (Table 4).

left_text_column_width

Table 4. Current (2024) adoption level.

Unit: million pkm/yr

Population-weighted mean 1,318,000

Implied travel shifted from fossil fuel–powered cars to hybrid cars.

Left Text Column Width
Adoption Trend

Globally, the pkm driven in hybrid cars rather than fossil fuel–powered ICE cars increases by an average of about 178,200 million pkm/yr (Table 5). PHEV car purchases between 2019–2023 grew 45%/yr (IEA, 2024), while HEV purchases increased 10% annually between 2021–2023 (IEA, 2021, 2023). Global purchases of hybrid cars are increasing by around 6.1 million cars/yr. This is based on globally representative data (Bloomberg New Energy Finance [BloombergNEF], 2024; Fortune Business Insights, 2025; IEA, 2024; Menes, 2021).

It is worth noting that despite this impressive rate of growth, hybrid cars still have a long way to go before they replace a large percentage of the more than two billion cars currently driven (WHO, 2022).

left_text_column_width

Table 5. 2023–2024 adoption trend.

Unit: million pkm/yr

Population-weighted mean 178,200

Implied travel shifted from fossil fuel–powered cars to hybrid cars.

Left Text Column Width
Adoption Ceiling

The total adoption ceiling for hybrid cars is equal to the total passenger-distance driven by private cars worldwide. Using a population-weighted mean of the average distance (in pkm) traveled per car annually, this translates to about 59 trillion pkm traveled (Table 6).

Replacing every single fossil fuel–powered ICE passenger car with a hybrid car would require an enormous upscaling of hybrid car production capacity, rapid development of charging infrastructure for PHEVs, cost reductions to make hybrid cars more affordable for more people, and technological improvements to make them more suitable for more kinds of drivers and trips. This shift would also face cultural obstacles from drivers who are attached to fossil fuel–powered cars (Roberts, 2022).

left_text_column_width

Table 6. Adoption ceiling.

Unit: million pkm/yr

Population-weighted mean 59,140,000

Implied travel shifted from fossil fuel–powered cars to hybrid cars.

Left Text Column Width
Achievable Adoption

The achievable adoption of hybrid car travel is about 12-30 trillion pkm shifted from fossil fuel–powered ICE vehicles.

Various organizations have produced forecasts of future hybrid car adoption. These are not assessments of feasible adoption per se; they are instead predictions of likely rates of adoption, given various assumptions about the future (Bloomberg New Energy Finance, 2024; Fortune Business Insights, 2025; IEA, 2021, 2023, 2024). But they are useful in that they take a large number of variables into account. To convert these estimates of future likely adoption into estimates of the achievable adoption range, we applied some optimistic assumptions to the numbers in the scenario projections. 

To find a high rate of hybrid car adoption, we assumed that every country could reach the highest rate of adoption projected to occur for any country. Bloomberg (Bloomberg New Energy Finance, 2024) predicts that some countries will reach 20–50% hybrid vehicle stock share by 2030. We therefore set our high adoption rate at 50% adoption worldwide. This corresponds to 1.011 trillion total hybrid cars in use, or 29.6 trillion pkm traveled by hybrid cars (Table 7). An important caveat is that with a global supply constraint in the production of electric car batteries that are also used by hybrids, per-country adoption rates are somewhat zero-sum. Every hybrid car purchased in Japan is one that cannot be purchased somewhere else. This means that for the whole world to achieve 50% hybrid car stock share, global hybrid car production (especially battery production) would have to radically increase. 

To identify a lower feasible rate of electric car adoption, we took the lower end of Bloomberg’s 20–50% global hybrid car adoption ceiling. This is also the current adoption rate in the most intensive country (Japan at 20%), proving it feasible. This translates to 404 million hybrid cars, or 11.8 trillion pkm traveled by hybrid car.

left_text_column_width

Table 7. Range of achievable adoption levels.

Unit: million pkm/yr

Current adoption 1,318,000
Achievable – low 11,830,000
Achievable – high 29,570,000
Adoption ceiling 59,140,000
Left Text Column Width

Hybrid cars currently displace 0.036 Gt CO₂‑eq/yr of GHG emissions from the transportation system on a 100-yr basis (Table 8; 0.036 Gt CO₂‑eq/yr on a 20-yr basis).

If hybrid cars reach 20% of the global private car stock share as BloombergNEF (2024) projects, then with the current number of cars on the road, they will displace 0.321 Gt CO₂‑eq/yr GHG emissions on a 100-yr basis (0.319 Gt CO₂‑eq/yr on a 20-yr basis).

If hybrid cars globally reach 50% of global private car stock share, as BloombergNEF (2024) estimates might happen in some markets, they will displace 0.802 Gt CO₂‑eq/yr GHG emissions on a 100-yr basis (0.796 Gt CO₂‑eq/yr on a 20-yr basis).

If hybrid cars replace 100% of the global car fleet, they will displace 1.603 Gt CO₂‑eq/yr GHG emissions on a 100-yr basis (1.593 Gt CO₂‑eq/yr on a 20-yr basis).

These numbers are based on the present-day average fuel consumption for hybrids and include emissions intensity from electrical grids for PHEVs. If fuel efficiency continues to improve (including hybrids getting lighter) and grids become cleaner, the total climate impact from hybrids cars will increase.

left_text_column_width

Table 8. Climate impact at different levels of adoption.

Unit: Gt CO₂‑eq/yr, 100-yr basis

Current adoption 0.036
Achievable – low 0.321
Achievable – high 0.802
Adoption ceiling 1.603
Left Text Column Width
Additional Benefits

Air Quality

HEVs and PHEVs cars can reduce emissions of air pollutants, including sulfur oxides, sulfur dioxide, particulate matter, nitrogen oxides, and especially carbon monoxide and volatile organic compounds (Requia et al., 2018). Some air pollution reductions are limited (particularly particulate matter and ozone) because hybrid cars are heavy. The added weight can increase emissions from brakes, tires, and wear on the batteries (Carey, 2023; Jones, 2019).

Health

Because hybrid cars have lower tailpipe emissions than fossil fuel–powered ICE cars, they can reduce traffic-related air pollution, which is associated with asthma, lung cancer, increased emergency department visits for respiratory disease, and increased mortality (Anenberg et al., 2019). Transitioning to hybrid cars can reduce exposure to air pollution, improve health, and prevent premature mortality (Garcia et al., 2023; Larson et al., 2020; Peters et al., 2020).

The health benefits of lower traffic-related air pollution vary spatially and – for PHEVs – partly depend on how communities generate electricity (Choma et al., 2020). Racial and ethnic minority communities located near highways and major traffic corridors are disproportionately exposed to air pollution (Kerr et al., 2021). Transitioning to HEVs and PHEVs could improve health in marginalized urban neighborhoods located near highways, industry, or ports (Pennington et al., 2024). These benefits depend on an equitable distribution of hybrid cars and infrastructure to support the adoption of plug-in hybrid cars (Garcia et al., 2023). 

Income and Work

Adopting hybrid cars can lead to savings in a household’s energy burden spent on fuel, or the proportion of income spent on fuel for transportation (Vega-Perkins et al., 2023). Plug-in hybrids can be charged during off-peak times, leading to further reductions in transportation costs (Romm & Frank, 2006). Savings from HEVs and PHEVs may be especially important for low-income households because they have the highest energy burdens (Bell-Pasht, 2024). 

left_text_column_width
Risks

There is some criticism against any solution that advocates for car ownership (electric cars in particular and hybrids – which use fossil fuels – by extension) and that the focus should be on solutions such as public transport systems that reduce car ownership and usage (Jones, 2019; Milovanoff et al., 2020).

There is potential for a rebound effect, where improved fuel efficiency encourages people to drive more, potentially offsetting some of the expected fuel and emissions savings. This can occur because lower fuel costs per kilometer make driving more affordable and so increase vehicle use.

There is a risk that allocating the limited global battery supply to hybrid cars might undermine the deployment of solutions that also require batteries but are more effective at avoiding GHG emissions (Castelvecchi, 2021). These could include electric buses, electric rail, and electric bicycles.

Mining minerals necessary to produce hybrid car batteries carries environmental and social risks. Such mining has been associated with significant harm, particularly in lower-income countries that supply many of these minerals (Agusdinata et al., 2018; Sovacool, 2019).

Hybrid cars might also pose additional safety risks due to their higher weight, which means that they have longer stopping distances and can cause greater damage in collisions and to pedestrians and cyclists (Jones, 2019). 

The operating efficiency depends on charging for PHEVs and braking intensity for all hybrids. The results of efficiency studies also depend on assumptions such as car type, fuel efficiency, battery size, electricity grid, km/yr, and car lifetime. 

left_text_column_width
Interactions with Other Solutions

Reinforcing

The effectiveness of PHEVs in reducing GHG emissions increases as electricity grids become cleaner, since lower-carbon electricity further reduces the emissions associated with car charging. 

left_text_column_width

Competing

Hybrid cars compete directly with electric cars for adoption as well as for batteries, public resources, and infrastructural investment.

left_text_column_width

Scaling up the production of hybrid cars requires more mining of critical minerals, which could affect ecosystems that are valuable carbon sinks (Agusdinata et al., 2018).

left_text_column_width

Traveling by bicycle, sidewalk, public transit network, fully electric car, or smaller electric vehicle (such as electric bicycle) provides a greater climate benefit than traveling by hybrid car. There is an opportunity cost to deploying hybrid cars because those resources could otherwise be used to support these more effective solutions (Asia-Pacific Economic Cooperation [APEC], 2024).

left_text_column_width
Dashboard

Solution Basics

million passenger kilometers (million pkm)

t CO₂-eq (100-yr)/unit
019.5127.11
units/yr
Current 1.318×10⁶ 01.183×10⁷2.957×10⁷
Achievable (Low to High)

Climate Impact

Gt CO₂-eq (100-yr)/yr
Current 0.036 0.3210.802
US$ per t CO₂-eq
264
Gradual

CO₂ , CH₄, N₂O, BC

Trade-offs

Hybrid cars have higher embodied emissions than fossil fuel–powered ICE cars due to the presence of both an ICE and electric motor with a battery that has a GHG-intensive manufacturing process. While the embodied emissions are higher for hybrid cars than ICE cars, coupling them with operating emissions yields a carbon payback period of several years. Embodied emissions were outside the scope of this assessment.

left_text_column_width
Action Word
Mobilize
Solution Title
Hybrid Cars
Classification
Highly Recommended
Lawmakers and Policymakers
  • Create time-bound government procurement policies and targets to transition government fleets to hybrid cars when fully electric cars aren’t possible.
  • Provide financial incentives such as tax breaks, subsidies, or grants for hybrid car production and purchases that gradually reduce as market adoption increases.
  • Provide complimentary benefits for hybrid car drivers, such as privileged parking areas, free tolls, and access schemes.
  • Use targeted financial incentives to help low-income communities buy hybrid cars and incentivize manufacturers to produce more affordable options.
  • Develop charging infrastructure, ensuring adequate spacing between stations and equitable distribution of stations.
  • Invest in R&D or implement regulations to improve manufacturing, adoption, supply chain standards, and circularity of hybrid cars – particularly batteries.
  • Transition fossil fuel electricity production to renewables while promoting the transition to hybrid cars.
  • Disincentivize fossil fuel–powered ICE car ownership by gradually introducing taxes, penalties, buy-back programs, or other mechanisms.
  • Offer one-stop shops for information on hybrid vehicles, including demonstrations and educational resources on cost savings, environmental impact, and maintenance.
  • Work with industry and labor leaders to construct new hybrid car plants and transition fossil fuel–powered ICE car manufacturing into hybrid car production.
  • Set regulations for sustainable use of hybrid car batteries and improve recycling infrastructure.
  • Join international efforts to promote and ensure supply chain environmental and human rights standards.
  • Incentivize or mandate life-cycle assessments and product labeling (e.g., Environmental Product Declarations).
  • Create, support, or join partnerships that offer information, training, and general support for hybrid car adoption.
Practitioners
  • Produce and sell affordable hybrid car models.
  • Collaborate with dealers to provide incentives, low-interest financing, or income-based payment options.
  • Develop charging infrastructure, ensuring adequate spacing between stations and equitable distribution of stations.
  • Offer lifetime warranties for hybrid batteries and easy-to-understand maintenance instructions.
  • Invest in R&D to improve manufacturing, adoption, supply chain standards, and circularity of hybrid cars, particularly batteries.
  • Provide customers with real-world data to help alleviate fuel efficiency concerns.
  • Offer one-stop shops for information on hybrid cars, including educational resources on cost savings, environmental impact, optimal charging, and maintenance.
  • Work with policymakers and labor leaders to construct new hybrid car plants and transition fossil fuel–powered ICE car manufacturing into hybrid car production.
  • Join international efforts to promote and ensure supply chain environmental and human rights standards.
  • Invest in recycling and circular economy infrastructure.
  • Conduct life-cycle assessments and ensure product labeling (e.g., Environmental Product Declarations).
  • Create, support, or join partnerships that offer information, training, and general support for hybrid car adoption.
Business Leaders
  • Set time-bound company procurement policies and targets to transition corporate fleets to hybrid cars when fully electric cars aren’t feasible and report on these metrics regularly.
  • Encourage supply chain partners to transition their delivery fleets to hybrid vehicles when fully electric cars aren’t feasible.
  • Take advantage of financial incentives, such as tax breaks, subsidies, or grants for hybrid car purchases.
  • Create purchasing agreements with hybrid car manufacturers to support stable demand and improve economies of scale.
  • Install charging stations and offer employee benefits for hybrid car drivers, such as privileged parking areas.
  • Invest in R&D to improve manufacturing, adoption, supply chain standards, and circularity of hybrid cars – particularly batteries.
  • Work with industry and labor leaders to transition fossil fuel–powered ICE car manufacturing into hybrid car production.
  • Advocate for financial incentives and policies that promote hybrid car adoption.
  • Join international efforts to promote and ensure supply chain environmental and human rights standards.
  • Educate employees, customers, and investors about the company's transition to hybrid cars and encourage them to learn more about them.
  • Offer one-stop shops for information on hybrid cars, including demonstrations and educational resources on cost savings, environmental impact, and maintenance.
  • Create, support, or join partnerships that offer information, training, and general support for hybrid car adoption.

