Use Corn-Based Ethanol

Green hydrogen is an emissions-free fuel produced by using renewable electricity to split water into hydrogen and oxygen. For aviation and long-haul trucking, green hydrogen can be used either directly in fuel cells or combusted in modified engines, offering a potential pathway to deep emissions reductions. It generates no CO₂ at the point of use, and when produced with clean power, life-cycle emissions can be near zero (except for leaks that have GWP). However, green hydrogen faces major barriers in terms of energy intensity, infrastructure needs, cost, and vehicle redesign. We conclude that Mobilize Green Hydrogen for Aviation and Trucking is “Worth Watching” due to its high potential impact, but a lack of readiness for widespread deployment.
Based on our analysis, green hydrogen holds long-term potential in sectors that are difficult to decarbonize, particularly long-haul aviation and freight trucking. It is technologically feasible, but currently hampered by high costs, severe infrastructure gaps, and limited commercial readiness. While it is unlikely to be deployed at scale this decade, green hydrogen is “Worth Watching” as innovation and policy evolve.
Plausible | Could it work? | Yes |
---|---|---|
Ready | Is it ready? | No |
Evidence | Are there data to evaluate it? | Yes |
Effective | Does it consistently work? | Yes |
Impact | Is it big enough to matter? | Yes |
Risk | Is it risky or harmful? | No |
Cost | Is it cheap? | No |
Green hydrogen is a clean, emissions-free liquid fuel produced through electrolysis powered by renewable energy that can replace fossil fuels in some transportation sectors. Unlike hydrogen from fossil fuels (gray or blue hydrogen), green hydrogen generates no CO₂ emissions during production. For transportation, green hydrogen can be used in two main ways: (1) in fuel cell electric vehicles (FCEVs) to generate electricity onboard and power electric motors, or (2) combusted in specially designed hydrogen combustion engines or turbines. For aviation, liquid hydrogen may fuel aircraft engines directly, be used to produce synthetic jet fuels, or power fuel cell airplanes. For long-haul trucking, hydrogen can replace diesel by powering fuel cell trucks, which offer long range and fast refueling.
Hydrogen combustion engines and fuel cells are currently in use and have been shown to reduce emissions compared to fossil fuels. Green hydrogen is being produced and used in pilot projects and select transportation initiatives globally. For aviation, aircraft manufacturers, such as Airbus, have hydrogen-powered planes in development, with test flights expected by 2030, but it could be several decades before they are put into commercial use. In heavy-duty trucking, several major automakers, including Toyota and Hyundai, have already commercialized hydrogen trucks in limited markets, such as China and Japan.
Green hydrogen is one of the few near-zero-emission fuels with the potential to decarbonize aviation and long-haul trucking, where battery-electric solutions currently face range and weight constraints. If produced using abundant, low-cost renewables, green hydrogen could significantly cut emissions in sectors responsible for nearly 15% of global transport emissions. In aviation, hydrogen-based fuels like e-kerosene could save around five million tons of CO₂ per year in Europe by 2030. In trucking, hydrogen fuel cell vehicles are beginning to roll out but remain a niche market. Looking ahead, hydrogen has strong potential: by 2050, it could meet up to 30% of energy demand in long-haul trucking and significantly reduce aviation emissions, particularly for short- and medium-haul flights, but it will have to compete with advances in battery-electric options. Hydrogen enables fast refueling and long range, making it a strong candidate for freight and intercity applications. Additionally, investment in green hydrogen infrastructure could unlock cross-sectoral benefits, supporting decarbonization of industry, power, and potentially heating. As electrolyzer costs fall and renewable power expands, the economics and emissions profile of green hydrogen are likely to improve.
Despite its promise, green hydrogen for transport faces significant technical, economic, and logistical hurdles. Electrolysis is energy-intensive, and green hydrogen production is still expensive (US$300–600/t CO₂ avoided for trucking and US$500–1500/t CO₂ for aviation), making it much more costly than diesel or jet fuel but comparable to sustainable aviation fuel today. It is also less energy-dense by volume than other fuels, requiring complex transportation and storage (especially for aviation, where cryogenic tanks are needed) and limiting payload capacity. In addition to producing contrails, hydrogen leakage, though not a GHG, can contribute to indirect global warming effects. There are also safety concerns related to flammability and explosiveness, and a complete overhaul of transportation and refueling infrastructure is needed for both aviation and trucking. Green hydrogen requires entirely new infrastructure for production, storage, and distribution, including refueling stations for trucks and specialized handling systems for liquid or compressed hydrogen at each airport the airplane uses. The absence of this infrastructure creates a major barrier to adoption in aviation and long-haul trucking, where fuel logistics, safety standards, and scale are critical for commercial viability. Hydrogen remains a niche fuel due to its low energy density per volume, the need for cryogenic storage in aviation, limited refueling infrastructure, and high cost. While technically viable, major deployment for aviation and trucking is still nascent. Without a clear business case or strong policy incentives, uptake will remain limited in the near term.
Clean Hydrogen Partnership. (2020). Hydrogen-powered aviation. https://www.clean-hydrogen.europa.eu/media/publications/hydrogen-powered-aviation_en
Clean Hydrogen Partnership. (2020). Study on Fuel Cells Hydrogen Trucks. https://www.clean-hydrogen.europa.eu/media/publications/study-fuel-cells-hydrogen-trucks_en
Galimova, T., Fasihi, M., Bogdanov, D., & Breyer, C. (2023). Impact of international transportation chains on cost of green e-hydrogen: Global cost of hydrogen and consequences for Germany and Finland. Applied Energy, 347, 121369. https://doi.org/10.1016/j.apenergy.2023.121369
IEA. (2019). The Future of Hydrogen – Analysis. IEA. https://www.iea.org/reports/the-future-of-hydrogen
IPCC. (2022). IPCC Sixth Assessment Report Working Group III: Mitigation of Climate Change, Chapter 10: Transport. Retrieved May 28, 2025, from https://www.ipcc.ch/report/ar6/wg3/chapter/chapter-10/
IRENA. (2022). Green Hydrogen for Industry: A Guide to Policy Making. https://www.irena.org/publications/2022/Mar/Green-Hydrogen-for-Industry
Li, Y., & Taghizadeh-Hesary, F. (2022). The economic feasibility of green hydrogen and fuel cell electric vehicles for road transport in China. Energy Policy, 160, 112703. https://doi.org/10.1016/j.enpol.2021.112703
McKinsey. (2023). Global Energy Perspective 2023: Hydrogen outlook. https://www.mckinsey.com/industries/oil-and-gas/our-insights/global-energy-perspective-2023-hydrogen-outlook
Sustainable aviation fuel (SAF) is a low-carbon alternative to conventional jet fuel. It is made from renewable feedstocks, including waste oils, agricultural residues, and renewable electricity. SAF can substantially reduce life-cycle GHG emissions and is already in use in commercial flights at low blending levels. Advantages include its compatibility with existing aircraft and fueling infrastructure, its potential to reduce emissions for long-haul aviation, and its ability to reduce emissions from organic waste streams. Disadvantages include limited feedstock availability, high costs, variable climate benefits depending on production methods, and challenges in scaling up supply to meet global demand. We conclude that Deploy Sustainable Aviation Fuel is “Worth Watching” as part of a broader portfolio of aviation decarbonization strategies.
Based on our analysis, sustainable aviation fuel (SAF) is a promising climate mitigation solution for reducing emissions in the aviation sector, particularly for long-haul flights where few alternatives exist. However, it is not yet cost-effective and faces significant challenges to scaling production due to severe feedstock restraints, high risks to land, and the need to meet robust sustainability standards. Based on our assessment, SAF is a climate solution that is “Worth Watching."
Plausible | Could it work? | Yes |
---|---|---|
Ready | Is it ready? | Yes |
Evidence | Are there data to evaluate it? | Yes |
Effective | Does it consistently work? | Yes |
Impact | Is it big enough to matter? | Yes |
Risk | Is it risky or harmful? | No |
Cost | Is it cheap? | No |
Sustainable aviation fuel (SAF) is a low-carbon alternative to conventional jet fuel that reduces life-cycle greenhouse gas emissions from fuel production by using only non-petroleum feedstocks such as waste oils, agricultural residues, and municipal solid waste. It is usually produced using renewable electricity and captured CO₂. SAF is produced through chemical processes that convert these feedstocks into fuels that meet the same technical standards as fossil-based jet fuel, allowing them to be blended and used in existing aircraft engines and fueling infrastructure without modification. All SAFs approved by ASTM International, the body that sets fuel standards for aviation, are certified only for use in blends. No SAF is yet certified for 100% use in commercial aircraft (also known as “neat SAF”) for passenger flights.