Further information:

Nonprofit Leaders
  • Set time-bound organizational procurement policies and targets to transition fleets to hybrid cars when fully electric cars aren’t feasible.
  • Take advantage of financial incentives, such as tax breaks, subsidies, or grants for hybrid car purchases.
  • Advocate for financial incentives and policies that promote hybrid car adoption.
  • Install charging stations and offer employee benefits for hybrid car drivers, such as privileged parking areas.
  • Advocate for or provide improved charging infrastructure.
  • Offer workshops or support to low-income communities for purchasing and owning hybrid cars.
  • Work with industry and labor leaders to transition fossil fuel–powered ICE car manufacturing into hybrid car production.
  • Join international efforts to promote and ensure supply chain environmental and human rights standards.
  • Advocate for regulations on lithium-ion batteries and investments in recycling facilities.
  • Offer one-stop shops for information on hybrid cars, including demonstrations and educational resources on cost savings, environmental impact, and maintenance.
  • Create, support, or join partnerships that offer information, training, and general support for hybrid car adoption.
Investors
  • Invest in hybrid car companies and companies that provide charging equipment or installation.
  • Pressure and support portfolio companies in transitioning their corporate fleets.
  • Pressure portfolio companies to establish and report on time-bound targets for corporate fleet transition and roll-out of employee incentives.
  • Invest in R&D to improve manufacturing, adoption, supply chain standards, and circularity of hybrid cars – particularly batteries.
  • Invest in hybrid car companies, associated supply chains, and end-user businesses like rideshare apps.
  • Join international efforts to promote and ensure supply chain environmental and human rights standards.
  • Create, support, or join partnerships that offer information, training, and general support for hybrid car adoption.
  • Offer low-interest loans for purchasing hybrid cars or charging infrastructure.
Philanthropists and International Aid Agencies
  • Set time-bound organizational procurement policies to transition fleets to hybrid cars when fully electric cars aren’t feasible.
  • Install charging stations and offer employee benefits for hybrid car drivers, such as privileged parking areas.
  • Take advantage of financial incentives, such as tax breaks, subsidies, or grants for hybrid car purchases.
  • Advocate for financial incentives and policies that promote hybrid car adoption.
  • Advocate for or provide improved charging infrastructure.
  • Advocate for regulations on lithium-ion batteries and public investments in recycling facilities.
  • Offer financial services such as low-interest loans or grants for purchasing hybrid cars and charging equipment.
  • Offer workshops or support to low-income communities for purchasing and owning hybrid cars.
  • Work with industry and labor leaders to transition fossil fuel–powered ICE car manufacturing into hybrid car production.
  • Join international efforts to promote and ensure supply chain environmental and human rights standards.
  • Offer one-stop shops for information on hybrid vehicles, including demonstrations and educational resources on cost savings, environmental impact, and maintenance.
  • Create, support, or join partnerships that offer information, training, and general support for hybrid car adoption.
Thought Leaders
  • If purchasing a new car, buy a hybrid car if fully electric isn’t feasible.
  • Take advantage of financial incentives, such as tax breaks, subsidies, or grants for hybrid car purchases.
  • Share your experiences with hybrid cars through social media and peer-to-peer networks, highlighting the cost savings, benefits, incentive programs, and troubleshooting tips.
  • Advocate for financial incentives and policies that promote hybrid car adoption.
  • Advocate for improved charging infrastructure.
  • Help improve circularity of hybrid car supply chains.
  • Conduct in-depth life-cycle assessments of hybrid cars in particular geographies.
  • Research ways to reduce weight and improve the performance of hybrid cars while appealing to customers.
  • Join international efforts to promote and ensure supply chain environmental and human rights standards.
  • Create, support, or join partnerships that offer information, training, and general support for hybrid car adoption.
Technologists and Researchers
  • Improve circularity of hybrid car supply chains.
  • Reduce the amount of critical minerals required for hybrid car batteries.
  • Innovate low-cost methods to improve safety, labor standards, and supply chains in mining for critical minerals.
  • Increase the longevity of batteries.
  • Research ways to reduce weight and improve the performance of hybrid cars while appealing to customers.
  • Improve techniques to repurpose used hybrid car batteries for stationary energy storage.
  • Develop methods of adapting fossil fuel–powered car manufacturing and infrastructure to include electric components.
Communities, Households, and Individuals
  • If purchasing a new car, buy a hybrid car when fully electric cars aren’t feasible.
  • Take advantage of financial incentives, such as tax breaks, subsidies, or grants for hybrid car purchases.
  • Share your experiences with hybrid cars through social media and peer-to-peer networks, highlighting the cost savings, benefits, incentive programs, and troubleshooting tips.
  • Help shift the narrative around hybrid cars by demonstrating capability and performance.
  • Advocate for financial incentives and policies that promote hybrid car adoption.
  • Advocate for improved charging infrastructure.
  • Help improve circularity of supply chains for hybrid car components.
  • Join international efforts to promote and ensure supply chain environmental and human rights standards.
  • Create, support, or join partnerships that offer information, training, and general support for hybrid car adoption.
Sources
Evidence Base

Consensus of effectiveness in reducing GHG emissions: Mixed

There is a high level of consensus that hybrid cars emit fewer GHGs per kilometer traveled compared to fossil fuel–powered ICE cars. Hybrid cars achieve these reductions by combining an ICE with an electric motor that improves fuel efficiency and, for some models, allow for limited all-electric driving, further reducing fuel consumption and emissions. This advantage is strongest in places where trips are short and require a lot of braking, such as in cities. 

Globally, cars and vans were responsible for 3.8 Gt CO₂‑eq emissions in 2023 – more than 60% of road transport emissions (IEA, 2024).

Major climate research organizations generally see hybrid cars as a transitional means of reducing GHG emissions from passenger transportation. These technologies offer immediate emissions reductions while the electricity grid decarbonizes and battery technology improves. Any improvement to fuel efficiency or time spent driving electrically reduces emissions. These technologies can be a gateway to fully electric cars by eliminating range anxiety and allowing drivers the experience of electric driving without fully committing to the limitations of current EV infrastructure. 

Hybrid cars, while more fuel-efficient than fossil fuel–powered ICE cars, still rely on gasoline or diesel, meaning they continue to produce tailpipe emissions and contribute to air pollution. Additionally, their dual powertrains add complexity, leading to higher embodied emissions, manufacturing costs, increased maintenance requirements, and potential long-term reliability concerns. The added weight from both an ICE and an electric motor, along with a battery pack, can reduce overall efficiency and raise safety concerns. Embodied emissions are outside the scope of this assessment.

The International Council on Clean Transportation (ICCT; Isenstadt & Slowik (2025) estimated that HEVs reduce tailpipe GHG emissions by 30% while costing an average of US$2,000 more upfront. Over a 10-yr period, they offered an estimated fuel cost savings of US$4,500. ICCT expected future HEVs to achieve an additional 15% reduction in GHG emissions, with a decrease in the price premium of US$300–800. PHEVs reduce GHG emissions by 11–30%, depending on emissions intensity of the electric grid and the proportion of distance driven electrically. 

The IEA (2024) noted that a PHEV bought in 2023 will emit 30% less GHGs than a fossil fuel–powered ICE car over its lifetime. This includes full life cycle impacts, including those from producing the car. 

The International Transport Forum (2020) estimated that fossil fuel–powered ICE cars emit 162 g CO‑eq/pkm while HEVs emit 132 g CO‑eq/pkm and PHEVs emit 124 g CO‑eq/pkm. This includes embodied and upstream emissions.

The results presented in this document summarize findings from 12 reviews and meta-analyses and 29 original studies reflecting current evidence from 72 countries, primarily from the IEA’s Global Electric Vehicle Outlook (2024) and Electric Vehicles: Total Cost of Ownership Tool (2022) and the International Transport Forum’s life-cycle analysis on sustainable transportation (2020). We recognize this limited geographic scope creates bias, and hope this work inspires research and data sharing on this topic in underrepresented regions.

left_text_column_width
Updated Date

Increase Recycling

Image
Image
Metal items
Coming Soon
On
Summary

Recycling is a mechanical process that repurposes waste into new products without altering their chemical structure. This solution focuses on four common waste types: metals, paper and cardboard, plastics, and glass. It reduces GHG emissions by minimizing reliance on energy-intensive primary material production, reducing demand for raw materials, and diverting paper from landfills, where decomposition can produce methane.

Our focus is on postconsumer municipal solid waste (MSW) collected through residential and commercial recycling programs. Textiles, rubber, wood, and e-waste are also important waste streams but are excluded in our scope due to limited availability of global data. Organic waste is addressed separately in other Drawdown Explorer solutions, including Increase Centralized CompostingIncrease Decentralized Composting, and Produce Biochar.

Description for Social and Search
Increase Recycling is a Highly Recommended climate solution, with paper, cardboard, and metals delivering the most greenhouse gas savings.
Overview

Mechanical recycling mitigates GHG emissions by reducing the need for more energy-intensive and pollutant-emitting raw material extraction and processing (Stegmann et al., 2022; Sun et al., 2018; Zier et al., 2021) and reducing production of methane from decomposing paper in landfills (Demetrious & Crossin, 2019; Lee et al., 2017). 

Recyclable materials constitute a significant portion of global MSW, with average compositions of approximately 14% paper and cardboard, 10% plastics, 4% glass, and 3.5% metals (Kaza et al., 2018; United Nations Environment Programme [UNEP], 2024). Recycling reprocesses postconsumer materials into secondary raw materials or products without altering their chemical composition..

Figure 1 illustrates a typical single-stream recycling system at a materials recovery facility (MRF), where mechanical and optical sorting technologies separate materials by type (Gundupalli et al., 2017; Zhang et al., 2022). The sorted materials then undergo cleaning, crushing or shredding, and remelting or repulping in preparation for use in manufacturing new products.

Metals recycling provides ferrous and nonferrous inputs for the metal production sector, which globally emits an estimated 3.6 Gt CO₂‑eq/yr for 2–3 Gt of primary metal output (Azadi et al., 2020). Virgin (primary) metals are extracted from nonrenewable ores; as higher-grade ores are consumed, mining shifts to lower-grade ore deposits, which require more energy-intensive extraction and processing (Norgate & Jahanshahi, 2011). Using recycled metals in place of virgin metals reduces energy requirements for smelting and refining (Daehn et al., 2022) and water use during production. 

Virgin ore processing primarily emits CO₂, with smaller contributions of methane and nitrous oxide. Some primary metal production, particularly aluminum production, emits fluorinated gases (F-gases) (Raabe et al., 2019; Raabe et al., 2022). Recycling emits significantly less CO₂ than primary production.

Paper and cardboard recycling involves hydropulping, deinking, and reforming recovered fibers into new paper products. Conventional paper is produced from virgin tree pulp and involves harvesting, debarking, chipping, and mechanical or chemical pulping. Pulp-making alone accounts for 62% of energy use and 45% of emissions in paper production (Sun et al., 2018), contributing significantly to the 1.3–2% of global GHG emissions from virgin pulp and paper manufacturing (Furszyfer Del Rio et al., 2022). Recycling uses less energy and produces fewer GHG emissions. Recycling 1 t of paper saves ~17 mature trees (U.S. Environmental Protection Agency [U.S. EPA], 2016a), lessening deforestation from harvesting and reducing the energy and water required for pulping. Recovering used paper from landfills further avoids decomposition-related methane release.

Plastics recycling involves melting plastic waste into resin, forming it into granules or pellets, and using it to manufacture new products. The primary production of plastics represents 4.5–5.3% of total global GHG emissions (Cabernard et al., 2022; Karali et al., 2024), with ~75% occurring in the early life-cycle stages. More than 99% of plastics are derived from fossil fuels. Recycling plastics reduces CO₂ and methane emissions by replacing petroleum-based feedstock with recycled plastic. 

Glass recycling crushes glass waste into cullet, which can then be melted and reintroduced as a raw material in glass manufacturing. Virgin glass production requires melting raw materials such as silica sand, soda ash, and limestone at ~1,500 °C (Baek et al., 2025; Westbroek et al., 2021) and releases CO₂ from decomposition of carbonates. Cullet use releases no CO₂ from carbonate decomposition and lowers the melting temperature, reducing furnace fuel combustion. 

This assessment evaluates metal, paper and cardboard, plastic, and glass recycling separately to better capture the distinct emissions profiles and cost requirements of each material, providing a clearer understanding of the climate benefits and trade-offs. 

Allwood, J. M., Music, O., Loukaides, E. G., & Bambach, M. (2025). Cut the scrap: Making more use of less metal. CIRP Annals74(2), 895–919. Link to source: https://doi.org/10.1016/j.cirp.2025.04.013 

Aparcana, S., & Salhofer, S. (2013). Development of a social impact assessment methodology for recycling systems in low-income countries. The International Journal of Life Cycle Assessment18(5), 1106–1115. Link to source: https://doi.org/10.1007/s11367-013-0546-8

Awino, F. B., & Apitz, S. E. (2024). Solid waste management in the context of the waste hierarchy and circular economy frameworks: An international critical review. Integrated Environmental Assessment and Management20(1), 9–35. Link to source: https://doi.org/10.1002/ieam.4774

Ayodele, T. R., Alao, M. A., & Ogunjuyigbe, A. S. O. (2018). Recyclable resources from municipal solid waste: Assessment of its energy, economic and environmental benefits in Nigeria. Resources, Conservation and Recycling134, 165–173. Link to source: https://doi.org/10.1016/j.resconrec.2018.03.017

Azadi, M., Northey, S. A., Ali, S. H., & Edraki, M. (2020). Transparency on greenhouse gas emissions from mining to enable climate change mitigation. Nature Geoscience13(2), 100–104. Link to source: https://doi.org/10.1038/s41561-020-0531-3

Baek, C. R., Kim, H. D., & Jang, Y.-C. (2025). Exploring glass recycling: Trends, technologies, and future trajectories. Environmental Engineering Research30(3), Article 240241. Link to source: https://doi.org/10.4491/eer.2024.241

Bajpai, P. (2014). Introduction. In Recycling and deinking of recovered paper (pp. 1–18). Elsevier. Link to source: https://doi.org/10.1016/B978-0-12-416998-2.00001-5

Barford, A., & Beales, A. (2025, April 3). Decent work opportunities and challenges in recycling [ILO Technical brief]. International Labour Organization. Link to source: https://www.ilo.org/publications/decent-work-opportunities-and-challenges-recycling 

Bauer, F., Nielsen, T. D., Nilsson, L. J., Palm, E., Ericsson, K., Fråne, A., & Cullen, J. (2022). Plastics and climate change—Breaking carbon lock-ins through three mitigation pathways. One Earth5(4), 361–376. Link to source: https://doi.org/10.1016/j.oneear.2022.03.007

Berardocco, C., Delawter, H., Putzu, T., Wolfe, L. C., & Zhang, H. (2022). Life cycle sustainability assessment of single stream and multi-stream waste recycling systems. Sustainability, 14(24), Article 16747. Link to source: https://doi.org/10.3390/su142416747 

BioCubes. (n.d.). BioCubes: An inventory of biomass and technomass [Interactive infographic]. Retrieved August 8, 2025, from Link to source: https://biocubes.net/ 

Bogner, J., Abdelrafie Ahmed, M., Díaz, C., Faaij, A., Gao, Q., Hashimoto, S., Marecková, K., Pipatti, R., & Zhang, T. (2007). Waste management. In B. Metz, O. R. Davidson, P. R. Bosch, R. Dave, & L. A. Meyer (Eds.), Climate change 2007: Mitigation. Working group III contribution to the fourth assessment report of the intergovernmental panel on climate change (pp. 585–618). Cambridge University Press. Link to source: https://www.ipcc.ch/site/assets/uploads/2018/02/ar4-wg3-chapter10-1.pdf

Burinskienė, A., Lingaitienė, O., & Byčenkaitė, G. (2025). Dynamics of trade of recycled raw materials and the connection with the circular economy. Discover Sustainability, 6, Article 680. Link to source: https://doi.org/10.1007/s43621-025-01502-4

Cabernard, L., Pfister, S., Oberschelp, C., & Hellweg, S. (2022). Growing environmental footprint of plastics driven by coal combustion. Nature Sustainability5(2), 139–148. Link to source: https://doi.org/10.1038/s41893-021-00807-2

Campbell, R., Bond, D. E., Connellan, C., Mohen, P., & Foo, J. (2022, May 5). From trash to treasure: Green metals from recycling [Insight]. White & Case. Link to source: https://www.whitecase.com/insight-our-thinking/trash-treasure-green-metals-recycling 

Chamas, A., Moon, H., Zheng, J., Qiu, Y., Tabassum, T., Jang, J. H., Abu-Omar, M., Scott, S. L., & Suh, S. (2020). Degradation rates of plastics in the environment. ACS Sustainable Chemistry & Engineering8(9), 3494–3511. Link to source: https://doi.org/10.1021/acssuschemeng.9b06635

Charpentier Poncelet, A., Helbig, C., Loubet, P., Beylot, A., Muller, S., Villeneuve, J., Laratte, B., Thorenz, A., Tuma, A., & Sonnemann, G. (2022). Losses and lifetimes of metals in the economy. Nature Sustainability5(8), 717–726. Link to source: https://doi.org/10.1038/s41893-022-00895-8

Chen, D. M.-C., Bodirsky, B. L., Krueger, T., Mishra, A., & Popp, A. (2020). The world’s growing municipal solid waste: Trends and impacts. Environmental Research Letters15(7), Article 074021. Link to source: https://doi.org/10.1088/1748-9326/ab8659

Ciacci, L., Harper, E. M., Nassar, N. T., Reck, B. K., & Graedel, T. E. (2016). Metal dissipation and inefficient recycling intensify climate forcing. Environmental Science & Technology, 50(20), 11394–11402. Link to source: https://doi.org/10.1021/acs.est.6b02714 

Close the Glass Loop. (2025, July 1). Overview of glass packaging collection systems in Europe. Link to source: https://closetheglassloop.eu/overview-of-glass-packaging-collection-systems-in-europe/

Colangelo, S. (2024). Reducing the environmental footprint of glass manufacturing. International Journal of Applied Glass Science15(4), 350–366. Link to source: https://doi.org/10.1111/ijag.16674

Cudjoe, D., Zhu, B., Nketiah, E., Wang, H., Chen, W., & Qianqian, Y. (2021). The potential energy and environmental benefits of global recyclable resources. Science of The Total Environment798, Article 149258. Link to source: https://doi.org/10.1016/j.scitotenv.2021.149258

Daehn, K., Basuhi, R., Gregory, J., Berlinger, M., Somjit, V., & Olivetti, E. A. (2022). Innovations to decarbonize materials industries. Nature Reviews Materials7(4), 275–294. Link to source: https://doi.org/10.1038/s41578-021-00376-y

Damgaard, A., Larsen, A. W., & Christensen, T. H. (2009). Recycling of metals: Accounting of greenhouse gases and global warming contributions. Waste Management & Research27(8), 773–780. Link to source: https://doi.org/10.1177/0734242X09346838

Das, S. K., Green, J. A. S., & Kaufman, J. G. (2010, February). Aluminum recycling: Economic and environmental benefits. Light Metal Age, 22–24. Link to source: https://static1.squarespace.com/static/5fecb6479b54c51485875e10/t/60ac1db2e0db640cb17e0eef/1621892530735/Aluminum+Recycling_+Economic+and+Environmental+...+-+Phinix%2C+LLC.pdf 

DebRoy, T., & Elmer, J. W. (2024). Metals beyond tomorrow: Balancing supply, demand, sustainability, substitution, and innovations. Materials Today80, 737–757. Link to source: https://doi.org/10.1016/j.mattod.2024.09.007

Deer, R. (2021, May 5). Why is glass recycling going away? Roadrunner Waste & Recycling. Link to source: https://www.roadrunnerwm.com/blog/why-is-glass-recycling-going-away

Delbari, S. A., & Hof, L. A. (2024). Glass waste circular economy—Advancing to high-value glass sheets recovery using industry 4.0 and 5.0 technologies. Journal of Cleaner Production462, Article 142629. Link to source: https://doi.org/10.1016/j.jclepro.2024.142629

Demetrious, A., & Crossin, E. (2019). Life cycle assessment of paper and plastic packaging waste in landfill, incineration, and gasification-pyrolysis. Journal of Material Cycles and Waste Management21(4), 850–860. Link to source: https://doi.org/10.1007/s10163-019-00842-4

de Sa, P., & Korinek, J. (2021, March 1). Resource efficiency, the circular economy, sustainable materials management and trade in metals and minerals (OECD Trade Policy Paper No. 245). OECD Publishing. Link to source: https://doi.org/10.1787/69abc1bd-en

Diaz, R., & Warith, M. (2006). Life-cycle assessment of municipal solid wastes: Development of the WASTED model. Waste Management26(8), 886–901. Link to source: https://doi.org/10.1016/j.wasman.2005.05.007

Dokl, M., Copot, A., Krajnc, D., Fan, Y. V., Vujanović, A., Aviso, K. B., Tan, R. R., Kravanja, Z., & Čuček, L. (2024). Global projections of plastic use, end-of-life fate and potential changes in consumption, reduction, recycling and replacement with bioplastics to 2050. Sustainable Production and Consumption51, 498–518. Link to source: https://doi.org/10.1016/j.spc.2024.09.025

Dong, X., Song, J., & Duan, H. (2022). Prioritizing countries for implementing waste recycling under socioeconomic support. Journal of Environmental Management, 322, Article 116158. Link to source: https://doi.org/10.1016/j.jenvman.2022.116158

Dussaux, D., & Glachant, M. (2019). How much does recycling reduce imports? Evidence from metallic raw materials. Journal of Environmental Economics and Policy8(2), 128–146. Link to source: https://doi.org/10.1080/21606544.2018.1520650

Egger, P. H., & Keuschnigg, C. (2024). Resource dependence, recycling, and trade. Journal of Environmental Economics and Management128, Article 103064. Link to source: https://doi.org/10.1016/j.jeem.2024.103064

European Paper Recycling Council. (2024). European declaration on paper recycling 2021-2030: Monitoring report 2023. Confederation of European Paper Industries. Link to source: https://www.cepi.org/wp-content/uploads/2020/10/EPRC-Monitoring-Report_2019.pdf 

Ferdous, W., Manalo, A., Siddique, R., Mendis, P., Zhuge, Y., Wong, H. S., Lokuge, W., Aravinthan, T., & Schubel, P. (2021). Recycling of landfill wastes (tyres, plastics and glass) in construction – A review on global waste generation, performance, application and future opportunities. Resources, Conservation and Recycling173, Article 105745. Link to source: https://doi.org/10.1016/j.resconrec.2021.105745

Food and Agriculture Organization of the United Nations. (n.d.). FAO‑FAOSTAT: Forestry production and trade [Data set]. Retrieved April 25, 2025, from Link to source: https://www.fao.org/faostat/en/#data/FO/visualize 

Food and Agriculture Organization of the United Nations. (2009). Global demand for wood products. In State of the world’s forests 2009 (pp. 62–73). Link to source: https://www.fao.org/4/i0350e/i0350e02a.pdf 

Furszyfer Del Rio, D. D., Sovacool, B. K., Griffiths, S., Bazilian, M., Kim, J., Foley, A. M., & Rooney, D. (2022). Decarbonizing the pulp and paper industry: A critical and systematic review of sociotechnical developments and policy options. Renewable and Sustainable Energy Reviews167, Article 112706. Link to source: https://doi.org/10.1016/j.rser.2022.112706

Gailani, A., Cooper, S., Allen, S., Pimm, A., Taylor, P., & Gross, R. (2024). Assessing the potential of decarbonization options for industrial sectors. Joule8(3), 576–603. Link to source: https://doi.org/10.1016/j.joule.2024.01.007

Geyer, R., Kuczenski, B., Zink, T., & Henderson, A. (2016). Common misconceptions about recycling. Journal of Industrial Ecology20(5), 1010–1017. Link to source: https://doi.org/10.1111/jiec.12355

Glass Packaging Institute. (n.d.). Facts about glass recycling. Retrieved March 24, 2025, from Link to source: https://www.gpi.org/facts-about-glass-recycling 

Gorman, M. R., Dzombak, D. A., & Frischmann, C. (2022). Potential global GHG emissions reduction from increased adoption of metals recycling. Resources, Conservation and Recycling184, Article 106424. Link to source: https://doi.org/10.1016/j.resconrec.2022.106424

Gundupalli, S. P., Hait, S., & Thakur, A. (2017). A review on automated sorting of source-separated municipal solid waste for recycling. Waste Management60, 56–74. Link to source: https://doi.org/10.1016/j.wasman.2016.09.015

Guo, J., Ali, S., & Xu, M. (2023). Recycling is not enough to make the world a greener place: Prospects for the circular economy. Green Carbon1(2), 150–153. Link to source: https://doi.org/10.1016/j.greenca.2023.10.006 

Halog, A., & Anieke, S. (2021). A review of circular economy studies in developed countries and its potential adoption in developing countries. Circular Economy and Sustainability1(1), 209–230. Link to source: https://doi.org/10.1007/s43615-021-00017-0

Hendrickson, T. P., Bose, B., Vora, N., Huntington, T., Nordahl, S. L., Helms, B. A., & Scown, C. D. (2024). Paths to circularity for plastics in the United States. One Earth, 7(3), 520–531. Link to source: https://doi.org/10.1016/j.oneear.2024.02.005

Houssini, K., Li, J., & Tan, Q. (2025). Complexities of the global plastics supply chain revealed in a trade-linked material flow analysis. Communications Earth & Environment6(1), Article 257. Link to source: https://doi.org/10.1038/s43247-025-02169-5

International Paper. (n.d.). Paper’s life cycle: The recycling process [Infographic]. Retrieved June 10, 2025, from Link to source: https://www.internationalpaper.com/resources/infographic/papers-life-cycle-recycling-process

Karali, N., Khanna, N., & Shah, N. (2024). Climate impact of primary plastic production. Lawrence Berkeley National Laboratory. Link to source: https://escholarship.org/uc/item/6cc1g99q

Kaza, S., Yao, L. C., Bhada-Tata, P., & Van Woerden, F. (2018). What a waste 2.0: A global snapshot of solid waste management to 2050. Urban Development Series. Washington, DC: World Bank. Link to source: https://hdl.handle.net/10986/30317 

Klotz, M., Haupt, M., & Hellweg, S. (2022). Limited utilization options for secondary plastics may restrict their circularity. Waste Management141, 251–270. Link to source: https://doi.org/10.1016/j.wasman.2022.01.002

Klotz, M., Haupt, M., & Hellweg, S. (2023). Potentials and limits of mechanical plastic recycling. Journal of Industrial Ecology27(4), 1043–1059. Link to source: https://doi.org/10.1111/jiec.13393

Lee, U., Han, J., & Wang, M. (2017). Evaluation of landfill gas emissions from municipal solid waste landfills for the life-cycle analysis of waste-to-energy pathways. Journal of Cleaner Production166, 335–342. Link to source: https://doi.org/10.1016/j.jclepro.2017.08.016

Li, H., Aguirre-Villegas, H. A., Allen, R. D., Bai, X., Benson, C. H., Beckham, G. T., Bradshaw, S. L., Brown, J. L., Brown, R. C., Cecon, V. S., Curley, J. B., Curtzwiler, G. W., Dong, S., Gaddameedi, S., García, J. E., Hermans, I., Kim, M. S., Ma, J., Mark, L. O., … Huber, G. W. (2022). Expanding plastics recycling technologies: Chemical aspects, technology status and challenges. Green Chemistry24(23), 8899–9002. Link to source: https://doi.org/10.1039/D2GC02588D

Liu, Y., Park, S., Yi, H., & Feiock, R. (2020). Evaluating the employment impact of recycling performance in Florida. Waste Management101, 283–290. Link to source: https://doi.org/10.1016/j.wasman.2019.10.025

Maximize Market Research Private Limited. (2025). Glass recycling market – Global market forecast and growth opportunities: Forecast 2025–2032 [Report summary]. Link to source: https://www.maximizemarketresearch.com/market-report/glass-recycling-market/22548/ 

McGinty, D. B. (2021, February 3). 5 opportunities of a circular economy. World Resources Institute. Link to source: https://www.wri.org/insights/5-opportunities-circular-economy 

Miserocchi, L., Franco, A., & Testi, D. (2024). Status and prospects of energy efficiency in the glass industry: Measuring, assessing and improving energy performance. Energy Conversion and Management: X24, Article 100720. https://doi.org/10.1016/j.ecmx.2024.100720

Monclús, L., Arp, H. P. H., Groh, K. J., Faltynkova, A., Løseth, M. E., Muncke, J., Wang, Z., Wolf, R., Zimmermann, L., & Wagner, M. (2025). Mapping the chemical complexity of plastics. Nature, 643(8071), 349–355. Link to source: https://doi.org/10.1038/s41586-025-09184-8

Nayanathara Thathsarani Pilapitiya, P. G. C., & Ratnayake, A. S. (2024). The world of plastic waste: A review. Cleaner Materials11, Article 100220. Link to source: https://doi.org/10.1016/j.clema.2024.100220

Ng, K. S., & Phan, A. N. (2021). Evaluating the techno-economic potential of an integrated material recovery and waste-to-hydrogen system. Resources, Conservation and Recycling167, Article 105392. Link to source: https://doi.org/10.1016/j.resconrec.2020.105392

NIH Environmental Management System. (n.d.). Benefits of recycling. U.S. Department of Health and Human Services, National Institutes of Health. Retrieved August 26, 2025, from Link to source: https://nems.nih.gov/environmental-programs/pages/benefits-of-recycling.aspx 

Nordahl, S. L., & Scown, C. D. (2024). Recommendations for life‑cycle assessment of recyclable plastics in a circular economy. Chemical Science, 15, 9397–9407. Link to source: https://doi.org/10.1039/D4SC01340A

Norgate, T., & Jahanshahi, S. (2011). Reducing the greenhouse gas footprint of primary metal production: Where should the focus be? Minerals Engineering24(14), 1563–1570. Link to source: https://doi.org/10.1016/j.mineng.2011.08.007

Obradovic, D., & Mishra, L. N. (2020). Mechanical properties of recycled paper and cardboard. The Journal of Engineering and Exact Sciences6(3), 0429–0434. Link to source: https://doi.org/10.18540/jcecvl6iss3pp0429-0434

Olafasakin, O., Ma, J., Bradshaw, S. L., Aguirre-Villegas, H. A., Benson, C., Huber, G. W., Zavala, V. M., & Mba-Wright, M. (2023). Techno-economic and life cycle assessment of standalone single-stream material recovery facilities in the United States. Waste Management166, 368–376. Link to source: https://doi.org/10.1016/j.wasman.2023.05.011

Oo, P. Z., Prapaspongsa, T., Strezov, V., Huda, N., Oshita, K., Takaoka, M., Ren, J., Halog, A., & Gheewala, S. H. (2024). The role of global waste management and circular economy towards carbon neutrality. Sustainable Production and Consumption52, 498–510. Link to source: https://doi.org/10.1016/j.spc.2024.11.021