The basic idea of sustainable aviation fuel is technologically sound and supported by decades of research into low-carbon fuel alternatives for aviation. Multiple SAF production pathways – such as hydroprocessed esters and fatty acids (HEFA), Fischer-Tropsch synthesis (FT), and alcohol-to-jet (ATJ) – have been approved by international aviation standards bodies, and several have been demonstrated at commercial scale. Real-world use of SAF is already underway: over 450,000 commercial flights have flown using SAF blends as of early 2025. SAF is currently being supplied at major airports in Europe, the United States, and Asia, with dozens of airlines integrating SAF into operations or entering offtake agreements. While current production remains limited (less than 0.5% of global jet fuel supply), government mandates, tax credits, and airline demand are driving the need for rapid scale-up. SAF is considered one of the most evidence-backed and immediately deployable climate solutions for reducing aviation emissions.
Sustainable aviation fuel offers several compelling advantages that make it a potential pathway for reducing aviation emissions. By reducing emissions 60-70% per ton compared to jet fuel, SAF could potentially avoid 0.1–0.2 Gt CO₂/yr by 2050. It can also reduce contrails. SAF can be used in existing aircraft and fueling systems without requiring new infrastructure or major redesigns. This makes it one of the few ready-to-deploy solutions for long-haul and international flights, which are difficult to electrify or replace. SAF production from waste oils and residues can also deliver additional benefits, such as reduced methane emissions from organic waste streams and improved waste management. SAF offers a potentially scalable, technically feasible route to emissions reductions in a sector with few alternatives. Growing policy support, rising carbon prices, and airline demand are accelerating development.
Despite its promise, sustainable aviation fuel faces significant limitations, risks, and challenges that could constrain its impact and scalability. First, supply is a critical constraint. Due to limited feedstock availability, SAF is highly unlikely to be able to meet the ambitious 2050 goals set by ICAO, ReFuelEU Aviation, and other industry organizations, associations, and governmental institutions. This means that SAF must be combined with other strategies, like demand reduction and new aircraft technologies, to achieve full decarbonization. There are also major ecological and social risks, including competition for land and feedstocks that could displace food production or degrade ecosystems, as well as unequal access to the benefits of SAF deployment. Scaling synthetic SAF (e-fuels) requires vast amounts of clean electricity, water, and CO₂, raising concerns about resource use and trade-offs with other sectors. Another major concern is cost. Current SAF prices are substantially higher than fossil jet fuel, ranging from US$300 to over US$1,500 per t CO₂ avoided, depending on the pathway. Without strong policy support, this cost premium poses a barrier to widespread adoption. Additionally, life-cycle emissions reductions vary widely depending on the feedstock and production pathway. While some SAFs (e.g., e-fuels using renewable electricity) can achieve near-zero emissions, others, especially those using food crops or poorly regulated waste streams, may deliver modest or uncertain climate benefits. Measurement, reporting, and verification of actual emissions reductions can be complex, especially when land-use change, indirect emissions, or supply chain impacts are involved. SAF combustion still contributes to climate impacts from contrails (albeit reduced compared to jet fuel), nitrogen oxides, and soot.
Alternative Fuels Data Center. (n.d.). Sustainable Aviation Fuel. https://afdc.energy.gov/fuels/sustainable-aviation-fuel
Bardon, P., & Massol, O. (2025). Decarbonizing aviation with sustainable aviation fuels: Myths and realities of the roadmaps to net zero by 2050. Renewable and Sustainable Energy Reviews, 211, 115279. https://doi.org/10.1016/j.rser.2024.115279
Boyles, H. (2022). Climate-Tech to Watch: Sustainable Aviation Fuel. https://itif.org/publications/2022/10/17/climate-tech-to-watch-sustainable-aviation-fuel
Buchholz, N., Fehrm, B., Kaestner, L., Uhrenbacher, S., & Vesco, M. (2023). Study: How To Accelerate Aviation’s CO₂ Reduction | Aviation Week Network. https://aviationweek.com/air-transport/aircraft-propulsion/study-how-accelerate-aviations-co2-reduction
Bullerdiek, N., Neuling, U., & Kaltschmitt, M. (2021). A GHG reduction obligation for sustainable aviation fuels (SAF) in the EU and in Germany. Journal of Air Transport Management, 92, 102020. https://doi.org/10.1016/j.jairtraman.2021.102020
EASA. (2025). Sustainable Aviation Fuels | EASA. https://www.easa.europa.eu/en/domains/environment/eaer/sustainable-aviation-fuels
European Commission. (n.d.). ReFuelEU Aviation. ReFuelEU Aviation - European Commission. https://transport.ec.europa.eu/transport-modes/air/environment/refueleu-aviation_en
ICAO. (n.d.). LTAG Costs and Investments. ICAO. https://www.icao.int/environmental-protection/LTAG/Pages/LTAG-and-Fuels.aspx
ICAO. (n.d.). Sustainable Aviation Fuels. https://www.icao.int/environmental-protection/pages/SAF.aspx
IEA. (2025). Aviation. IEA. https://www.iea.org/energy-system/transport/aviation
IATA. (2024). IATA - Disappointingly Slow Growth in SAF Production. https://www.iata.org/en/pressroom/2024-releases/2024-12-10-03/
IATA. (2025). IATA Releases SAF Accounting and Reporting Methodology. https://www.iata.org/en/pressroom/2025-releases/2025-01-31-01/
Michaga, M. F. R., Michailos, S., Hughes, K. J., Ingham, D., & Pourkashanian, M. (2021). 10—Techno-economic and life cycle assessment review of sustainable aviation fuel produced via biomass gasification. In R. C. Ray (Ed.), Sustainable Biofuels (pp. 269–303). Academic Press. https://doi.org/10.1016/B978-0-12-820297-5.00012-8
O’Malley, J., & Baldino, C. (2024). Availability of biomass feedstocks in the European Union to meet the 2035 ReFuelEU Aviation SAF target. International Council on Clean Transportation. https://theicct.org/publication/low-risk-biomass-feedstocks-eu-refueleu-aug24/
Prussi, M., Lee, U., Wang, M., Malina, R., Valin, H., Taheripour, F., Velarde, C., Staples, M. D., Lonza, L., & Hileman, J. I. (2021). CORSIA: The first internationally adopted approach to calculate life-cycle GHG emissions for aviation fuels. Renewable and Sustainable Energy Reviews, 150, 111398. https://doi.org/10.1016/j.rser.2021.111398
Rojas-Michaga, M. F., Michailos, S., Cardozo, E., Akram, M., Hughes, K. J., Ingham, D., & Pourkashanian, M. (2023). Sustainable aviation fuel (SAF) production through power-to-liquid (PtL): A combined techno-economic and life cycle assessment. Energy Conversion and Management, 292, 117427. https://doi.org/10.1016/j.enconman.2023.117427
Shahriar, M. F., & Khanal, A. (2022). The current techno-economic, environmental, policy status and perspectives of sustainable aviation fuel (SAF). Fuel, 325, 124905. https://doi.org/10.1016/j.fuel.2022.124905
Voigt, C., Kleine, J., Sauer, D., Moore, R. H., Bräuer, T., Le Clercq, P., Kaufmann, S., Scheibe, M., Jurkat-Witschas, T., Aigner, M., Bauder, U., Boose, Y., Borrmann, S., Crosbie, E., Diskin, G. S., DiGangi, J., Hahn, V., Heckl, C., Huber, F., … Anderson, B. E. (2021). Cleaner burning aviation fuels can reduce contrail cloudiness. Communications Earth & Environment, 2(1), 1–10. https://doi.org/10.1038/s43247-021-00174-y
Watson, M. J., Machado, P. G., da Silva, A. V., Saltar, Y., Ribeiro, C. O., Nascimento, C. A. O., & Dowling, A. W. (2024). Sustainable aviation fuel technologies, costs, emissions, policies, and markets: A critical review. Journal of Cleaner Production, 449, 141472. https://doi.org/10.1016/j.jclepro.2024.141472
World Economic Forum. (2021). Clean Skies for Tomorrow: Sustainable Aviation Fuels as a Pathway to Net-Zero Aviation. World Economic Forum. https://www3.weforum.org/docs/WEF_Clean_Skies_Tomorrow_SAF_Analytics_2020.pdf
Yoo, E., Lee, U., & Wang, M. (2022). Life-Cycle Greenhouse Gas Emissions of Sustainable Aviation Fuel through a Net-Zero Carbon Biofuel Plant Design. ACS Sustainable Chemistry & Engineering, 10(27), 8725–8732. https://doi.org/10.1021/acssuschemeng.2c00977
Zahid, I., Nazir, M. H., Chiang, K., Christo, F., & Ameen, M. (2024). Current outlook on sustainable feedstocks and processes for sustainable aviation fuel production. Current Opinion in Green and Sustainable Chemistry, 49, 100959. https://doi.org/10.1016/j.cogsc.2024.100959
Electric cars are four-wheeled passenger cars that run on electricity, usually from the electricity grid and stored in onboard batteries (i.e., not including fuel cell electric cars). This definition includes electric pickup trucks, motorhomes, and other such vehicles. It does not include two-wheeled vehicles or hybrid cars (which combine an electric motor with a gasoline or diesel engine). It also does not include freight and commercial vehicles, such as electric heavy trucks, buses, and ambulances. We define Mobilizing Electric Cars as replacing fossil fuel–powered cars (i.e., those powered by internal combustion engines) with electric equivalents, as well as building out the necessary infrastructure (especially charging stations) to support them.