Organisation for Economic Co‑operation and Development. (2022a). Global plastics outlook database [Data set]. Link to source: https://data-explorer.oecd.org/vis?tm=recycled%20plastics&pg=0&hc[Measure]=&hc[Plastic%20end-of-life%20fate]=&snb=13&df[ds]=dsDisseminateFinalDMZ&df[id]=DSD_PW%40DF_PW&df[ag]=OECD.ENV.EEI&df[vs]=1.0&dq=..A.REC.&pd=1990%2C2019&to[TIME_PERIOD]=false&vw=tb 

Organisation for Economic Co‑operation and Development. (2022b). Global plastics outlook: Economic drivers, environmental impacts and policy options [Report]. OECD Publishing. Link to source: https://doi.org/10.1787/de747aef-en 

Pivnenko, K., Laner, D., & Astrup, T. F. (2016). Material cycles and chemicals: Dynamic material flow analysis of contaminants in paper recycling. Environmental Science & Technology, 50(22), 12302–12311. Link to source: https://doi.org/10.1021/acs.est.6b01791

Plastics Europe. (2022). Plastics – the facts 2022 [Report]. Link to source: https://plasticseurope.org/knowledge-hub/plastics-the-facts-2022/ 

Plastics Europe. (2023). Plastics – the fast facts 2023 [Infographic]. Link to source: https://plasticseurope.org/knowledge-hub/plastics-the-fast-facts-2023/ 

Plastics Europe. (2024a). Plastics – the fast facts 2024 [Infographic]. Link to source: https://plasticseurope.org/knowledge-hub/plastics-the-fast-facts-2024/ 

Plastics Europe. (2024b). The circular economy for plastics – A European analysis 2024 [Report]. Link to source: https://plasticseurope.org/knowledge-hub/the-circular-economy-for-plastics-a-european-analysis-2024/ 

Raabe, D., Tasan, C. C., & Olivetti, E. A. (2019). Strategies for improving the sustainability of structural metals. Nature575(7781), 64–74. Link to source: https://doi.org/10.1038/s41586-019-1702-5

Raabe, D., Ponge, D., Uggowitzer, P. J., Roscher, M., Paolantonio, M., Liu, C., Antrekowitsch, H., Kozeschnik, E., Seidmann, D., Gault, B., De Geuser, F., Deschamps, A., Hutchinson, C., Liu, C., Li, Z., Prangnell, P., Robson, J., Shanthraj, P., Vakili, S., … Pogatscher, S. (2022). Making sustainable aluminum by recycling scrap: The science of “dirty” alloys. Progress in Materials Science128, Article 100947. Link to source: https://doi.org/10.1016/j.pmatsci.2022.100947

Rajmohan, K. V. S., Ramya, C., Raja Viswanathan, M., & Varjani, S. (2019). Plastic pollutants: Effective waste management for pollution control and abatement. Current Opinion in Environmental Science & Health12, 72–84. Link to source: https://doi.org/10.1016/j.coesh.2019.08.006

Rissman, J., Bataille, C., Masanet, E., Aden, N., Morrow, W. R., Zhou, N., Elliott, N., Dell, R., Heeren, N., Huckestein, B., Cresko, J., Miller, S. A., Roy, J., Fennell, P., Cremmins, B., Koch Blank, T., Hone, D., Williams, E. D., de la Rue du Can, S., … Helseth, J. (2020). Technologies and policies to decarbonize global industry: Review and assessment of mitigation drivers through 2070. Applied Energy266, Article 114848. Link to source: https://doi.org/10.1016/j.apenergy.2020.114848

Singh, N., & Walker, T. R. (2024). Plastic recycling: A panacea or environmental pollution problem. npj Materials Sustainability, 2, Article 17. Link to source: https://doi.org/10.1038/s44296-024-00024-w

Sobhani, Z., & Palanisami, T. (2025). Emerging contaminants in organic recycling: Role of paper and pulp packaging. Resources, Conservation & Recycling, 215, Article 108070. Link to source: https://doi.org/10.1016/j.resconrec.2024.108070

Stegmann, P., Daioglou, V., Londo, M., van Vuuren, D. P., & Junginger, M. (2022). Plastic futures and their CO2 emissions. Nature612(7939), 272–276. Link to source: https://doi.org/10.1038/s41586-022-05422-5

SUEZ in the UK. (n.d.). Material recycling facility. SUEZ. Retrieved March 19, 2025, from Link to source: https://www.suez.co.uk/en-gb/our-offering/communities-and-individuals/education-tools-and-resources/what-happens-to-waste/recycling/materials-recycling-facility 

Sun, M., Wang, Y., Shi, L., & Klemeš, J. J. (2018). Uncovering energy use, carbon emissions and environmental burdens of pulp and paper industry: A systematic review and meta-analysis. Renewable and Sustainable Energy Reviews92, 823–833. Link to source: https://doi.org/10.1016/j.rser.2018.04.036 

Uekert, T., Singh, A., DesVeaux, J. S., Ghosh, T., Bhatt, A., Yadav, G., Afzal, S., Walzberg, J., Knauer, K. M., Nicholson, S. R., Beckham, G. T., & Carpenter, A. C. (2023). Technical, economic, and environmental comparison of closed-loop recycling technologies for common plastics. ACS Sustainable Chemistry & Engineering11(3), 965–978. Link to source: https://doi.org/10.1021/acssuschemeng.2c05497

United Nations Environment Programme. (2024). Global waste management outlook 2024: Beyond an age of waste – Turning rubbish into a resource [Report]. United Nations Environment Programme & International Solid Waste Association. Link to source: https://www.unep.org/resources/global-waste-management-outlook-2024

United Nations Office on Drugs and Crime. (2023, April 4). Unwaste trendspotting alert no. 4: Paper and cardboard waste [Bulletin]. Link to source: https://www.unodc.org/res/environment-climate/asia-pacific/unwaste_html/Unwaste_Trendspotting_Alert_No.4.pdf

U.S. Geological Survey. (2021) Mineral commodity summaries 2021Link to source: https://doi.org/10.3133/mcs2021 

U.S. Geological Survey. (2022). Iron and steel scrap. In Mineral commodity summaries 2022 (pp. 90–91). Link to source: https://doi.org/10.3133/mcs2022 

U.S. Environmental Protection Agency. (2016a). Environmental factoids [Archived]. U.S. Environmental Protection Agency WasteWise Program. Retrieved March 24, 2025, from Link to source: https://archive.epa.gov/epawaste/conserve/smm/wastewise/web/html/factoid.html 

U.S. Environmental Protection Agency. (2016b). Greenhouse gas inventory guidance: Direct emissions from stationary combustion sources. Link to source: https://www.epa.gov/sites/default/files/2016-03/documents/stationaryemissions_3_2016.pdf 

U.S. Environmental Protection Agency. (2025). Recycling basics and benefits. Retrieved September 2, 2025, from Link to source: https://www.epa.gov/recycle/recycling-basics-and-benefits 

Valenzuela-Levi, N., Araya-Córdova, P. J., Dávila, S., & Vásquez, Ó. C. (2021). Promoting adoption of recycling by municipalities in developing countries: Increasing or redistributing existing resources? Resources, Conservation and Recycling164, Article 105173. Link to source: https://doi.org/10.1016/j.resconrec.2020.105173

van Ewijk, S., Stegemann, J. A., & Ekins, P. (2021). Limited climate benefits of global recycling of pulp and paper. Nature Sustainability, 4(2), 180–187. Link to source: https://doi.org/10.1038/s41893-020-00624-z

Watari, T., Fishman, T., Wieland, H., & Wiedenhofer, D. (2025). Global stagnation and regional variations in steel recycling. Resources, Conservation & Recycling, 220, Article 108363. Link to source: https://doi.org/10.1016/j.resconrec.2025.108363

Westbroek, C. D., Bitting, J., Craglia, M., Azevedo, J. M. C., & Cullen, J. M. (2021). Global material flow analysis of glass: From raw materials to end of life. Journal of Industrial Ecology25(2), 333–343. Link to source: https://doi.org/10.1111/jiec.13112

World Bank. (2018). What a waste global database: Country-level dataset (Last updated: 2024, June 4) [Data set]. Link to source: https://datacatalogfiles.worldbank.org/ddh-published/0039597/3/DR0049199/country_level_data.csv 

World Wildlife Fund. (2023). Who pays for plastic pollution? [Report]. Link to source: https://www.worldwildlife.org/documents/671/6lohrny0o2_ENGLISH_WWF_ENABLING_GLOBAL_EQUITY_WEBV.pdf 

Yang, H., Ma, M., Thompson, J. R., & Flower, R. J. (2018). Waste management, informal recycling, environmental pollution and public health. Journal of Epidemiology and Community Health72(3), 237–243. Link to source: https://doi.org/10.1136/jech-2016-208597

Yokoi, R., Watari, T., & Motoshita, M. (2022). Future greenhouse gas emissions from metal production: Gaps and opportunities towards climate goals. Energy & Environmental Science15(1), 146–157. Link to source: https://doi.org/10.1039/D1EE02165F

Yuan, X., Wang, J., Song, Q., & Xu, Z. (2024). Integrated assessment of economic benefits and environmental impact in waste glass closed‑loop recycling for promoting glass circularity. Journal of Cleaner Production444, Article 141155. https://doi.org/10.1016/j.jclepro.2024.141155

Zhang, X., Liu, C., Chen, Y., Zheng, G., & Chen, Y. (2022). Source separation, transportation, pretreatment, and valorization of municipal solid waste: A critical review. Environment, Development and Sustainability24(10), 11471–11513. Link to source: https://doi.org/10.1007/s10668-021-01932-w

Zheng, J., & Suh, S. (2019). Strategies to reduce the global carbon footprint of plastics. Nature Climate Change9(5), 374–378. Link to source: https://doi.org/10.1038/s41558-019-0459-z

Zhou, X., Zhang, H., Zheng, S., & Xing, W. (2022). The global recycling trade for twelve critical metals: Based on trade pattern and trade quality analysis. Sustainable Production and Consumption, 33, 831–845. Link to source: https://doi.org/10.1016/j.spc.2022.08.011

Zhu, X., Konik, J., & Kaufman, H. (2025). The knowns and unknowns in our understanding of how plastics impact climate change: A systematic review. Frontiers in Environmental Science13, Article 1563488. Link to source: https://doi.org/10.3389/fenvs.2025.1563488 

Zier, M., Stenzel, P., Kotzur, L., & Stolten, D. (2021). A review of decarbonization options for the glass industry. Energy Conversion and Management: X10, Article 100083. Link to source: https://doi.org/10.1016/j.ecmx.2021.100083

Credits

Lead Fellow

  • Nina-Francesca Farac, Ph.D.

Contributors

  • Ruthie Burrows, Ph.D.

  • James Gerber, Ph.D.

  • Daniel Jasper

  • Alex Sweeney

Internal Reviewers

  • Emily Cassidy

  • Megan Matthews, Ph.D.

  • Christina Swanson, Ph.D.

Effectiveness

We estimated recycling effectiveness as the net emissions savings from avoided primary manufacturing and landfilling, minus the emissions associated with recycling, as outlined in Equation 1 (see Caveats for more information on technical substitutability ratios [TSRs]). We included landfilling emissions only for materials that generate meaningful end-of-life GHG impacts. Paper and cardboard emit both biogenic CO₂ and methane emissions from anaerobic decomposition (Lee et al., 2017), and plastics contribute minor emissions from landfill handling due to their inert nature (Chamas et al., 2020; Zheng & Suh, 2019). Metals and glass are also considered inert and do not biodegrade. Their landfilling emissions are primarily from collection and transport, which fall outside the scope of this analysis.

left_text_column_width

Equation 1.

$$Effectiveness = ([Primary\ manufacturing_{emissions} \times TSR]\ + \ Landfilling_{emissions})\ - \ Recycling_{emissions}$$

Metals recycling has a high carbon abatement potential of 1,480,000 t CO₂‑eq /Mt metal waste recycled (1,650,000 t CO₂‑eq /Mt metal waste recycled, 20-year basis) (Table 1a). In our analysis, metal recycling emissions were about one-third of those from primary metal production. 

Paper and cardboard recycling has a similar carbon abatement potential of 1,000,000 t CO₂‑eq /Mt paper and cardboard waste recycled (1,000,000 t CO₂‑eq /Mt paper and cardboard waste recycled, 20-year basis) (Table 1b). Although recycling lowers fossil fuel use in pulping, our estimates showed only slightly lower emissions than primary manufacturing. In contrast, preventing CO₂ and methane release from decomposing paper in landfills have comparable emissions to primary production, making landfill diversion the larger climate impact.

Plastics recycling is the most effective of the four materials at reducing emissions, eliminating approximately 2,000,000 t CO₂‑eq /Mt plastic waste recycled (3,000,000 t CO₂‑eq /Mt plastic waste recycled, 20-year basis) (Table 1c). This is largely due to the high emissions intensity of virgin plastic production, which reached global production volumes of 374 Mt in 2023 (Plastics Europe, 2024a) and relies heavily on fossil fuels both as feedstocks and as energy sources for heat generation. While pellet-to-product conversion contributes to overall emissions, plastic pellet manufacturing accounts for most GHGs emitted in the plastic supply chain (Zhu et al., 2025). For studies without clearly defined boundaries, we assumed the reported emissions primarily reflected pellet production.

Glass recycling is the least effective at reducing emissions but still abates a meaningful amount at 79,000 t CO₂‑eq /Mt glass waste recycled (84,000 t CO₂‑eq /Mt glass waste recycled) (Table 1d). Emissions savings come from reduced fuel use in high-temperature melting furnaces and avoiding CO₂ release during the processing of raw materials (Baek et al., 2025).

While nitrous oxide is also released from fuel combustion during recycling of metals, paper and cardboard, plastics, and glass, it represents a small share of total CO₂‑eq emissions, so we considered it negligible (U.S. EPA, 2016b; Diaz & Warith, 2006).

left_text_column_width

Table 1. Effectiveness at reducing emissions.

Unit: t CO₂‑eq /Mt metal waste recycled, 100-yr basis

25th percentile 1,410,000
Mean 1,480,000
Median (50th percentile) 1,480,000
75th percentile 1,550,000

Unit: t CO₂‑eq /Mt paper and cardboard waste recycled, 100-yr basis

25th percentile 600,000
Mean 1,000,000
Median (50th percentile) 1,000,000
75th percentile 2,000,000

Unit: t CO₂‑eq /Mt plastic waste recycled, 100-yr basis

25th percentile 2,000,000
Mean 2,000,000
Median (50th percentile) 2,000,000
75th percentile 2,000,000

Unit: t CO₂‑eq /Mt glass waste recycled, 100-yr basis

25th percentile 58,000
Mean 79,000
Median (50th percentile) 79,000
75th percentile 100,000
Left Text Column Width
Cost

Emissions mitigation from recycling metals and paper and cardboard results in net cost savings, while plastics break even and glass remains cost-intensive. Initial capital costs for all four material recycling systems are higher than for landfilling, but operating costs are lower. Net landfilling costs are overall profitable for all four materials (see Increase Centralized Composting and Improve Landfill Management for more information on landfilling costs). While operational costs for recycling can vary based on the design and efficiency of MRFs, overall savings can result from reduced landfill tipping fees, lower disposal volume, and revenue from selling recovered materials. These economic factors are determined by energy savings, market demand, and materials-specific recovery efficiencies.

Metals recycling generates net net savings of US$200 million/Mt metal waste recycled, or US$100/t CO₂‑eq mitigated (Table 2a). In addition to significantly reduced energy use and raw material costs (DebRoy & Elmer, 2024), metals recycling delivers high-quality materials comparable to newly mined metals (Damgaard et al., 2009). This drives strong market demand, with revenues often covering – and in some cases exceeding – the costs of separation and/or reprocessing alone.

Paper and cardboard recycling has the highest net savings of the four recycling streams compared to landfilling, with US$400 million/Mt paper and cardboard waste recycled. Combining effectiveness with the net costs presented here, we estimated a savings per unit climate impact of US$400/t CO₂‑eq (Table 2b). This reflects the energy and resource efficiency of paper recycling, along with revenue generation from recovered paper sales (Bajpai, 2014).

Plastics recycling costs US$8 million/Mt less than landfilling, yielding a cost saving of US$4/t CO₂‑eq (Table 2c). However, plastics recycling shows the most variability, ranging from modest savings to higher costs than primary material production. Inexpensive virgin plastics, high contamination risk, complex sorting and reprocessing, and weak or volatile market value (Li et al., 2022) make recycling plastics economically challenging without supportive policies or subsidies.

Glass recycling has a net cost of US$700 million/Mt glass waste recycled and the highest cost per unit of climate impact (US$9,000/t CO₂‑eq , Table 2d). This is due to high processing costs, low market value for cullet (e.g., selling for a fraction of the recycling cost; Figure A1), and contamination that limits resale or reuse (Bogner et al., 2007; Ng & Phan, 2021; Olafasakin et al., 2023). Although glass recycling is costly, the societal and environmental benefits are far higher than those of landfilling (Colangelo, 2024).

Financial data were geographically limited. We based cost estimates on global reports with selected studies from India, Saudi Arabia, the United Kingdom, and the United States for landfilling and Canada, the European Union, Germany, Philippines, and the United States for recycling. Transportation and collection of recyclables can add notable costs to waste management, but we did not include them in this analysis. We calculated amortized net cost for landfilling and recycling by subtracting revenues from operating costs and amortized initial costs over a 30-year facility lifetime. Furthermore, revenues reflect market-based prices, which are subject to change based primarily on demand for recyclables.

left_text_column_width

Table 2. Cost per unit of climate impact.

Unit: 2023 US$/t CO₂‑eq , 100-yr basis

Median -100

Unit: 2023 US$/t CO₂‑eq , 100-yr basis

Median -400

Unit: 2023 US$/t CO₂‑eq , 100-yr basis

Median -4

Unit: 2023 US$/t CO₂‑eq , 100-yr basis

Median 9,000
Left Text Column Width
Learning Curve

We did not consider a learning curve for the Increase Recycling solution due to a lack of global data quantifying cost reductions specific to mechanical recycling technologies. Recycling systems use well-established processes that are already mature and widely deployed.

Recycling costs depend largely on regional factors, including material availability, market prices, infrastructure, and transportation distances. Consumer sorting habits and contamination rates also influence recycling performance and often outweigh potential learning-based cost decreases from technological improvements. Additionally, many mechanical recycling facilities operate near or at peak process efficiency, leaving little room for the technological upgrades that typically lower costs over time.

left_text_column_width
Speed of Action

Speed of action refers to how quickly a climate solution physically affects the atmosphere after it is deployed. This is different from speed of deployment, which is the pace at which solutions are adopted.

At Project Drawdown, we define the speed of action for each climate solution as emergency brake, gradual, or delayed.

Increase Recycling is a GRADUAL climate solution. It has a steady, linear impact on the atmosphere.

left_text_column_width
Caveats

Manufacturing emissions reductions due to recycling of metals, paper and cardboard, plastics, and glass are generally both permanent and additional, depending on local regulations and recycling practices. While recycling reduces the need for virgin production of raw materials and associated emissions, several caveats affect the extent of its climate benefits. 

Permanence

There is a low risk that the avoided emissions from increased recycling will be reversed in the next 100 years. Using recycled materials in place of newly extracted (virgin) resources avoids emissions from extraction, refining, and manufacturing. These reductions are considered permanent because the avoided activities occur to a lesser extent and fewer associated emissions are released. Recycling uses less energy and therefore reduces burning of fossil fuels and emits less GHG. Avoided methane emissions from landfilled paper waste also has high permanence.

Additionality

Emissions reductions from increasing recycling are additional when improvements go beyond what would happen anyway under existing law or infrastructure. Increases in recycled rates, expansion to underdeveloped areas, and improvements in recycled material quality can result in additional climate benefits (Awino & Apitz, 2024; Halog & Anieke, 2021; Oo et al., 2024; Valenzuela-Levi et al., 2021). Efforts to enable or expand closed-loop recycling are also considered additional, especially for glass bottle recycling and in regions without this infrastructure.

Other Caveats

Material-specific limitations also apply. Material losses during product use and end-of-life processing limit metals recycling. Many metals are locked in products with long lifespans, difficult-to-separate designs, or technically unrecoverable applications, reducing availability for recycling (Ciacci et al., 2016; Guo et al., 2023). While improved recycling can decrease losses (Charpentier Poncelet et al., 2022), stagnant recycled metal inputs do not match growing metal demand (Watari et al., 2025).

Paper and cardboard can be recycled only five to seven times before fibers degrade beyond usability (Bajpai, 2014; Obradovic and Mishra, 2020), limiting long-term recyclability. Plastic recycling faces similar limits because many plastics degrade after a few cycles and mechanical processes are highly sensitive to contamination (Klotz et al., 2022; Klotz et al., 2023). For glass, downcycling is common due to quality control issues and variable regional demand for high-purity cullet. Van Ewijk et al. (2021) also emphasized that the benefits of paper recycling depend substantially on the carbon intensity of the energy used, highlighting the need to power recycling with low-carbon electricity.

left_text_column_width
Current Adoption

Worldwide, we estimated that metals are recycled at a rate of 740 Mt/yr (Table 3a). We based this on a study by Gorman et al. (2022), which reported that approximately 1,277 Mt of metals were produced globally in 2018 using recycled feedstocks. This value included all types of scrap metals: postconsumer, pre-consumer, and home scrap reused within factories. To isolate postconsumer recycling, we applied a 58% share based on data from the U.S. Geological Survey (USGS, 2022), which gives a typical breakdown of scrap types across major metals. While this ratio is U.S.-based, we used it as a global proxy due to limited international data. Our current adoption estimate accounts for processing losses, contamination, and quality limits that prevent a full 1:1 replacement of virgin metals (Gorman et al., 2022).

We estimated current paper and cardboard recycling at 160 Mt/yr, the median among two global datasets and one report (United Nations Office on Drugs and Crime [UNODC], 2023; Table 3b). The most recent global data were compiled in 2023 by the Food and Agriculture Organization of the United Nations ([FAO], n.d.), and an earlier dataset from a World Bank analysis from 174 countries in 2018 (World Bank, 2018). To estimate postconsumer recycled paper, we assumed a 75% share of total paper waste based on industry averages (European Paper Recycling Council, 2024)..

Plastics are currently recycled at a rate of 35.9 Mt/yr, based on one global dataset (173 countries; World Bank, 2018), two reports, and one study (Table 3c). Plastics Europe (2024a, 2024b) provides data on global mechanically recycled (postconsumer) plastics production, derived from estimations and statistical projections. We assumed the share of postconsumer plastics from Houssini et al. (2025) and World Bank (2018) to be 100% because the vast majority of plastic waste appears to originate from postconsumer sources.

Glass has the lowest current recycling rate at 27 Mt/yr, calculated as the midpoint among one global dataset (168 countries; World Bank, 2018), two reviews (Delbari & Hof, 2024; Ferdous et al., 2021), and one report (Maximize Market Research Private Limited, 2025) (Table 3d). For values based on total waste generation, we used a global production-based recycling rate, which may underestimate actual glass waste recycling due to limited data on postconsumer glass waste.

Since the World Bank (2018) provided data on waste generation in metric tons per year, we applied global recycling rates of 59.3%, 9%, and 21% to the total waste generated for paper and cardboard, plastics, and glass, respectively (see Appendix for details).

left_text_column_width

Table 3. Current adoption level.

Unit: Mt/yr, 2018

Estimate (Gorman et al., 2022) 740

Unit: Mt/yr, 2023

25th percentile 150
Mean 160
Median (50th percentile) 160
75th percentile 180

Unit: Mt/yr, 2023

25th percentile 31.2
Mean 32.0
Median (50th percentile) 35.9
75th percentile 36.6

Unit: Mt/yr, 2020

25th percentile 24
Mean 24
Median (50th percentile) 27
75th percentile 27
Left Text Column Width
Adoption Trend

Postconsumer metals recycling has grown steadily in recent years (Table 4a, Figure 2). We used global data on secondary metals production from Gorman et al. (2022), a 39.1% share of recycled metals from the total addressable market (Gorman et al., 2022), and a 58% postconsumer scrap factor (U.S. Geological Survey, 2022) to estimate the metals recycling adoption trend from 2014 to 2018. Annual adoption varies across this period. Taking the median annual change, we estimate a global adoption trend of 12 Mt/yr/yr, or 1.6% growth year-over-year (YoY). The mean annual change is estimated as 11 Mt/yr/yr, indicating consistent growth in the recovery of metals from end-of-life products.

Paper and cardboard recycling has gradually but inconsistently grown over the past two decades (Table 4b, Figure 2). Using worldwide recovered paper production data from the FAO (n.d.), we estimated the annual change in paper and cardboard waste recycled from 2003 to 2023. We applied a 75% factor to restrict this to postconsumer collection. While early years (2003–2016) in the data generally showed positive adoption, albeit with some fluctuations, more recent years (2017–2023) reflect declines, including noticeable drops in 2021–2022 (–1.9 Mt/yr/yr) and 2022–2023 (–5.4 Mt/yr/yr). The overall adoption trend is mixed despite a brief spike in 2020–2021. Taking the median annual change over the full 20-year period, we estimated a global trend of 2.2 Mt/yr/yr or a 1.3% YoY growth. The mean annual change is slightly higher at 2.8 Mt/yr/yr (2.0% YoY growth), indicating moderate but uneven progress in the recovery of paper and cardboard.

Plastics recycling is slowly increasing as a share of global plastic waste management, but the overall trend remains modest (Table 4c, Figure 2). We used data from the Organisation for Economic Co‑operation and Development ([OECD], 2022a) to estimate global adoption trends from 2000–2019 and supplemented this with 2019–2023 estimates from Plastics Europe (2022, 2023, 2024a). The adoption trend fluctuates from year to year, reflecting variability in collection rates, contamination levels, and recycling infrastructure. Taking the median annual change in recycled plastic waste across 23 years, we estimated a global adoption trend of 1.3 Mt/yr/yr, or 8.5% YoY growth. The mean annual change is slightly higher at 1.4 Mt/yr/yr, suggesting a slow growth in recycling capacity compared with plastic production volumes. However, this progress is uneven across geographies, with some countries expanding recycling systems while others face barriers, including limited infrastructure and low incentives for recovery.

Glass recycling showed a median annual change of 0 Mt/yr/yr and a mean of 0.8 Mt/yr/yr (3.7% growth YoY) from 2009–2019 (Table 4d, Figure 2). These estimates are based on Chen et al. (2020), who modeled World Bank data (Kaza et al., 2018) to generate a global dataset of waste treatment quantities across 217 countries. The apparent absence of change likely reflects limited availability of global data and inconsistent reporting rather than truly flat adoption. Although the dataset from Chen et al. (2020) is comprehensive, it is modeled rather than based on reported figures.

left_text_column_width

Table 4. Adoption trend.

Unit: Mt/yr/yr, 2014–2018

25th percentile 2.3
Mean 11
Median (50th percentile) 12
75th percentile 20

Unit: Mt/yr/yr, 2003-2023

25th percentile 0.15
Mean 2.8
Median (50th percentile) 2.2
75th percentile 5.9

Unit: Mt/yr/yr, 2000-2023

25th percentile 0.93
Mean 1.4
Median (50th percentile) 1.3
75th percentile 1.8

Unit: Mt/yr/yr, 2009-2019

25th percentile 0
Mean 0.8
Median (50th percentile) 0
75th percentile 0
Left Text Column Width

Figure 2. Trends in recycling adoption of metals (2014–2018), paper & cardboard (2003–2023), plastics (2000–2023), and glass (2009–2019). Adapted from Chen et al. (2020), Gorman et al. (2022), FAO (n.d.), OECD (2022a), and Plastics Europe (2022, 2023, 2024a).

Sources: Chen, D. M.-C., Bodirsky, B. L., Krueger, T., Mishra, A., & Popp, A. (2020). The world’s growing municipal solid waste: Trends and impacts. Environmental Research Letters15(7), Article 074021; Food and Agriculture Organization of the United Nations. (n.d.). FAO‑FAOSTAT: Forestry production and trade [Data set]. Retrieved April 25, 2025; Gorman, M. R., Dzombak, D. A., & Frischmann, C. (2022). Potential global GHG emissions reduction from increased adoption of metals recycling. Resources, Conservation and Recycling184, Article 106424; Organisation for Economic Co‑operation and Development. (2022a). Global plastics outlook database [Data set]; Plastics Europe. (2022). Plastics – the facts 2022 [Report]; Plastics Europe. (2023). Plastics – the fast facts 2023 [Infographic]; Plastics Europe. (2024a). Plastics – the fast facts 2024 [Infographic].

Enable Download
On
Adoption Ceiling

Metals recycling adoption is expected to remain high, with the global ceiling estimated at 2,100 Mt/yr (Table 5a). This corresponds to 68.2% of total projected metals production by 2050, based on the “maximum scenario” in Gorman et al. (2022). The scenario reflects a best-case technical potential of recycled metals adoption under full utilization of scrap feedstocks (Gorman et al., 2022). It assumes that all available postconsumer, pre-consumer, and home scrap can be recovered and can fully replace as much virgin material as possible using current technologies. We isolated the postconsumer portion as a 58% share of available metal scrap, as outlined in USGS (2022) data. 

There is also a strong potential for increased paper and cardboard recycling, with an estimated adoption ceiling of 360 Mt/yr (Table 5b). We assumed a recovery rate of 85% of total global paper production, accounting for practical limits imposed by fiber degradation, contamination, and processing inefficiencies. According to UNODC (2023), about 48% of paper globally is produced from recycled materials, leaving considerable room for improvement. The 85% ceiling also assumes that not all types of paper can be recovered (e.g., sanitary paper or heavily coated grades). Because this value is based on production rather than discarded paper waste, it may slightly underestimate the ceiling based on postconsumer waste generation. 

We estimated the adoption ceiling for plastics recycling at 180 Mt/yr (Table 5c). Technical barriers such as contamination, material heterogeneity, and plastic degradation constrain large-scale adoption. We therefore assumed and applied a 70% recycling rate to postconsumer plastic waste streams. We obtained similar estimates across multiple sources reporting global plastic waste generation (Houssini et al., 2025; OECD, 2022b; Stegmann et al., 2022). 