Electric cars provide the same functionality as fossil fuel–powered cars, but use electric motors rather than fuel-burning engines. The energy for the motors comes from an onboard battery, which is normally charged using electricity from the grid.
Electric cars have no direct tailpipe emissions, since electric motors do not burn fuel to function. The grid electricity used to charge their batteries may have come from fossil fuel-burning power plants, meaning electric cars are not entirely free of direct emissions. However, in most electrical grids, even those that mainly generate electricity from fossil fuels, electric cars usually still produce fewer emissions per pkm than fossil fuel–powered cars. This is for three reasons. First, large, fixed power plants and efficient electric grids can convert fossil fuels into useful energy more efficiently than smaller, mobile internal combustion engines in cars. In extreme cases, such as grids powered entirely by coal, this might not be the case, particularly if the grid has a lot of transmission and distribution losses. Second, the powertrain of an electric car delivers electricity from the battery to the wheels much more efficiently than the powertrain of a fossil fuel–powered car, which wastes much more energy as heat (International Transport Forum, 2020; Mofolasayo, 2023; Verma et al., 2022). Third, electric cars’ powertrains enable regenerative braking, where the kinetic energy of the car’s motion is put back into the battery when the driver brakes (Yang et al., 2024).
Electric cars reduce emissions of CO₂, methane, and nitrous oxide to the atmosphere by replacing fuel-powered cars, which emit these gases from their tailpipes.
APEC. (2024). Connecting Traveler Choice with Climate Outcomes: Innovative Greenhouse Gas Emissions Reduction Policies and Practices in the APEC Region through Traveler Behavioral Change. https://www.apec.org/publications/2024/09/connecting-traveler-choice-with-climate-outcomes--innovative-greenhouse-gas-emissions-reduction-policies-and-practices-in-the-apec-region-through-traveler-behavioral-change
IEA. (2024). Global EV Outlook 2024. International Energy Agency. https://www.iea.org/reports/global-ev-outlook-2024
International Council on Clean Transportation. (2024). Clearing the air: Why EVs can outperform conventional vehicles in freezing temperatures. International Council on Clean Transportation. https://theicct.org/clearing-the-air-why-evs-can-outperform-conventional-vehicles-in-freezing-temperatures-oct24/
Peters, D. R., Schnell, J. L., Kinney, P. L., Naik, V., & Horton, D. E. (2020). Public health and climate benefits and trade‐offs of U.S. vehicle electrification. GeoHealth, 4, e2020GH000275.
https://doi.org/10.1029/2020GH000275
Yoder, K. (2023, June 14). The environmental disaster lurking beneath your neighborhood gas station. Grist. https://grist.org/accountability/gas-stations-underground-storage-tank-leaks-environmental-disaster/
Cameron Roberts, Ph.D.
Ruthie Burrows, Ph.D.
James Gerber, Ph.D.
Daniel Jasper
Heather Jones, Ph.D.
Heather McDiarmid, Ph.D.
Alex Sweeney
Aiyana Bodi
James Gerber, Ph.D.
Hannah Henkin
Jason Lam
Ted Otte
Every million pkm shifted from fossil fuel–powered cars to electric cars reduces 48.52 t CO₂‑eq on a 100-yr basis (Table 1), or 49.13 t CO₂‑eq on a 20-yr basis.
We found this by collecting data on electricity consumption for a range of electric car models (Electric Vehicle Database, 2024) and multiplying it by the global average emissions per kWh of electricity generation. Fossil fuel–powered cars emit 115.3 t CO₂‑eq/pkm on a 100-yr basis (116.4 t CO₂‑eq/pkm on a 20-yr basis). Electric cars already have lower emissions in countries with large shares of renewable, nuclear, or hydropower generation in their electricity grids (International Transport Forum, 2020; Verma et al., 2022).
These data come disproportionately from North America and Europe, and, notably, leave out China, which has made major progress on electric cars in recent years and has many of its own makes and models.
Electric cars today are disproportionately used in high- and upper-middle-income countries, whose electricity grids emit fewer GHG emissions than the global average per unit of electricity generated (IEA, 2024). Electric cars in use today reduce more emissions on average than the figure we have calculated.
Electric cars have higher embodied emissions than fossil fuel–powered cars, due to the GHG-intensive process of manufacturing batteries. This gives them a carbon payback period which ranges from zero to over 10 years (Dillman et al., 2020; Ren et al., 2023).
Table 1. Effectiveness at reducing emissions.
Unit: t CO₂‑eq/million pkm
25th percentile | 38.95 |
mean | 49.54 |
median (50th percentile) | 48.52 |
75th percentile | 62.82 |
Shifted from fossil fuel–powered cars to electric cars, 100-yr basis.
Including purchase price, financing, fuel and electricity costs, maintenance costs, and insurance, electric cars cost on average US$0.05 less per pkm (US$49,442.19/million pkm) than fuel-powered cars. This is based on a population-weighted average of the cost differential between electric and fossil fuel–powered cars in seven countries: Japan, South Korea, China, the United States, France, Germany, and the United Kingdom (Nickel Institute, 2021b, 2021c, 2021a).
While this analysis found that electric cars are less expensive than fossil fuel–powered cars almost everywhere, the margin is often quite small. The difference is less than US$0.01/pkm (US$10,000/million pkm) in South Korea, the United States, and Germany. In some markets, electric cars are more expensive per pkm than fossil fuel–powered cars (IEA, 2022).
This amounts to savings of US$1,019/t CO₂‑eq on a 100-yr basis (Table 2), or US$1,006/t CO₂‑eq avoided emissions on a 20-yr basis).
Our analysis does not include costs that are the same for both electric and fossil fuel–powered cars, including taxes, insurance costs, and public costs of building road infrastructure.
Table 2. Cost per unit climate impact.
Unit: 2023 US$/t CO₂‑eq, 100-yr basis
median | -1,019 |
For every doubling in electric car production, costs decline by approximately 23% (Table 3; Goetzel & Hasanuzzaman, 2022; Kittner et al., 2020; Weiss et al., 2015).
In addition to manufacturing improvements and economies of scale, this reflects rapid technological advancements in battery production, which is a significant cost component of an electric powertrain (Weiss et al., 2015).
Table 3. Learning rate: drop in cost per doubling of the installed solution base.
Unit: %
25th percentile | 23.00 |
mean | 22.84 |
median (50th percentile) | 23.00 |
75th percentile | 24.00 |
Speed of action refers to how quickly a climate solution physically affects the atmosphere after it is deployed. This is different from speed of deployment, which is the pace at which solutions are adopted.
At Project Drawdown, we define the speed of action for each climate solution as gradual, emergency brake, or delayed.
Mobilize Electric Cars is a GRADUAL climate solution. It has a steady, linear impact on the atmosphere. The cumulative effect over time builds as a straight line.
The effectiveness of electric cars in mitigating GHG emissions is critically dependent on the emissions associated with electricity production. In electricity grids dominated by fossil fuels, electric cars have far higher emissions than in jurisdictions with low-emission electricity generation (International Transport Forum, 2020; IPCC, 2022; Milovanoff et al., 2020).
Electric car adoption faces a major obstacle in the form of constraints on battery production. While electric car battery production is being aggressively upscaled (IEA, 2024), building enough batteries to replace a significant fraction of fossil fuel–powered cars is an enormous challenge and will likely slow down a transition to electric cars, even if there is very high consumer demand (Milovanoff et al., 2020).
Approximately 28 million electric cars are in use worldwide (IEA, 2024). This corresponds to about 819,000 million pkm traveled by electric car worldwide each year (Table 4). We assume that all of this travel would be undertaken by a fossil fuel–powered car if the car’s occupants did not use an electric car. Adoption is much higher in some countries, such as Norway, where the share of electric cars was 29% in 2023.