We estimated a ceiling of 100 Mt/yr for glass recycling (Table 5d) based on a 90% recovery rate from global waste generation estimates (Chen et al., 2020; Ferdous et al., 2021). Although glass is considered infinitely recyclable, losses due to contamination, sorting inefficiencies, and market constraints limit complete recovery. We included modeled estimates from Chen et al. (2020) to provide a more comprehensive global ceiling due to the scarcity of global data on glass recycling. 

For metals and paper and cardboard, values are derived from single datasets; for plastics, rounding across multiple datasets produced identical values across percentiles. Therefore, only the median is shown for these three subsolutions.

left_text_column_width

Table 5. Adoption ceiling.

Unit: Mt/y

Estimate (Gorman et al., 2022) 2,100

Unit: Mt/y

Estimate (UNODC, 2023) 360

Unit: Mt/y

Median (50th percentile) 180

Unit: Mt/y

25th percentile 94
Mean 100
Median (50th percentile) 100
75th percentile 110
Left Text Column Width
Achievable Adoption

For sources reporting global recycling rates or tonnage for all materials except metals, we define low and high achievable adoption as 25% or 50% increase in the most recently available material-specific recycle rate, respectively.

For metals recycling, achievable adoption is largely shaped by the dynamics of secondary metal production in global commodity markets, which in turn depends on the relative quantity of scrap available (Ciacci et al., 2016). We set achievable adoption at 1,300–1,400 Mt/yr by 2050 (Table 6a), based on the “plausible” and “ambitious” scenarios from Gorman et al. (2022), respectively. These estimates represent 41–48% of projected global metals production and incorporate both postconsumer and pre-consumer scrap, with the postconsumer share standardized at 58% across scenarios (USGS, 2022). Major commodity metals included in these estimates are steel, aluminum, copper, zinc, lead, iron, nickel, and manganese, which together represent more than 99% of all metal demand by mass from 2014–2018 (USGS, 2021). Material availability and infrastructure for downstream scrap processing remain key hurdles (Allwood et al. 2025), although industrial-scale recovery systems are already well established in many high-income countries (Campbell et al., 2022; de Sa & Korinek, 2021).

We estimated the achievable adoption range for paper and cardboard recycling at 220–260 Mt/yr (Table 6b), with an assumed postconsumer share of 75% applied to the total global recycling volumes reported by FAO (n.d.) and UNODC (2023). This range reflects expanded municipal collection, improvements in fiber separation technologies, and increased demand for recovered pulp in paper manufacturing. 

Plastics recycling has substantial opportunity for growth, given <10% global recycling rates and the exponential growth of plastic accumulation in the environment (Dokl et al., 2024; Nayanathara Thathsarani Pilapitiya & Ratnayake, 2024). A 25–50% increase in global mechanically recycled plastic volumes would bring the achievable range to 45–54 Mt/yr (Table 6c). While meaningful, these levels are 8–9 times smaller than the 414 Mt of plastic produced in 2023 (Plastics Europe, 2024a). Constraints include the complexity of sorting mixed plastic streams, limited market demand for lower-grade recycled pellets, and insufficient investment in complementary technologies such as chemical recycling, which remains below 0.5 Mt/yr.

For glass recycling, we set an achievable adoption range of 36–48 Mt/yr by 2050, based on harmonized waste modeling and forward-looking estimates from Chen et al. (2020) and Delbari and Hof (2024). However, this scale-up depends substantially on reducing contamination at the collection stage, expanding color- and ceramic-sorting technologies, and improving closed-loop markets for container glass (Baek et al., 2025; Yuan et al., 2024).

left_text_column_width
Enable Download
Off

Table 6. Range of achievable adoption.

Unit: Mt/yr

Current adoption 740
Achievable – low 1300
Achievable – high 1400
Adoption ceiling 2100

Unit: Mt/yr

Current adoption 160
Achievable – low 220
Achievable – high 260
Adoption ceiling 360

Unit: Mt/yr

Current adoption 36
Achievable – low 45
Achievable – high 54
Adoption ceiling 180

Unit: Mt/yr

Current adoption 27
Achievable – low 36
Achievable – high 48
Adoption ceiling 100
Left Text Column Width

Increased recycling has strong potential for climate impact, especially in reducing emissions from virgin material production and landfilling waste (see Appendix for waste sector emissions). 

Metals recycling has the highest current and achievable GHG emissions savings of the four material categories (Table 7a). At a >500 Mt/yr current adoption rate, we estimate current metals recycling avoids 1.1 Gt CO₂‑eq/yr (1.2 Gt CO₂‑eq/yr, 20-year basis). Our low and high achievable adoption levels reduce 1.9 and 2.1 Gt CO₂‑eq/yr (2.1 and 2.4 Gt CO₂‑eq/yr, 20-year basis), respectively, with annual GHG reductions up to 3.1 Gt CO₂‑eq/yr (3.5 Gt CO₂‑eq/yr, 20-year basis) using the adoption ceiling. 

Paper and cardboard recycling currently avoids 0.16 Gt CO₂‑eq/yr (0.16 Gt CO₂‑eq/yr, 20-year basis) (Table 7b). Achievable GHG reduction is 0.22–0.26 Gt CO₂‑eq/yr (0.22–0.26 Gt CO₂‑eq/yr, 20-year basis), with a maximum potential of 0.36 Gt CO₂‑eq/yr (0.36 Gt CO₂‑eq/yr, 20-year basis).

Plastics recycling has a lower current climate impact of 0.07 Gt CO₂‑eq/yr (0.1 Gt CO₂‑eq/yr, 20-year basis), but it has the potential to increase to a ceiling matching that of recycling paper and cardboard (Table 7c). We estimated low and high achievable adoption levels avoid 0.09 and 0.1 Gt CO₂‑eq/yr (0.1 and 0.2 Gt CO₂‑eq/yr, 20-year basis), respectively, with GHG emissions savings of 0.4 Gt CO₂‑eq/yr (0.5 Gt CO₂‑eq/yr, 20-year basis) at the adoption ceiling. The 20-year impacts highlight the mitigated methane emissions associated with oil refining for virgin plastic production, with recycling plastics reducing both the need for petrochemical feedstocks and the volume of waste sent to landfills.

Glass recycling has the lowest current and achievable emissions reductions, avoiding 0.0021 Gt CO₂‑eq/yr (0.0023 Gt CO₂‑eq/yr, 20-year basis) with the potential to increase to 0.0028–0.0038 Gt CO₂‑eq/yr (0.0030–0.0041 Gt CO₂‑eq/yr, 20-year basis) under higher adoption (Table 7d). We estimated a maximum impact ceiling of 0.0079 Gt CO₂‑eq/yr (0.0084 Gt CO₂‑eq/yr, 20-year basis). Although emissions savings are relatively small, glass recycling is still worthwhile to benefit from cullet-driven energy reductions, conserve raw materials, and contribute to larger reductions when combined with other materials in municipal recycling programs.

left_text_column_width

Table 7. Climate impact at different levels of adoption.

Unit: Gt CO₂‑eq/yr, 100-year basis

Current adoption 1.1
Achievable – low 1.9
Achievable – high 2.1
Adoption ceiling 3.1

Unit: Gt CO₂‑eq/yr, 100-year basis

Current adoption 0.16
Achievable – low 0.22
Achievable – high 0.26
Adoption ceiling 0.36

Unit: Gt CO₂‑eq/yr, 100-year basis

Current adoption 0.07
Achievable – low 0.09
Achievable – high 0.1
Adoption ceiling 0.4

Unit: Gt CO₂‑eq/yr, 100-year basis

Current adoption 0.0021
Achievable – low 0.0028
Achievable – high 0.0038
Adoption ceiling 0.0079
Left Text Column Width

In our analysis, we adjusted emissions reductions from recycling using a TSR, since recycled materials often do not replace virgin materials on a 1:1 basis due to differences in quality, durability, or performance (Nordahl & Scown, 2024). To ensure we didn’t overestimate emissions savings, we applied an average material-specific ratio that adjusted the avoided emissions from primary material production. Recycled paper and cardboard and glass were assigned a ratio of 0.83; metals, 0.90; and plastics, 0.80 (Figure 3). These unitless ratios were based on technical literature (Barbato et al., 2024; Rigamonti et al., 2020; UNEP, 2024; Zheng & Suh, 2019) and were applied consistently across all emissions units for effectiveness.

left_text_column_width

Figure 3. Conceptual diagram of a general recycling loop for (a) metals, (b) paper & cardboard, (c) plastics, and (d) glass and how technical substitutability determines the maximum share of recycled content due to quality constraints. Graphics for (b), including the MRF and manufacturing plant for (a), (c), and (d), were modified from International Paper (n.d.). BioRender and Canva were used to make the remaining graphics.

Image
Recycling cycle diagram.

International Paper. (n.d.). Paper’s life cycle: The recycling process [Infographic]. Retrieved June 10, 2025.

Enable Download
On
Additional Benefits

Income and Work

Recycling can create jobs and reduce energy costs. The National Institutes of Health (NIH) estimated that incinerating or landfilling 10 kt of waste creates one or six jobs respectively, while recycling the same amount of waste creates 36 jobs (NIH Environmental Management System [NEMS], n.d.). A case study in Florida found that increasing recycling rates can lead to small amounts of job growth, with most new jobs concentrated in the recycling processing sector (Liu et al., 2020). 

Using recycled materials can reduce the need for imports and support domestic manufacturing (Das et al., 2010; Dussaux & Glachant, 2019). The sale of products manufactured from recyclables instead of virgin materials can translate to economic benefits. A study of recycling systems in Nigeria found that the sale of recyclables could contribute about US$11.7 million to the country’s economy each year and create about 16,562 new jobs (Ayodele et al., 2018).  

Health

Materials in landfills can leach into the surrounding environment (McGinty, 2021). Plastics, along with associated additives such as bisphenol A and phthalates, can degrade into microplastics that enter the surrounding ecosystem and food chain, posing health risks to humans (Bauer et al., 2022; Li et al., 2022; Rajmohan et al., 2019; Zheng & Suh, 2019).

Equality

In low- and middle-income countries, informal recycling, which involves networks of individuals who sort through waste and sell or recycle it using informal methods, is a common form of waste management (Yang et al., 2018). Increasing recycling in these contexts could formalize this recycling method and improve some of the social and health equity concerns associated with informal recycling, such as exploitation, safety, child labor, and occupational health exposures, and may improve income-earning capabilities (Aparcana & Salhofer, 2013; Yang et al., 2018). Low- and middle-income countries typically face a disproportionate burden of plastic pollution, which could be improved by increasing recycling capacities globally (World Wildlife Fund [WWF], 2023). 

Land Resources

Recycling can benefit land resources and soil quality by reducing materials in landfills and incinerators and by reducing the need to extract virgin materials such as timber and minerals (Dussaux & Glachant, 2019; McGinty, 2021; U.S. EPA, 2025). Rajmohan et al. (2019) estimated that about 22–43% of plastic waste reaches landfills. Plastic waste can degrade into microplastics, leaching into surrounding ecosystems and reducing soil fertility (McGinty, 2021; Rajmohan et al., 2019). The environmental benefits of displacing the need for production using virgin materials through recycling may be more significant than reducing landfilling (Geyer et al., 2016). Recycling, along with the use of wood residues, is projected to reduce the demand for wood and fiber, easing pressures of land resources (FAO, 2009). 

Water Resources

Recycling can reduce the amount of water needed to produce new materials. For example, using recycled steel to make steel requires 40% less water than using virgin materials (NEMS, n.d.).

Air Quality

Increasing recycling reduces the amount of waste in landfills and incinerators and can reduce harmful pollution associated with landfilling and incineration (U.S. EPA, 2025). Additionally, recycling reduces the need to mine and process new materials, thereby reducing air pollution emitted during these processes (U.S. EPA, 2025)

left_text_column_width
Risks

Increasing metals recycling, paper and cardboard recycling, and plastics recycling can inadvertently increase environmental and human exposure to hazardous chemicals if not properly managed. Exposure to heavy metal fumes can occur while processing metal waste, and concealed pressurized or reactive items in scrap can cause fires or explosions. Chemical additives such as mineral oils and printing inks often persist throughout the paper life cycle and can migrate into the environment and food packaging, posing health risks such as chronic inflammation, endocrine disruption, and cancer (Pivnenko et al., 2016; Sobhani & Palanisami, 2025). Flame retardants, per- and polyfluoroalkyl substances, and other pollutants can leach from materials during and after plastics recycling. Microplastics accumulate at higher concentrations in recycled plastics and are released during all recycling stages (Monclús et al., 2025; Singh & Walker, 2024). Additionally, recycled papers and plastics contain unintentionally added substances, which carry different additives whose composition is often unknown (Monclús et al., 2025; Sobhani & Palanisami, 2025).

Increased plastics collection for recycling without global coordination can lead to disproportionate plastic pollution if high-income countries export plastic waste to low-income countries with inadequate recycling infrastructure (Singh & Walker, 2024).

When glass recycling is included in single-stream systems, glass shards can damage MRF machinery and contaminate other recyclable materials, decreasing their market value (Deer, 2021). Additionally, the heavy weight and fragility of glass means recycling trucks require multiple trips, consuming more fuel and increasing transportation costs. 

Another key risk is that materials collected for recycling may ultimately be landfilled when poor market conditions prevent their recovery. 

left_text_column_width
Interactions with Other Solutions

Reinforcing

All of these solutions can reuse clean and high-quality recycled materials as a raw material or feedstock or repurpose them as substitute materials in targeted uses. The embodied emissions from the recovered waste used as production or process inputs will be reduced, enhancing the solutions’ net climate impacts and supporting circularity.

left_text_column_width

Recycling paper and cardboard waste reduces deforestation required for extracting and processing primary raw materials.

left_text_column_width

Increased adoption of efficient mechanical recycling systems and equipment can improve the rate and cost of scaling similar highly-efficient, complementary technologies (e.g., chemical recycling). 

left_text_column_width

Competing

Diverting certain paper and cardboard types from landfills lowers methane emissions available to be captured and sold for biogas revenue. Paper and cardboard recycling also can reduce the amount of material available for methane digesters.

left_text_column_width
Dashboard

Solution Basics

Mt recycled

t CO₂-eq (100-yr)/unit
01.41×10⁶1.48×10⁶
units
Current 740 01,3001,400
Achievable (Low to High)

Climate Impact

Gt CO₂-eq (100-yr)/yr
Current 1.1 1.92.1
US$ per t CO₂-eq
-100
Gradual

CO₂ , CH₄

Solution Basics

Mt recycled

t CO₂-eq (100-yr)/unit
0600,0001×10⁶
units
Current 160 0220260
Achievable (Low to High)

Climate Impact

Gt CO₂-eq (100-yr)/yr
Current 0.16 0.220.26
US$ per t CO₂-eq
-400
Gradual

CO₂ , CH₄

Solution Basics

Mt recycled

t CO₂-eq (100-yr)/unit
2×10⁶
units
Current 35.9 04554
Achievable (Low to High)

Climate Impact

Gt CO₂-eq (100-yr)/yr
Current 0.07 0.090.1
US$ per t CO₂-eq
-4
Gradual

CO₂ , CH₄

Solution Basics

Mt recycled

t CO₂-eq (100-yr)/unit
058,00079,000
units
Current 27 03648
Achievable (Low to High)

Climate Impact

Gt CO₂-eq (100-yr)/yr
Current 0.002 0.0030.004
Gradual

CO₂ , CH₄

Trade-offs

Ciacci et al. (2016) and van Ewijk and Stegemann (2023) noted that as recycling approaches near-total recovery, energy consumption steeply rises, driven by increased decontamination efforts, sorting challenges, and diminished material quality. However, recycling rates are currently low enough that recycling is less carbon intense than primary material manufacturing.