To convert the IEA’s electric car estimates into pkm traveled, we needed to determine the average passenger-distance that each passenger car travels per year. Using population-weighted data from several different countries, the average car carries 1.5 people and travels an average of 29,250 pkm/yr. Multiplying this number by the number of electric cars in use gives the total travel distance shift from fossil fuel–powered cars to electric cars.
Table 4. Current (2024) adoption level.
Unit: million pkm/yr
Population-weighted mean | 818,900 |
Implied travel shift from fossil fuel-powered cars to electric cars.
Globally, about 104 billion pkm are displaced from fossil fuel–powered cars by electric cars every year (Table 5). The number of new electric cars purchased each year is growing at an average rate of over 10% (Bloomberg New Energy Finance, 2024; IEA, 2024), although purchase rates have declined slightly from record highs between 2020–2022. Global purchases of electric cars are still increasing by around 3.6 million cars/yr. This is based on globally representative data (Bloomberg New Energy Finance, 2024; IEA, 2024).
Despite this impressive rate of growth, electric cars still have a long way to go before they replace a large percentage of the more than 2 billion cars currently driven (WHO, 2024).
Table 5. 2023-2024 adoption trend.
Unit: million pkm/yr
Median, or population-weighted mean | 104,000 |
Implied travel shift from fossil fuel-powered cars to electric cars.
The adoption ceiling for electric cars is equal to the total passenger-distance driven by the more than 2 billion cars worldwide (WHO, 2024). Using a population-weighted mean of the average distance (in pkm) traveled per car annually, this translates to about 59 trillion pkm (Table 6).
Replacing every single fossil fuel–powered car with an electric car would require an enormous upscaling of electric car production capacity, rapid development of charging infrastructure, cost reductions to increase affordability, and technological improvements to improve suitability for more kinds of drivers and trips. It would also face cultural obstacles from drivers who are attached to fossil fuel–powered cars (Roberts, 2022).
Table 6. Adoption ceiling.
Unit: million pkm/yr
Median, or population-weighted mean | 59,140,000 |
Implied travel shift from fossil fuel-powered cars to electric cars.
The achievable adoption of electric car travel ranges from about 26–47 trillion pkm displaced from fossil fuel–powered cars (Table 7).
Various organizations have produced forecasts for electric car adoption. These are not assessments of feasible adoption per se; they are instead trying to predict likely rates of adoption, given various assumptions about the future (Bloomberg New Energy Finance, 2024; IEA, 2024). However, they are useful in that they take a large number of different variables into account to make their estimates. To convert these estimates of future likely adoption into estimates of the achievable adoption range, we apply some assumptions to the numbers in the scenario projections.
To find a high rate of electric car adoption, we assume that every country could reach the highest rate of adoption projected to occur for any country. Bloomberg New Energy Finance’s (2024) Economic Transition scenario predicts that Norway will reach an 80% electric vehicle stock share by 2040. We therefore set our high adoption rate at 80% worldwide. This corresponds to 1,617 million total electric cars in use, or 47 trillion pkm traveled by electric car. An important caveat is that with a global supply constraint in the production of electric car batteries, per-country adoption rates are somewhat zero-sum. Every electric car purchased in Norway is one that cannot be purchased elsewhere. Therefore, for the whole world to achieve an 80% electric car stock share, global electric car and battery production would have to increase radically. While this might be possible due to technological improvements or radical increases in investment, it should not be taken for granted.
To identify a lower feasible rate of electric car adoption, we simply take the highest estimate for global electric car adoption. Bloomberg’s Economic Transition scenario predicts 44% global electric car adoption by 2050. This corresponds to 890 million electric cars, or 26 trillion pkm.
Table 7. Range of achievable adoption levels.
Unit: million pkm/yr.
Current Adoption | 818,900 |
Achievable – Low | 26,020,000 |
Achievable – High | 47,310,000 |
Adoption ceiling (physical limit) | 59,140,000 |
Electric cars are currently displacing 0.040 Gt CO₂‑eq of GHG emissions from the transportation system on a 20-yr basis (Table 8), or 0.040 Gt CO₂‑eq on a 100-yr basis.
If electric cars reach 44% of the global car stock share by 2040, as Bloomberg (2024) projects, without any change in the total number of cars on the road, they will displace 1.263 Gt CO₂‑eq GHG emissions on a 100-yr basis (1.279 Gt CO₂‑eq on a 20-yr basis).
If electric cars globally reach 80% of car stock share, as Bloomberg projects might happen in Norway by 2040, they will displace 2.296 Gt CO₂‑eq GHG emissions on a 100-yr basis (2.325 Gt CO₂‑eq on a 20-yr basis).
If electric cars replace 100% of the global car fleet, they will displace 2.870 Gt CO₂‑eq GHG emissions on a 100-yr basis (2.906 Gt CO₂‑eq on a 20-yr basis).
These numbers are based on the present-day average emissions intensity from electrical grids in countries with high rates of electric car adoption. If more clean energy is deployed on electricity grids, the total climate impact from electric cars will increase considerably.
Table 8. Climate impact at different levels of adoption.
Unit: Gt CO₂‑eq/yr, 100-yr basis
Current Adoption | 0.040 |
Achievable – Low | 1.263 |
Achievable – High | 2.296 |
Adoption ceiling (physical limit) | 2.870 |
The adoption of electric cars reduces emissions of air pollutants, including sulfur oxides, sulfur dioxide, and nitrous oxides, and especially carbon monoxide and volatile organic compounds. It has a smaller impact on particulate emissions (Requia et al., 2018). Some air pollution reductions are limited (particularly PM and ozone) due to heavier electric cars and pollution from brakes, tires, and wear on the batteries (Carey, 2023; Jones, 2019).
Substituting electric car charging points for gas stations can eliminate soil and water pollution from leaking underground gas tanks (Yoder, 2023).
Since electric cars do not have tailpipe emissions, they can mitigate traffic-related air pollution, which is associated with asthma, lung cancer, increased emergency department visits for respiratory disease, and increased mortality (Anenberg et al., 2019; Guarnieri & Balmes, 2014; Pan et al., 2023; Pennington et al., 2024; Requia et al., 2018; Szyszkowicz et al., 2018). Transitioning to electric cars can reduce exposure to air pollution, improve health, and prevent premature mortality (Garcia et al., 2023; Larson et al., 2021; Peters et al., 2020).
The health benefits of adopting electric cars vary spatially and partly depend upon how communities generate electricity (Choma et al., 2020), but there is evidence that they have improved health. A study in California found a reduction in emergency department visits in ZIP codes with an increase in zero-emissions cars (Garcia et al., 2023). By 2050, projections estimate that about 64,000–167,000 deaths could be avoided by adopting electric cars (Larson et al., 2021).
Communities rich in racial and ethnic minorities tend to be located near highways and major traffic corridors and so are disproportionately exposed to air pollution (Kerr et al., 2021). Transitioning to electric cars could improve health in marginalized urban neighborhoods that are located near highways, industry, or ports (Pennington et al., 2024). These benefits depend upon an equitable distribution of electric cars and infrastructure to support the adoption of electric cars (Garcia et al., 2023). Low-income households may not see the same savings from an electric car due to the cost and stability of electricity prices and distance to essential services (Vega-Perkins et al., 2023)
Adopting electric cars can reduce a household’s energy burden, or the proportion of income spent on residential energy (Vega-Perkins et al., 2023). About 90% of United States households that use a car could see a reduction in energy burden by transitioning to an electric car. Money spent to charge electric cars is more likely to stay closer to the local community where electricity is generated, whereas money spent on fossil fuels often benefits oil-producing regions. This benefits local and national economies by improving their trade balance (Melaina et al., 2016).
Mining minerals necessary to produce electric car batteries carries environmental and social risks. This has been associated with significant harms, particularly in lower-income countries that supply many of these minerals (Agusdinata et al., 2018; Sovacool, 2019).
Electric cars might also pose additional safety risks due to their higher weight, which means they have longer stopping distances and can cause more significant damage in collisions and to pedestrians and cyclists (Jones, 2019). This risk includes dual-motor electric cars that incorporate two electric motors – one for the front axle and one for the rear – providing all-wheel drive (AWD) capabilities. The addition of a second motor increases the vehicle's weight and complexity, which can lead to higher energy consumption and reduced overall efficiency. Moreover, the increased manufacturing costs associated with dual-motor systems can result in higher purchase prices for consumers (Nguyen et al., 2023). However, this configuration enhances vehicle performance, offering improved acceleration, traction, and handling, particularly in adverse weather conditions which are valued by some consumers.
Electric car batteries can potentially be used as stationary batteries for use as energy storage to balance electrical grids, either through vehicle-to-grid (V2G) technology or with degraded electric car batteries being installed in stationary battery farms as a form of reuse (Ravi & Aziz, 2022).
The effectiveness of electric cars in reducing GHG emissions increases as electricity grids become cleaner, since lower-carbon electricity further reduces the emissions associated with car charging.
Electric cars compete with heat pumps for electricity. Installing both heat pumps and electric cars could strain the electric grid’s capacity (Fakhrooeian et al., 2024).
Scaling up the production of electric cars requires more mining of critical minerals, which could affect ecosystems that are valuable carbon sinks (Agusdinata et al., 2018).
Getting travelers onto bicycles, sidewalks, public transit networks, or smaller electric vehicles (such as electric bicycles) provides a greater climate benefit than getting them into electric cars. There is an opportunity cost to deploying electric cars because those resources could otherwise be used to support these more effective solutions (APEC, 2024).
1 million passenger-kilometers
CO₂, CH₄, N₂O
Electric car batteries are currently quite emissions-intensive to produce, resulting in high embodied emissions. While the embodied emissions are higher for electric cars than fossil fuel–powered cars, the results are mixed when coupling these with operating emissions. Dillman et al.’s (2020) review of the literature on this topic found that producing the average battery-electric car emits 63% more GHG emissions than the average gasoline-powered car, and 77% more GHG emissions than the average diesel-powered car. Taking their lower tailpipe emissions into account, this gives them a GHG payback period of zero to more than 10 years. In some cases, the emissions payback period is longer than the expected lifespan of the electric car, meaning it will have higher life cycle GHG emissions than a comparable gasoline or diesel-powered car. However, the ITF (2020) found that the lifetime emissions from manufacturing, operation, and infrastructure are lower for electric cars. All of these studies relied on assumptions, including the type of car, size of battery, electricity grid, km/yr, and lifetime.
There is some criticism against any solution that advocates for car ownership, contending that the focus should be on solutions such as Enhance Public Transit that reduce car ownership and usage. Jones (2019) noted “there is little evidence to suggest that EVs can offer the universal solution that global governments are seeking,” and that efforts to popularize electric cars “may be better directed at creating more efficient public transport systems, rather than supporting personal transportation, if the significant health disbenefits of car use during the past 150 years are to be in any way reduced.”
Milovanoff et al. (2020) offered similar criticism: “Closing the mitigation gap solely with EVs would require more than 350 million on-road EVs (90% of the fleet), half of national electricity demand, and excessive amounts of critical materials to be deployed in 2050. Improving [the] average fuel consumption of fossil fuel–powered vehicles, with stringent standards and weight control, would reduce the requirement for alternative technologies, but is unlikely to fully bridge the mitigation gap. There is therefore a need for a wide range of policies that include measures to reduce vehicle ownership and usage.”
Allocating the limited global battery supply to privately owned electric cars might undermine the deployment of other solutions that also require batteries, but are more effective at avoiding GHG emissions (Castelvecchi, 2021). These could include electric buses, electric rail, and electric bicycles.
Cars are the largest source of vehicle emissions, which are shown here for urban areas.
Kott, T., Foster, K., Villafane-Delgado, M., Loschen, W., Sicurello, P., Ghebreselassie, M., Reilly, E., and Hughes, M. (2024). Transportation sector - Global road emissions. [Data set]. The Johns Hopkins University Applied Physics Laboratory (JHU/APL), Climate TRACE Emissions Inventory. Retrieved March 12, 2025 from https://climatetrace.org
Cars are the largest source of vehicle emissions, which are shown here for urban areas.
Kott, T., Foster, K., Villafane-Delgado, M., Loschen, W., Sicurello, P., Ghebreselassie, M., Reilly, E., and Hughes, M. (2024). Transportation sector - Global road emissions. [Data set]. The Johns Hopkins University Applied Physics Laboratory (JHU/APL), Climate TRACE Emissions Inventory. Retrieved March 12, 2025 from https://climatetrace.org
Electric cars can effectively mitigate climate change in all geographic regions, although there is spatial variability that influences per-pkm effectiveness and potential solution uptake. Effectiveness heavily depends on the carbon intensity of the charging source, which varies greatly between and within countries. The effectiveness of electric cars decreases for larger vehicles, favored in some countries (Jones, 2019; Nguyen et al., 2023).
The uptake of electric cars can be significantly influenced by socioeconomic factors, including the relative costs of fuels and electricity, the capacity of civil society to provide adequate charging infrastructure, and the availability of subsidies for electric vehicles.
Extreme temperatures can negatively impact vehicle range, both by slowing battery chemistry and increasing energy demands for regulating passenger compartment temperature, which can adversely affect consumers’ perceptions of electric car suitability in locations with such climates (International Council on Clean Transportation, 2024).
Electric cars are most effective in regions with low-carbon electricity grids (International Transport Forum, 2020; Verma et al., 2022). This includes countries with high hydro power (including Iceland, Norway, Sweden, and parts of Canada such as British Columbia and Quebec), nuclear energy (such as France), and renewables (including Portugal, New Zealand, and parts of the United States, including California and some of the Northwest) (IEA, 2024). Electric car adoption is growing rapidly in a number of regions. For future scaling, targeting countries with supportive policies, renewable energy potential, and growing urban populations will deliver the greatest climate benefits.
There is a high level of consensus among major organizations and researchers working on climate solutions that electric cars offer a substantial reduction in GHG emissions compared to fossil fuel–powered cars. This advantage is strongest in places where electricity in the grid comes from sources with low GHG emissions, but it persists even if fossil fuels play a major role in energy production.
Major climate research organizations generally see electric cars as the primary means of reducing GHG emissions from passenger transportation. This perspective has received criticism from some scholars who argue that electric cars have been overstated as a climate solution, pointing to supply constraints, embodied emissions, and emissions from electricity generation (Jones, 2019; Milovanoff et al., 2020). Embodied emissions are outside the scope of this assessment.
The Intergovernmental Panel on Climate Change (IPCC) (2022) estimated well-to-wheel (upstream and downstream emissions) GHG emissions intensity from gasoline and diesel cars at 139 g CO₂‑eq/pkm and 107 g CO₂‑eq/pkm, respectively. They estimated that electric cars running on low-carbon electricity (solar, wind, and nuclear sourced) emit 9 g CO₂‑eq/pkm; electric cars running on natural gas electricity emit 104 g CO₂‑eq/pkm; and electric cars running entirely on coal electricity emit 187 g CO₂‑eq/pkm. These estimates include upstream emissions, such as those from oil refining and coal mining.
The International Energy Agency (IEA, 2024) noted that “[a] battery electric car sold in 2023 will emit half as much as fossil fuel–powered equivalents over its lifetime. This includes full life-cycle emissions, including those from producing the car.”
The International Transport Forum (ITF) (2020) estimated that fossil fuel–powered cars emit 162 g CO₂‑eq/pkm, while electric cars emit 125 g CO₂‑eq/pkm. This included embodied and upstream emissions, which are outside the scope of this assessment..
The results presented in this document summarize findings from 15 reviews and meta-analyses and 24 original studies reflecting current evidence from 52 countries, primarily the IEA’s Electric Vehicle Outlook 2024), the Electric Vehicle Database 2024), the International Transportation Forum’s life cycle analysis on sustainable transportation 2020), the Nickel Institute’s cost estimates on electric cars (Nickel Institute, 2021b, 2021c, 2021a). We recognize this limited geographic scope creates bias, and hope this work inspires research and data sharing on this topic in underrepresented regions.
We define the Mobilize Electric Bicycles solution as increased travel by bicycles that have an electric motor to supplement the effort of the rider, but require the rider to turn the pedals to activate the motor. Some sources refer to electric mopeds or motorcycles as electric bicycles, but those modes of transportation fall within Project Drawdown’s Mobilize Electric Scooters & Motorcycles solution and are not covered here. Also known as pedelecs or e-bikes, electric bicycles can be deployed as privately owned electric bicycles or as shared electric bicycles, which are available as part of bicycle sharing networks typically operated at the city level for short-term rental on a per-trip basis.
Electric bicycles use electric power to supplement the muscular effort of the rider. Like conventional bicycles and other forms of nonmotorized transportation, electric bicycles get some of their motive power from human muscle power, which in turn comes from food calories – a form of closed-loop biomass power with no emissions (see Project Drawdown’s Improve Nonmotorized Transportation solution). Unlike conventional bicycles, however, electric bicycles get additional power from electricity, which comes from the grid and is stored in a battery.
This partial reliance on grid electricity, as well as the production of the battery and electric motors, increases the carbon emissions and cost of an electric bicycle compared to those of a conventional bicycle. Nevertheless, electric bicycle emissions remain far lower than the emissions of cars (including electric cars), meaning that every passenger-kilometer (pkm) moved from a car to an electric bicycle achieves significant GHG emissions savings.