The eventual quality degradation in secondary materials requires supplementation with virgin resources. However, overall embodied emissions are still lower than they would be for producing all-new materials. 

Glass recycling poses a trade-off between convenience and recycling efficiency in single-stream systems. Only 40% of glass is repurposed into new products, and the glass can contaminate other materials. Multi-stream or source-separated systems require more effort but achieve 90%-plus recycling rates (Berardocco et al., 2022; Deer, 2021).

Watari et al. (2025) noted that countries can achieve high local recycling rates and high recycled content by importing scrap metals from elsewhere, but with the trade-off that metal production emissions are offshored rather than reduced. This also introduces dependencies on international scrap flows and global supply chains (Guo et al., 2023), which can similarly occur for paper, cardboard, and plastics.

left_text_column_width
Action Word
Increase
Solution Title
Recycling
Classification
Highly Recommended
Lawmakers and Policymakers
  • Establish ambitious recycling goals; incorporate them into climate plans.
  • Ensure public procurement uses recycled materials or products as much as possible.
  • Consult with manufacturers, retailers, and the public to determine how best to design local recycling programs.
  • Empower citizen leaders to help manage MSW collection and recycling programs; ensure legal and regulatory structures clearly designate citizen and/or local control to avoid political disagreements and interference.
  • Use decision-making models and economic analysis tools to design MSW systems that incorporate aspects such as life-cycle assessments, material flows, cost/benefit analyses, environmental impact assessments, management systems, and assessments of immediate impacts on human well-being, especially in low-income and urban settings.
  • Ensure waste management systems and practices are appropriate for the local context and not just imported models from other countries.
  • Coordinate recycling efforts, policies, and budgets horizontally (e.g., across agencies) and vertically (e.g., across subnational, national, and international efforts), ensuring an inclusive process for local communities.
  • Use financial incentives that are appropriate for the local context such as subsidizing recycling plants, transportation, and pickup; offer tax exemptions and other incentives to low-income communities.
  • Use financial disincentives and taxes appropriate for the local context, such as landfilling fees, rent and/or property taxes, product fees, and collection fees included in utility bills or tied to waste quantity; ensure fees do not burden or stop low-income communities from recycling (possibly by tying collection fees to income bracket).
  • Invest in waste management infrastructure, including waste drop-off and buy-back centers, collection and separation facilities, roads and collection vehicles, education programs, community engagement mechanisms, and research and development for more efficient recycling techniques, behavioral change mechanisms, product design, and alternative materials.
  • Institute bans on landfilling recyclable (or compostable) materials; establish penalties for noncompliance.
  • Enact container deposit programs to encourage recycling and reuse.
  • Mandate standard shapes and color coding for waste bins to facilitate collection and separation.
  • Ban single-use plastics such as shopping bags and water bottles; ensure strong customs enforcement for imports.
  • Enact extended producer responsibility approaches that hold producers accountable for waste; set standards for the traceability of materials; require clear labeling for recyclable products.
  • Aim to eliminate government corruption behind illicit waste trade; create monitoring programs to hold waste managers accountable.
  • Incentivize or encourage waste management facilities to run on renewable energy and use electric fleets.
  • Incentivize or encourage manufacturers – including climate solution industries such as solar and wind producers – to use as much recycled materials as possible.
  • Require products made of metal, paper, plastic, or glass to contain a minimum percentage of recycled materials; ensure packaging producers meet recycling obligations potentially through the use of market-based mechanisms such as packaging waste recovery notes (PRNs) and/or packaging waste export recovery notes (PERNS).
  • Work to bring informal waste pickers into the formal MSW system by providing or advocating for training, protective gear, formal employment, free or low-cost childcare services, and other social benefits and purchasing separated recyclable waste.
  • Work with businesses and industries to develop consistent markets for recycled goods and stabilize the price of recycled materials.
  • Carefully enter into transparent public–private recycling partnerships, ensuring legal systems can enforce compliance with contractual terms.
  • Set collection fees, designate collection areas, and establish the amount of monitoring services at the municipal level rather than letting private companies do so.
  • Improve building codes and manufacturing regulations to require the use of recycled materials and material traceability; set standards for building and vehicle demolition to require the recovery of window glass and other recyclable materials.
  • Set recycling-facilitating regulations and standards for product disassembly.
  • Set standards that ease barriers for trading recycled goods and recyclable materials; halt the export of waste from rich countries to low- and middle-income countries; enforce trade standards and ensure illicit trade networks do not circumvent them.
  • Foster cooperation and technology transfers between low- and middle-income countries, avoiding models used in rich countries that are ill-suited for other contexts.
  • Deploy diverse means of engaging the public in recycling, such as volunteer groups, social activities, and musical trucks.
  • Create or improve training programs for waste management professionals that focus on practical skills and knowledge for working with communities to design and manage MSW systems.
  • Partner with schools, manufacturers, retailers, nonprofits, and other community organizations to promote recycling.
  • Establish programs that teach how to separate waste effectively, the waste hierarchy, and why these processes are important; incorporate these concepts into public school curricula.
Practitioners
  • Place recycling plants as close to points of waste generation as possible.
  • Consult with government officials, manufacturers, retailers, and the public to determine how best to design local recycling programs; utilize local data to inform planning, development, collection, and sorting techniques.
  • Support and cooperate with citizen leaders to help manage MSW collection and recycling programs.
  • Use decision-making models and economic analysis tools to design MSW systems that incorporate aspects such as life-cycle assessments, material flows, cost/benefit analyses, environmental impact assessments, management systems, and assessments of immediate impacts on human well-being, especially in low-income and urban settings.
  • Take advantage of financial incentives such as subsidies for recycling plant construction, transportation, and pickup; if none exist, advocate to policymakers for incentives.
  • Invest in waste management infrastructure, including waste drop-off and buy-back centers, collection and separation facilities, roads, collection vehicles, education programs, community engagement mechanisms, and research and development for more efficient recycling techniques, behavioral change mechanisms, product design, and alternatives to non-recyclable materials.
  • Use energy efficiency equipment and enhanced heat recovery techniques; install smart technology control systems.
  • Use electric equipment and renewable energy sources as much as possible.
  • Work with the renewable energy industry to ensure new solar photovoltaic panels and wind turbines utilize as much recycled materials as possible.
  • Work to bring informal waste pickers into the formal MSW system by providing or advocating for training, protective gear, formal employment, free or low-cost childcare services, and other social benefits and purchasing separated recyclable waste.
  • Work with policymakers, businesses, and industries to develop consistent markets for recycled goods and stabilize the price of recycled materials.
  • Deploy diverse means of engaging the public in recycling, such as volunteer groups, social activities, and musical trucks.
  • Create or improve training programs for waste management professionals that focus on practical skills and knowledge for working with communities to design and manage MSW systems.
  • Partner with schools, manufacturers, retailers, nonprofits, and other community organizations to promote recycling.
  • Establish programs that teach how to separate waste effectively, the waste hierarchy, and why these processes are important; incorporate these concepts into public school curricula.
Business Leaders
  • Use recycled materials in business operations as much as possible and ensure employees recycle.
  • Improve the quality of products, reduce material usage and product weight, and extend product life cycles through design that allows for easy reuse, repair, upgrading, recycling, and remanufacturing.
  • Work with industry peers to set design standards for common products that contain recycled materials.
  • Improve the traceability of materials used in products to enhance sorting efficiency.
  • Collect used products and reuse the materials for future production.
  • Advocate to policymakers for improved municipal recycling programs and support for integrating recycled products into your industry.
  • Provide financial assistance to employees for training in sustainable waste management, circular business models, and other related fields.
  • Create or join platforms that allow business-to-business collaboration to increase adoption of recycling and integration of recycled materials into products and business models.
  • Conduct market research on consumer demands and trends to identify potential markets for recycled materials.
  • Fund research or start-ups that aim to boost recycling in your industry.
  • Create, support, or join education campaigns and/or public-private partnerships that facilitate collaboration on recycling.
Nonprofit Leaders
  • Ensure procurement uses strategies to reduce waste and use recycled materials as much as possible.
  • Help administer local recycling programs; take advantage of financial incentives such as subsidies for recycling plants, transportation, and pickup; ensure services are provided to low-income communities.
  • Consult with government officials, manufacturers, retailers, and the public to determine how best to design local recycling programs.
  • Help recycling service providers navigate certification and permitting; help identify funding opportunities.
  • Help develop decision-making models and economic analyses for designing recycling systems, incorporating aspects such as life-cycle assessments, material flows, cost/benefit analyses, environmental impact assessments, management systems, and assessments of impacts on human well-being, especially in low-income and urban settings.
  • Improve data collection on employment figures in the waste and recycling sectors; work to capture labor statistics for informal waste pickers – especially, women and children involved in the sector that are not captured by current data.
  • Advocate for ambitious public recycling goals, including integration into local and national climate plans.
  • Advocate for international trade standards that ease barriers for trading in recycled goods and recyclable materials; seek to halt the practice of rich countries exporting waste to low- and middle-income countries; advocate for better enforcement of trade standards to ensure illicit trade networks do not circumvent these standards.
  • Create or improve training programs for waste management professionals that focus on practical skills and knowledge for working with communities to design and manage MSW systems.
  • Advocate for bans on discarding recyclable materials to landfills and penalties for noncompliance.
  • Establish or advocate for container deposit programs to encourage recycling and reuse.
  • Advocate for bans on single use plastics such as shopping bags and water bottles.
  • Advocate for extended producer responsibility approaches that hold producers accountable for waste; demand standards for traceability and labeling of materials in products to facilitate recycling.
  • Empower citizen leaders to help manage MSW collection and recycling programs; advocate for clear legal and regulatory structures to avoid political disagreements and interference.
  • Help safeguard against government corruption to avoid the illicit waste trade; create monitoring programs to hold waste management companies and/or leadership accountable.
  • Deploy diverse means of engaging the public in recycling, such as volunteer groups, social activities, and musical trucks.
  • Work to bring informal waste pickers into the formal MSW system by providing or advocating for training, protective gear, formal employment, free or low-cost childcare services, and other social benefits.
  • Help facilitate local cooperatives or other management structures for recycling programs; offer to purchase separated recyclable waste from waste pickers.
  • Work with businesses and industry to develop consistent markets for recycled goods and stabilize the price of recycled materials.
  • Partner with schools, manufacturers, retailers, nonprofits, and other community organizations to promote recycling.
  • Establish programs that teach how to separate waste effectively, the waste hierarchy, and why these processes are important; incorporate these concepts into public school curricula.
  • Create, support, or join education campaigns and/or public-private partnerships that facilitate collaboration on recycling.
Investors
  • Ensure portfolio companies and company procurement reduce waste, recycle, and use recycled materials at all stages of the supply chain.
  • Require portfolio companies to measure and report on waste, recycling rates, and use of recycled materials.
  • Provide low-interest loans to recycling service providers for start-up capital, improving efficiency, transitioning to renewable energy, and other development needs.
  • Invest in companies developing or modifying products to be compatible with a circular economy.
  • Fund start-ups that aim to improve sorting technologies, alternative packaging materials, energy efficiency of waste separation equipment, and other industry needs.
  • Offer financial services, notably rural financial market development, including low-interest loans, microfinancing, and grants, to support recycling initiatives.
  • Create, support, or join education campaigns and/or public-private partnerships that facilitate collaboration on recycling.
Philanthropists and International Aid Agencies
  • Ensure your organization’s procurement recycles and uses recycled materials as much as possible
  • Help administer local recycling programs; take advantage of financial incentives such as subsidies for recycling plants, transportation, and pickup; ensure services are provided to low-income communities.
  • Foster cooperation and technology transfers between low- and middle-income countries, avoiding models used in rich countries that are ill-suited for other contexts.
  • Offer grants and loans to establish recycling projects, ensuring projects have sustainable means of generating income sources to maintain operations after grant or loan terms end.
  • Provide low-interest loans to recycling service providers for start-up capital, improving efficiency, transitioning to renewable energy, and other development needs.
  • Invest in companies developing or modifying products to be compatible with a circular economy.
  • Fund start-ups that aim to improve sorting technologies, alternative packaging materials, energy efficiency of waste separation equipment, and other industry needs.
  • Offer financial services, notably rural financial market development, including low-interest loans, microfinancing, and grants to support recycling initiatives.
  • Hold community consultations with government officials, manufacturers, retailers, and the public to determine how best to design local recycling programs.
  • Help recycling service providers navigate certification and permitting processes.
  • Help develop decision-making models and economic analyses for designing recycling systems, incorporating aspects such as life-cycle assessments, material flows, cost/benefit analyses, environmental impact assessments, management systems, and assessments of impacts on human well-being, especially in low-income and urban settings.
  • Improve data collection on employment figures in the waste and recycling sectors; work to capture labor statistics for informal waste pickers – especially, women and children involved in the sector that are not captured by current data.
  • Advocate for ambitious public recycling goals and for the goals to be integrated into local and national climate plans.
  • Advocate for international trade standards that ease barriers for trading in recycled goods and recyclable materials; seek to halt the practice of rich countries exporting waste to low- and middle-income countries; advocate for better enforcement of trade standards to ensure illicit trade networks do not circumvent these standards.
  • Create or improve training programs for waste management professionals that focus on practical skills and knowledge for working with communities to design and manage MSW systems.
  • Advocate for bans on discarding recyclable (or compostable) materials to landfills and penalties for noncompliance.
  • Establish or advocate for container deposit programs to encourage recycling and reuse.
  • Advocate for bans on single use plastics such as shopping bags and water bottles.
  • Advocate for extended producer responsibility approaches that hold producers accountable for waste; demand standards for the traceability and labeling of materials in products to facilitate the recycling process.
  • Empower citizen leaders to help manage MSW collection and recycling programs; advocate for clear legal and regulatory structures to avoid political disagreements and interference.
  • Help safeguard against government corruption to avoid the illicit waste trade; create monitoring programs to hold waste management companies and/or leadership accountable.
  • Deploy diverse means of engaging the public in recycling, such as volunteer groups, social activities, and musical trucks..
  • Work to bring informal waste pickers into the formal MSW system by providing or advocating for training, protective gear, formal employment, free or low-cost childcare services, and other social benefits.
  • Help facilitate local cooperatives or other management structures for recycling programs; offer to purchase separated recyclable waste from waste pickers.
  • Work with businesses and industry to develop consistent markets for recycled goods and to stabilize the price of recycled materials.
  • Partner with schools, manufacturers, retailers, nonprofits, and other community organizations to promote recycling.
  • Establish programs that teach how to separate waste effectively, the waste hierarchy, and why these processes are important; incorporate these concepts into public school curricula.
  • Create, support, or join education campaigns and/or public-private partnerships that facilitate collaboration on recycling.
Thought Leaders
  • Adopt recycling, share your experience, and inform your community how to effectively recycle in your area.
  • Consult with government officials, manufacturers, retailers, and the public to determine how best to design local recycling programs.
  • Help recyclers navigate certification and permitting; help identify funding opportunities.
  • Help develop decision-making models and economic analyses for designing recycling systems, incorporating aspects such as life-cycle assessments, material flows, cost/benefit analyses, environmental impact assessments, management systems, and assessments of impacts on human well-being, especially in low-income and urban settings.
  • Create ways of tracing materials and verifying recycled materials; explore the use of blockchain technology.
  • Conduct climate impact assessments of chemical recycling for plastics at an industrial scale; assess its feasibility to supplement mechanical recycling.
  • Improve data collection on employment figures in the waste and recycling sectors; work to capture labor statistics for informal waste pickers – especially, women and children involved in the sector that are not captured by current data.
  • Research and develop strategies for increasing recycling behavior.
  • Advocate for ambitious public recycling goals and for the goals to be integrated into local or national climate plans.
  • Advocate for international trade standards that ease barriers for trading in recycled goods and recyclable materials; seek to halt the practice of rich countries exporting waste to low- and middle-income countries (“waste dumping”); advocate for better enforcement of trade standards to ensure illicit trade networks do not circumvent these standards.
  • Create or improve training programs for waste management professionals that go into practical skills and knowledge for working with communities to design and manage MSW systems.
  • Advocate for bans on discarding recyclable (or compostable) materials to landfills and penalties for noncompliance.
  • Advocate for container deposit programs to encourage recycling and reuse.
  • Advocate for bans on single use plastics such as shopping bags and water bottles.
  • Advocate for extended producer responsibility approaches that hold producers accountable for waste; demand standards for the traceability and labeling of materials in products to facilitate the recycling process.
  • Empower citizen leadership to help manage MSW collection and recycling programs; advocate for clear legal and regulatory structures to avoid political disagreements and interference.
  • Help safeguard against government corruption to avoid the illicit waste trade; create monitoring programs to hold waste management companies and/or leadership accountable.
  • Deploy diverse means of engaging the public in recycling, such as volunteer groups, social activities, and musical trucks.
  • Work with businesses and industry to develop consistent markets for recycled goods and to stabilize the price of recycled materials.
  • Partner with schools, manufacturers, retailers, nonprofits, and other community organizations to promote recycling.
  • Establish programs that teach how to separate waste effectively, the waste hierarchy, and why these processes are important; incorporate these concepts into public school curricula.
  • Create, support, or join education campaigns and/or public-private partnerships that facilitate collaboration on recycling.
Technologists and Researchers
  • Improve the efficiency of waste separation machinery and develop low-cost, low-maintenance means of waste management – particularly for contexts such as low- and middle-income countries.
  • Improve collecting, sorting, and pre-treating processes to enhance recovery of materials while minimizing degradation and contamination.
  • Improve energy efficiency of equipment such as glass furnaces by enhancing heat recovery; design or improve smart technology control systems.
  • Explore the use of artificial intelligence in separating waste streams.
  • Explore, discover, or improve new uses for recycled or recovered materials.
  • Create ways of tracing materials and verifying recycled materials, such as blockchain technology.
  • Engineer means of reducing the weight of materials in common products such as packaging and glass without sacrificing recyclability or functionality.
  • Improve chemical recycling of plastics – particularly solvent-based purification and de-polymerization – while maintaining low energy consumption and high utilization rates for the remaining waste.
  • Assess the climate impact of industrial-scale chemical recycling of plastics and its feasibility to supplement mechanical recycling.
  • Advance systems for collecting, sorting, and recycling metals, plastics, and glass contained in electronic devices.
  • Improve means of removing ink and adhesives from paper.
  • Improve waste handling techniques and environmental safeguards for the sludge produced during paper recycling; design products using the sludge.
  • Enhance systems for sorting plastics.
  • Research ways to improve recycling or reusing agricultural, construction, and thermoset plastics; find means to recycle polymers such as PVC.
  • Increase the performance of metal-sensing and -sorting equipment such as X-ray detection or spectroscopy; improve means of detecting external impurities, especially in steel scrap.
  • Design recycle-friendly alloys that can be used in a variety of ways and products.
  • Improve technology for sorting colored glass and detecting ceramics.
  • Improve liquefaction technology for plastics to reduce costs, minimize upgrading needs, and produce higher quality products.
  • Research and develop strategies for increasing recycling behavior.
  • Collect up-to-date data on recycled materials - particularly, on glass recycling. 
Communities, Households, and Individuals
  • Participate in local recycling programs, share your experience with your community, and educate others on how to recycle in your area.
  • Practice conscious consumerism; buy only what’s needed and avoid products that use excessive packaging or have a short lifespan.
  • Form stakeholder groups to monitor and help administer local recycling systems.
  • Reuse products, packaging, and materials as much as possible before recycling or disposing of them.
  • Use your power as a consumer to influence businesses to adopt practices that increase recycling.
  • Participate in or advocate for consultations with government officials, manufacturers, retailers, and the public to determine how best to design local recycling programs.
  • Advocate for ambitious public recycling goals to be integrated into local or national climate plans.
  • Advocate for bans on discarding recyclable materials to landfills and penalties for noncompliance.
  • Establish or advocate for container deposit programs to encourage recycling and reuse.
  • Advocate for bans on single use plastics such as shopping bags and water bottles.
  • Advocate for extended producer responsibility approaches that hold producers accountable for waste; demand standards for the traceability and labeling of materials in products to facilitate recycling.
  • Help safeguard against government corruption to avoid the illicit waste trade; create community monitoring programs to hold waste management companies and/or leaders accountable.
  • Create, support, or join education campaigns and/or public-private partnerships that facilitate collaboration on recycling.
Sources
Evidence Base