Since the additional electric power enables electric bicycle riders to cover longer distances at greater speeds, climb larger hills, and carry heavier loads – and do it all with substantially less physical effort – electric bicycles can substitute for more car trips than conventional bicycles can. This can amplify electric bicycles’ potential carbon savings relative to conventional bicycles, even if the savings per pkm traveled are lower. Electric bicycles also tend to get used at high rates, and a large proportion of pkm by electric bicycle are pkm that would otherwise have been by car (Bigazzi & Wong, 2020; Bourne et al., 2020; Cairns et al., 2017; Fukushige et al., 2021).
Shared electric bicycles can enhance this effect. The need for docking stations and rebalancing services (i.e., the use of larger vehicles to reposition bicycles to avoid one-way trips that create shortages in some places and surpluses in others) increases the carbon emissions of electric bicycles per pkm compared with private electric bicycles. By renting out electric bicycles one trip at a time, however, bicycle-share systems can make electric bicycles affordable to a larger percentage of the public, further increasing the number of pkm that can be shifted to electric bicycles.
The adoption of electric bicycles reduces emissions of CO₂ and methane from cars by displacing pkm traveled via car. When electric bicycles replace a trip by a gasoline- or diesel-powered car, they also eliminate reliance on fossil fuels to complete that trip. Even if the electricity used to power electric bicycles comes from fossil fuels, those emissions are relatively small and could eventually be replaced with low-emission electricity through the deployment of renewables or similar technologies.
Astegiano, P., Fermi, F., & Martino, A. (2019). Investigating the impact of e-bikes on modal share and greenhouse emissions: A system dynamic approach. Transportation Research Procedia, 37, 163-170. https://doi.org/10.1016/j.trpro.2018.12.179
Berjisian, E., & Bigazzi, A. (2019). Summarizing the impacts of electric bicycle adoption on vehicle travel, emissions, and physical activity. UBC REACT LAb. https://civil-reactlab.sites.olt.ubc.ca/files/2019/07/BerjisianBigazzi_ImpactsofE-bikes_Report_July2019.pdf
Bigazzi, A., & Wong, K. (2020). Electric bicycle mode substitution for driving, public transit, conventional cycling, and walking. Transportation Research Part D: Transport and Environment, 85, 102412. https://doi.org/10.1016/j.trd.2020.102412
Bourne, J. E., Cooper, A. R., Kelly, P., Kinnear, F. J., England, C., Leary, S., & Page, A. (2020). The impact of e-cycling on travel behaviour: A scoping review. Journal of Transport & Health, 19, 100910. https://doi.org/10.1016/j.jth.2020.100910
https://doi.org/10.1016/j.rser.2019.109298
Cairns, S., Behrendt, F., Raffo, D., Beaumont, C., & Kiefer, C. (2017). Electrically-assisted bikes: Potential impacts on travel behaviour. Transportation Research Part A: Policy and Practice, 103, 327-342. https://doi.org/10.1016/j.tra.2017.03.007
Carracedo, D., & Mostofi, H. (2022). Electric cargo bikes in urban areas: A new mobility option for private transportation. Transportation Research Interdisciplinary Perspectives, 16, 100705. https://doi.org/10.1016/j.trip.2022.100705
Dekker, P. (2013). Electrification of road transport-An analysis of the economic performance of electric two-wheelers. Utrecht University. https://studenttheses.uu.nl/bitstream/handle/20.500.12932/13022/Thesis%20P.W.K.%20Dekker%2012%20May%202013.pdf?sequence=1&isAllowed=y
eBicycles. (2025a). How much does an electric bike cost? E-bike price breakdown [2025].
https://www.ebicycles.com/how-much-does-an-electric-bike-cost/
eBicycles. (2025b). Useful facts & stats of e-bikes [for 2025] + infographic. https://www.ebicycles.com/ebike-facts-statistics/
Ebike Canada. (2025). The best electric bikes & scooters in canada for 2025. Ebike Canada.
https://ebikecanada.com/best-electric-bike-and-scooter/
Fishman, E., & Cherry, C. (2016). E-bikes in the Mainstream: Reviewing a Decade of Research. Transport Reviews, 36(1), 72-91. https://doi.org/10.1080/01441647.2015.1069907
Fukushige, T., Fitch, D. T., & Handy, S. (2021). Factors influencing dock-less E-bike-share mode substitution: Evidence from Sacramento, California. Transportation Research Part D: Transport and Environment, 99, 102990. https://doi.org/10.1016/j.trd.2021.102990
Galatoulas, N.-F., Genikomsakis, K. N., & Ioakimidis, C. S. (2020). Spatio-Temporal Trends of E-Bike Sharing System Deployment: A Review in Europe, North America and Asia. Sustainability, 12(11), Article 11. https://doi.org/10.3390/su12114611
Gössling, S., Choi, A., Dekker, K., & Metzler, D. (2019). The social cost of automobility, cycling and walking in the European Union. Ecological Economics, 158, 65–74. https://doi.org/10.1016/j.ecolecon.2018.12.016
Guidon, S., Becker, H., Dediu, H., & Axhausen, K. W. (2018). Electric bicycle-sharing: A new competitor in the urban transportation market?: An empirical analysis of transaction data. Arbeitsberichte Verkehrs- Und Raumplanung, 1364. https://doi.org/10.1016/j.ecolecon.2018.12.016
Hanna, J. (2023). Bike Share Toronto 2023 business review.
https://www.toronto.ca/legdocs/mmis/2023/pa/bgrd/backgroundfile-240804.pdf
Helton, J. (2025). Ride with power: The top electric bikes for 2025, as chosen by experts. Road & Track. https://www.roadandtrack.com/gear/lifestyle/g46464030/best-electric-bikes/
Huang, Y., Jiang, L., Chen, H., Dave, K., & Parry, T. (2022). Comparative life cycle assessment of electric bikes for commuting in the UK. Transportation Research Part D: Transport and Environment, 105, 103213. https://doi.org/10.1016/j.trd.2022.103213
Innovation Origins. (2023). The booming rise of shared e-bikes in urban mobility. https://innovationorigins.com/en/the-booming-rise-of-shared-e-bikes-in-urban-mobility/
International Transport Forum. (2020). Good to Go? Assessing the Environmental Performance of New Mobility (Corporate Partnership Board). OECD. https://www.itf-oecd.org/sites/default/files/docs/environmental-performance-new-mobility.pdf
Jones, B. (2019). Electric Bike Maintenance Cost. BicycleVolt. https://bicyclevolt.com/electric-bike-maintenance-cost/
Koning, M., & Conway, A. (2016). The good impacts of biking for goods: Lessons from Paris city. Case Studies on Transport Policy, 4(4), 259-268. https://doi.org/10.1016/j.cstp.2016.08.007
Langford, B. C., Chen, J., & Cherry, C. R. (2015). Risky riding: Naturalistic methods comparing safety behavior from conventional bicycle riders and electric bike riders. Accident Analysis & Prevention, 82, 220-226. https://doi.org/10.1016/j.aap.2015.05.016
Langford, B. C., Cherry, C. R., Bassett, D. R., Fitzhugh, E. C., & Dhakal, N. (2017). Comparing physical activity of pedal-assist electric bikes with walking and conventional bicycles. Journal of Transport & Health, 6, 463–473. https://doi.org/10.1016/j.jth.2017.06.002
Li, Q., Fuerst, F., & Luca, D. (2023). Do shared E-bikes reduce urban carbon emissions? Journal of Transport Geography, 112, 103697. https://doi.org/10.1016/j.jtrangeo.2023.103697
https://luxe.digital/lifestyle/garage/best-electric-bikes/
Matasyan, A. (2015). Technical analysis and market study of electric bicycles. https://upcommons.upc.edu/handle/2117/77272?locale-attribute=en
Mellino, S., Petrillo, A., Cigolotti, V., Autorino, C., Jannelli, E., & Ulgiati, S. (2017). A Life Cycle Assessment of lithium battery and hydrogen-FC powered electric bicycles: Searching for cleaner solutions to urban mobility. International Journal of Hydrogen Energy, 42(3), 1830–1840. https://doi.org/10.1016/j.ijhydene.2016.10.146
Mordor Intelligence. (2022). Asia Pacific e-bike market (2017-2029). https://www.mordorintelligence.com/industry-reports/asia-pacific-e-bike-market
N, A. (2023). Maintenance costs for an electric bike. Bike LVR.
https://bikelvr.com/bikes/e-bikes/maintenance-costs-for-an-electric-bike/
de Nazelle, A., Nieuwenhuijsen, M., Antó, J., Brauer, M., Briggs, D., Charlotte Braun-Fahrlander, C., Cavill, N., Cooper, A., Desqueyroux, H., Fruin, S., Hoek, G., Panis, L., Janssen, N., Jerrett, M., Joffe, M., Andersen, Z., van Kempen, E., Kingham, S., Kubesch, N., Leyden, K., Marshall, J., Matamala, J., Mellios, G., Mendez, M., Nassif, H., Ogilvie, D., Peiró, R., Pérez, K., Rabl, A., Ragettli, M., Rodríguez, D., Rojas, D., Ruiz, P., Sallis, J., Terwoert, J., Toussaint, J., Tuomisto, J., Zuurbier, M., & Lebret, E. (2011). Improving health through policies that promote active travel: A review of evidence to support integrated health impact assessment. Environment International, 37(4), 767-777.
https://doi.org/10.1016/j.envint.2011.02.003
PBSC Urban Solutions. (2022). The Meddin Bike-sharing World Map Report 2022 edition. https://bikesharingworldmap.com/reports/bswm_mid2022report.pdf
Pekow, C. (2024, April 1). E-bikes could cut smog, energy use and congestion globally—But will they? Mongabay Environmental News. https://news.mongabay.com/2024/04/e-bikes-could-cut-smog-energy-use-and-congestion-globally-but-will-they/
Philips, I., Anable, J., & Chatterton, T. (2022). E-bikes and their capability to reduce car CO₂ emissions. Transport Policy, 116, 11-23. https://doi.org/10.1016/j.tranpol.2021.11.019
Platt, S. M., Haddad, I. E., Pieber, S. M., Huang, R.-J., Zardini, A. A., Clairotte, M., Suarez-Bertoa, R., Barmet, P., Pfaffenberger, L., Wolf, R., Slowik, J. G., Fuller, S. J., Kalberer, M., Chirico, R., Dommen, J., Astorga, C., Zimmermann, R., Marchand, N., Hellebust, S., … Prévôt, A. S. H. (2014). Two-stroke scooters are a dominant source of air pollution in many cities. Nature Communications, 5(1), 3749. https://doi.org/10.1038/ncomms4749
Precedence Research. (2024). E-bike market poised for robust expansion | CAGR of 10.16%.
https://www.precedenceresearch.com/insights/e-bike-market
Roberts, C. (2023). Diversity in passenger mobility: Where it went and how to bring it back. One Earth, 6(1), 11-13.
https://doi.org/10.1016/j.oneear.2022.12.008
Roberts, C. (2020). Into a headwind: Canadian cycle commuting and the growth of sustainable practices in hostile political contexts. Energy Research and Social Science, 70. Scopus.
https://doi.org/10.1016/j.erss.2020.101679
Rodriguez Mendez, Q., Fuss, S., Lück, S., & Creutzig, F. (2024). Assessing global urban CO₂ removal. Nature Cities, 1(6), 413-423. https://doi.org/10.1038/s44284-024-00069-x
Shi, Z., Wang, J., Liu, K., Liu, Y., & He, M. (2024). Exploring the usage efficiency of electric bike-sharing from a spatial–temporal perspective. Transportation Research Part D: Transport and Environment, 129, 104139. https://doi.org/10.1016/j.trd.2024.104139
So, A. (2024). Best electric bikes (2025): Hauling, commuting, mountain biking. WIRED. https://www.wired.com/gallery/best-electric-bikes/
Stewart, D., & Ramachandran, K. (2022, March 31). E-bikes merge into the fast lane. Deloitte Insights. https://www2.deloitte.com/us/en/insights/industry/technology/smart-micromobility-e-bikes.html
Strategic Market Research. (2024). E-bikes statistics and trends 2024. https://www.strategicmarketresearch.com/blogs/e-bikes-statistics
Summit Bike Share. (2023). Summit bike share end of year report 2023. https://www.summitcountyutah.gov/2415/Summit-Bike-Share
Teixeira, J. F., Silva, C., & Moura e Sá, F. (2021). Empirical evidence on the impacts of bikesharing: A literature review. Transport Reviews, 41(3), 329-351. https://doi.org/10.1080/01441647.2020.1841328
Thomas, A. (2022). Electric bicycles and cargo bikes—Tools for parents to keep on biking in auto-centric communities? Findings from a US metropolitan area. International Journal of Sustainable Transportation, 16(7), 637-646. https://doi.org/10.1080/15568318.2021.1914787
https://www.ctc-n.org/technologies/promotion-non-motorised-transport
Van Acker, V., & Witlox, F. (2010). Car ownership as a mediating variable in car travel behaviour research using a structural equation modelling approach to identify its dual relationship. Journal of Transport Geography, 18(1), 65-74. https://doi.org/10.1016/j.jtrangeo.2009.05.006
Wamburu, J., Lee, S., Hajiesmaili, M. H., Irwin, D., & Shenoy, P. (2021). Ride Substitution Using Electric Bike Sharing: Feasibility, Cost, and Carbon Analysis. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., 5(1), 38:1-38:28. https://doi.org/10.1145/3448081
WHO. (2022). Number of registered vehicles. https://www.who.int/data/gho/data/indicators/indicator-details/GHO/number-of-registered-vehicles
WHO. (2023). Despite notable progress, road safety remains urgent global issue. https://www.who.int/news/item/13-12-2023-despite-notable-progress-road-safety-remains-urgent-global-issue
World Bank. (2024). World Development Indicators. https://datacatalog.worldbank.org/search/dataset/0037712/World-Development-Indicators
Weiss, M., Dekker, P., Moro, A., Scholz, H., & Patel, M. K. (2015). On the electrification of road transportation – A review of the environmental, economic, and social performance of electric two-wheelers. Transportation Research Part D: Transport and Environment, 41, 348-366. https://doi.org/10.1016/j.trd.2015.09.007
Yang, Y., Okonkwo, E. G., Huang, G., Xu, S., Sun, W., & He, Y. (2021). On the sustainability of lithium ion battery industry – A review and perspective. Energy Storage Materials, 36, 186-212. https://doi.org/10.1016/j.ensm.2020.12.019
Heather Jones, Ph.D.
Cameron Roberts, Ph.D.
Ruthie Burrows, Ph.D.
James Gerber, Ph.D.
Yusuf Jameel, Ph.D.
Daniel Jasper
Heather McDiarmid, Ph.D.
Alex Sweeney
Aiyana Bodi
Hannah Henkin
Ted Otte
Amanda Smith, Ph.D.
Per 1,000 private electric bicycles, approximately 110.5 t CO₂‑eq/yr is offset by displacing trips taken by higher-emission transportation modes such as cars and public transit (Table 1).
Per 1,000 shared electric bicycles, approximately 14.44 t CO₂‑eq/yr is offset. This lower value is due to the additional emissions produced in the operation of a shared electric-bicycle system (e.g., due to the need to reposition bicycles after they accumulate in some locations while becoming depleted in others). Additionally, other modes of transportation are shifted to shared electric bicycles at different rates than privately owned electric bicycles – notably shifted less from car travel. These factors limit the total GHG emissions reduced per shared electric bicycle.
Table 1. Effectiveness at reducing emissions.
Unit: t CO₂‑eq /1,000 electric bicycles, 100-yr basis
25th percentile | 58.87 |
mean | 136.1 |
median (50th percentile) | 110.5 |
75th percentile | 220.5 |
Unit: t CO₂‑eq /1,000 electric bicycles, 100-yr basis
25th percentile | 1.415 |
mean | 14.62 |
median (50th percentile) | 14.44 |
75th percentile | 34.31 |
Electric bicycles vary significantly in cost, but generally are more expensive than traditional bicycles due to the cost of batteries, motors, and other electronic components, as well as the need for more durable mechanical components.
Private electric bicycles cost about US$2,700, plus another few hundred dollars per year in maintenance costs. All told, assuming a 10-year lifespan, electric bicycles cost about US$600/yr to operate . The average privately owned electric bicycle is ridden 2,400 km/yr; since 28.67% of that distance is shifted from car trips, electric bicycles displace approximately 688 pkm/yr traveled by car. Car travel costs US$0.53/pkm while electric bicycle travel costs US$0.25/pkm, meaning every pkm traveled via electric bicycle saves US$0.28. Multiplied over 688 pkm/yr, this translates to every electric bicycle saving its owner approximately US$193/yr in avoided car trips (Bucher et al., 2019; Carracedo & Mostofi, 2022; eBicycles, 2025a; Ebike Canada, 2025; Gössling et al., 2019; Helton, 2025; Huang et al., 2022; International Transport Forum, 2020; Jones, 2019; Luxe Digital, 2025; Mellino et al., 2017; N, 2023; So, 2024; Weiss et al., 2015).