Consensus of effectiveness of recycling as a climate solution: High 

Recycling reduces solid waste, mitigates GHG emissions from landfilled solid waste, and offers significant savings in electricity and fuel consumption (Cudjoe et al., 2021; Kaza et al., 2018; Uekert et al., 2023). UNEP (2024) estimated that 2.1 Gt of municipal solid waste was generated globally in 2020, and projected that to increase to 3.8 Gt by 2050 if action is not taken. Although postconsumer waste contributes ~5% to total global GHG emissions (Oo et al., 2024), around 30–37% of global waste ends up in landfills with only 19% recovered through recycling and composting processes (Kaza et al., 2018; UNEP, 2024).

Three extensive reviews of industrial decarbonization identify four technologies either ready for near-term deployment or already achieving material impact across global industries: electrification, material efficiency, energy efficiency, and circularity driven by increased reuse and recycling (Daehn et al., 2022; Gailani et al., 2024; Rissman et al., 2020). The last includes recovery of the four waste subcategories considered in this solution, where metals and plastics rank among the top six most-produced human-made materials globally (BioCubes, n.d.).

Incorporating recycled metal scraps into manufacturing consumes 30–95% less energy than producing metals from raw feedstocks, where the primary metal sector emits approximately 10% of global GHG emissions from energy-intensive mining, smelting, and refining (Yokoi et al., 2022). Reprocessing 1 t of plastic waste can save up to 130 GJ of energy (Singh & Walker, 2024), and secondary production of plastics with a ~40% global collection rate could mitigate 160 Mt CO₂ /yr in 2050 (Daehn et al., 2022). Glass recycling offers 2–3% energy savings and a 5% reduction in CO₂ emissions from furnace fuel combustion for every 10% increase in cullet content in the melting batch (Baek et al., 2025; Glass Packaging Institute, n.d.; Miserocchi et al., 2024). 

We reiterate that GHG savings from recycling are highly sensitive to assumptions such as material quality, contamination rates, transportation distances, and market conditions. These factors introduce uncertainty because recycling benefits can vary depending on the efficiency of recycling systems in practice and market viability.

The results presented in this document summarize findings from 18 reports, 22 reviews and meta-analyses, 41 original studies, nine perspectives, two books, five web articles, and three datasets reflecting the most recent evidence for more than 200 countries. 

left_text_column_width
Appendix

Market Revenue Variability of Recyclables

left_text_column_width

Figure A1. The % revenue from recyclables compared to the % mass of each recyclable processed in an MRF. Values pertain to 2021 and extracted from Bradshaw et al. 2025.

Enable Download
Off

Current Adoption

In addition to applying global recycling rates of 59.3%, 9%, and 21% to the total waste generated for paper & cardboard, plastics, and glass, respectively (World Bank, 2018; Table A1), we also calculated total tonnage recycled using reported recycling percentages and total MSW tonnage for each country. Combined recycled percentages were consistently lower than the total combined percentage of metal, paper & cardboard, plastic, and glass waste in MSW. This indicates ample opportunity for increased recycling, even in regions where it is already well established. 

left_text_column_width

Table A1. Global recycling rates for each of the waste materials analyzed in this solution.

Waste material Global recycling rate (%) Reference
Metals 76a Charpentier Poncelet et al. (2022)
Paper and cardboard 59.3b European Paper Recycling Council (2020)
Plastics 9c OECD (2022b)
Glass 21d Ferdous et al. (2021)
Westbroek et al. (2021)

aEstimated using end-of-life recycling rates from Charpentier Poncelet et al. (2022), weighted by average annual global production for aluminum, copper, zinc, lead, iron, nickel, and manganese 2015–2019. We normalized weights against total metal production (1,619 Mt) to reflect each metal’s contribution to global scrap availability. This approach reflects the dominance of aluminum and iron in global scrap flows.

bBased on the average global paper recycling rate in 2018.

cBased on the global plastic recycling rate in 2019.

dBased on total glass produced in 2018 (a production-based recycling rate, meaning the share of recycled cullet used in total glass production), rather than on total glass waste generated (a waste-based recycling rate). We used this value due to a lack of consistent global data on postconsumer (end-of-life, old scrap) glass waste generation, although it may underestimate the recycling rate of actual discarded glass.

Left Text Column Width

Achievable Adoption

The World Bank (2018) also provided country-specific recycling rates and waste composition fractions of MSW for the materials we considered. Metals, paper and cardboard, plastics, and glass were reported as percentages of MSW by 169, 174, 173, and 168 countries, respectively. However, only 125 countries reported recycling rates, and these rates reflect combined MSW rather than material-specific recovery, so the dataset could not be used to estimate achievable adoption ranges for individual materials. 

Example Calculation of Achievable Adoption

For low achievable adoption, we assumed global recycling increases by 25% of the existing or most recently available rates or total recycled waste tonnage (i.e., recycling volumes) for all four materials except metals. For example, Delbari and Hof (2024) reported 2018 estimates of global glass recycling volumes at 27 Mt annually, so the Adoption – Low recycling rate was calculated at 34 Mt of glass waste recycled/yr. 

For high achievable adoption, we assume that global recycling rates increase by 50% of the existing or most recently available rates or total recycled waste tonnage (i.e., recycling volumes) for all four materials except metals. As an example, Houssini et al. (2025) reported global plastic production in 2022, from which 38 Mt were generated as secondary plastics from plastic mechanical recycling. Therefore, the high adoption recycling rate came out to 57 Mt of plastic waste recycled/yr.

Waste Sector Emissions

According to estimates by Ferdous et al. (2021), Ge et al. (2024), and Oo et al. (2024), the waste sector is responsible for 3.4–5% of total global GHG emissions, with solid waste management of landfills accounting for roughly two-thirds (Ge et al., 2024). In view of this and the energy-intensive production of raw materials, consistently improving recycling efficiency and rates can meaningfully mitigate the world’s carbon output.

left_text_column_width

Sources

Bradshaw, S. L., Aguirre-Villegas, H. A., Boxman, S. E., & Benson, C. H. (2025). Material recovery facilities (MRFs) in the United States: Operations, revenue, and the impact of scale. Waste Management193, 317–327. https://doi.org/10.1016/j.wasman.2024.12.008

Charpentier Poncelet, A., Helbig, C., Loubet, P., Beylot, A., Muller, S., Villeneuve, J., Laratte, B., Thorenz, A., Tuma, A., & Sonnemann, G. (2022). Losses and lifetimes of metals in the economy. Nature Sustainability5(8), 717–726. https://doi.org/10.1038/s41893-022-00895-8

Delbari, S. A., & Hof, L. A. (2024). Glass waste circular economy—Advancing to high-value glass sheets recovery using industry 4.0 and 5.0 technologies. Journal of Cleaner Production462, Article 142629. https://doi.org/10.1016/j.jclepro.2024.142629

European Paper Recycling Council. (2020). European declaration on paper recycling 2016-2020: Monitoring report 2019. Confederation of European Paper Industries. https://www.cepi.org/wp-content/uploads/2020/10/EPRC-Monitoring-Report_2019.pdf 

Ferdous, W., Manalo, A., Siddique, R., Mendis, P., Zhuge, Y., Wong, H. S., Lokuge, W., Aravinthan, T., & Schubel, P. (2021). Recycling of landfill wastes (tyres, plastics and glass) in construction – A review on global waste generation, performance, application and future opportunities. Resources, Conservation and Recycling173, Article 105745. https://doi.org/10.1016/j.resconrec.2021.105745

Ge, M., Friedrich, J., & Vigna, L. (2024, December 5). 4 charts explain greenhouse gas emissions by countries and sectors. World Resources Institute. https://www.wri.org/insights/4-charts-explain-greenhouse-gas-emissions-countries-and-sectors

Houssini, K., Li, J., & Tan, Q. (2025). Complexities of the global plastics supply chain revealed in a trade-linked material flow analysis. Communications Earth & Environment6(1), Article 257. https://doi.org/10.1038/s43247-025-02169-5

Oo, P. Z., Prapaspongsa, T., Strezov, V., Huda, N., Oshita, K., Takaoka, M., Ren, J., Halog, A., & Gheewala, S. H. (2024). The role of global waste management and circular economy towards carbon neutrality. Sustainable Production and Consumption52, 498–510. https://doi.org/10.1016/j.spc.2024.11.021

Organisation for Economic Co‑operation and Development. (2022b). Global plastics outlook: Economic drivers, environmental impacts and policy options [Report]. OECD Publishing. https://doi.org/10.1787/de747aef-en 

Westbroek, C. D., Bitting, J., Craglia, M., Azevedo, J. M. C., & Cullen, J. M. (2021). Global material flow analysis of glass: From raw materials to end of life. Journal of Industrial Ecology25(2), 333–343. https://doi.org/10.1111/jiec.13112

World Bank. (2018). What a waste global database: Country-level dataset (Last updated: 2024, June 4) [Data set]. https://datacatalogfiles.worldbank.org/ddh-published/0039597/3/DR0049199/country_level_data.csv

left_text_column_width
Updated Date
Subscribe to Air quality

Support Climate Action

Drawdown Delivered

Join the 85,000+ subscribers discovering how to drive meaningful climate action around the world! Every other week, you'll get expert insights, cutting-edge research, and inspiring stories.

Receive biweekly email newsletter updates from Project Drawdown. Unsubscribe at any time.