Most of the costs of riding an electric bicycle are up-front costs. As a result, electric bicycle owners who shift more trips from a car onto their electric bicycle will significantly increase their savings. Privately owned electric bicycles save US$1,748 for every t CO₂‑eq they avoid (Table 2).
Shared electric bicycles are more expensive to the system provider than privately owned electric bicycles due to greater needs for infrastructure, maintenance, operating expenses, and services, such as rebalancing. Shared electric bicycles cost US$2.42/pkm and displace an average of 156 pkm/yr from car trips per bicycle. The same distance traveled by car costs US$83, meaning that shared electric bicycles cost an additional US$295/yr compared to traveling the same distance by car (Gössling et al., 2019; Guidon et al., 2018; Hanna, 2023; Matasyan, 2015; Summit Bike Share, 2023). Shared electric bicycles cost US$22,860/t CO₂‑eq avoided due to their higher costs, higher emissions, and the lower chance that riders on shared electric bicycles would otherwise have been traveling by car.
Table 2. Cost per climate impact.
Unit: US$ (2023) per t CO₂‑eq , 100-year basis
median | -1,748 |
Unit: US$ (2023) per t CO₂‑eq , 100-year basis
median | 22,860 |
*Cost to the provider of the system, not the user
Learning rates for electric bicycles are often negative (i.e., prices increase with cumulative production). This is largely because electric bicycle batteries have grown larger over time, causing the bicycles to become more expensive (Dekker, 2013; Weiss et al., 2015). The learning rate per electric bicycle ranges from 15% to –43%(Table 3). This range has improved the general value proposition of electric bicycles, however, since larger batteries enable electric bicycles to go further and faster than before.
To compensate for this, it is useful to calculate the learning rate per kWh battery capacity rather than per bicycle. On this measure, Dekker (2013) calculates a learning rate of 7.9% cost reduction per kWh of electric bicycle battery capacity for every doubling of cumulative production.
These estimates are based on analyses published in 2013 and 2015, respectively, and therefore do not take into account more recent advances in electric bicycle production. More up-to-date research on electric bicycle learning rates is needed to inform future assessments on this topic.
Table 3. Learning rate: drop in cost per doubling of cumulative electric bicycle production.*
Unit: %
25th percentile | -43.50 |
mean | -26.86 |
median (50th percentile) | -36.00 |
75th percentile | 15 |
* These data are from 2013 and 2015, due to a lack of available research on this topic.
Unit: %
25th percentile | |
mean | |
median (50th percentile) | 7.90 |
75th percentile |
* These data are from 2013 and 2015, due to a lack of available research on this topic.
Speed of action refers to how quickly a climate solution physically affects the atmosphere after it is deployed. This is different from speed of deployment, which is the pace at which solutions are adopted.
At Project Drawdown, we define the speed of action for each climate solution as gradual, emergency brake, or delayed.
Mobilize Electric Bicycles is a GRADUAL climate solution. It has a steady, linear impact on the atmosphere. The cumulative effect over time builds as a straight line.
Electric bicycles do not only compete with cars for the total passenger transport demand; a given electric bicycle trip might also substitute for public transit. This can sometimes still be beneficial since, as electric bicycles often have lower per-kilometer emissions than public transit vehicles (International Transport Forum, 2020). However, an electric bicycle trip might also substitute for a conventional bicycle trip or for a pedestrian journey, in which case electric bicycle usage would actually increase emissions. Finally, some electric bicycle trips are new journeys, meaning that they would not occur at all if the traveler did not have an electric bicycle, which also increases emissions (Astegiano et al., 2019; Berjisian & Bigazzi, 2019; Bourne et al., 2020; Cairns et al., 2017; Dekker, 2013).
Generally speaking however, electric bicycles still shift enough passenger car trips to make up for this effect, although the scale can be more marginal with shared electric bicycle systems. However, electric bicycles are more likely to substitute more for whichever forms of transportation their users were already using previously (Wamburu et al., 2021). This means that wider adoption of electric bicycles in car-dependent North American suburbs, for example, will have a much clearer and more beneficial climate impact than in a dense, pedestrianized European city center, or in a low-income country where most people do not have access to a car (although in these contexts electric bicycles could still produce major social and economic benefits).
Our estimates of the total adoption ceiling potential of electric bicycles (described in the Adoption section) are based on the ratio of adoption between electric bicycles and cars, on the grounds that each electric bicycle avoids some amount of car travel. However, the relationship is not necessarily quite so simple. Car trips with passengers might require more than one electric bicycle trip to replace them (unless the passengers are children, who can be carried as passengers on electric bicycles). On the other side of the equation, some households own more than one car per person. Having more than one electric bicycle per car would therefore not meaningfully reduce car trips. Lastly, our approach of tracking electric bicycle adoption in relation to car ownership neglects people whose use of an electric bicycle enables them to avoid owning a car at all. Estimates of adoption should be taken as rough guesses, rather than authoritative forecasts.
Private electric bicycles have experienced significant growth since 2015. We estimate there are approximately 278 million private electric bicycles in use in the world today (Table 4).
Data on this subject typically include throttle-assisted electric bicycles, e-scooter/trotinettes, and sometimes mopeds and motorcycles; these are not included in this solution. Data from China, the highest adopter of electric bicycles, does not usually distinguish between types of electric two-wheelers. For this reason, we used more conservative estimates, preferring to understate adoption than overstate it. We used several global estimates, data on electric bicycle sales in Canada, the United States, and Europe, and stock estimates from the Asia-Pacific region (eBicycles, 2025b; Mordor Intelligence, 2022; Precedence Research, 2024; Stewart & Ramachandran, 2022;, Strategic Market Research, 2024; The Freedonia Group, 2024). To convert from European and American sales data to stocks data, we assumed that all electric bicycles sold over the past 10 years (the lifespan of an electric bicycle) are still in use today. We then calculated the number of electric bicycles per 1,000 people in each of the three regions, used those three values to calculate a population-weighted global mean adoption rate, and multiplied the result by the number of residents of high- and upper-middle income countries worldwide (where we assume most electric bicycle adoption takes place). This calculation provided a global estimate.
Shared electric bicycle schemes now exist in many cities around the world, with at least 2 million shared electric bicycles currently in use as part of electric bicycle sharing systems (eBicycles, 2025b; Innovation Origins, 2023; PBSC Urban Solutions, 2022; Strategic Market Research, 2024). This is a conservative estimate because research published in a reputable academic journal claimed that China has 8.7 million shared electric bicycles in 2022 (Shi et al., 2024).
Table 4. Current (2024) adoption level.
Unit: 1,000 electric bicycles
mean* | 277,600 |
* Population-weighted
Unit: 1,000 electric bicycles
mean* | 2,000 |
* Population-weighted
Private electric bicycles are being adopted at a rate of about 37 million new bicycles every year (Table 5; eBicycles, 2025b; Mordor Intelligence, 2022; Precedence Research, 2024; Stewart & Ramachandran, 2022; Strategic Market Research, 2024; The Freedonia Group, 2024). Electric bicycles are also attracting interest from consumers who do not normally ride bicycles, including people in rural areas (Philips et al., 2022) and members of vulnerable groups, such as the elderly.
Shared electric bicycles are being added to cities at a rate of approximately 413,000/yr (eBicycles, 2025b; Innovation Origins, 2023; PBSC Urban Solutions, 2022; Strategic Market Research, 2024). Cities and private companies are adding shared electric bicycle systems at a rate of around 30/yr (Galatoulas et al., 2020).Based on these data, we calculate a 37.97% compounding annual growth rate in electric bicycle sharing system installations around the world.
Table 5. 2023–2024 adoption trend.
Unit: 1,000 electric bicycles/yr
25th percentile | 34,000 |
population-weighted mean | 37,330 |
median (50th percentile) | 38,000 |
75th percentile | 40,000 |
Unit: 1,000 electric bicycles/yr
25th percentile | |
population-weighted mean | |
median (50th percentile) | 412.5 |
75th percentile |
Because we model electric bicycles as a solution primarily due to their ability to shift travel from fossil fuel–powered cars, we estimate adoption by reference to the ratio of electric bicycles to cars. This doesn’t mean that people without access to a car won’t use electric bicycles; it means that they are not shifting their pkm from fossil fuel–powered cars and therefore are not included in the calculations of shifting from car to electric bicycle.
Private electric bicycles’ adoption ceiling (Table 6) would be approximately 2 billion around the world: one for every car (World Health Organization, 2021). This would mean that every motorist has an electric bicycle as a ready alternative to a car.
Shared electric bicycles’ adoption ceiling can be measured similarly, except that we assume these systems are only viable in cities. Therefore, we set the maximum adoption ceiling of shared electric bicycles to be 1.3 billion – the number of cars in cities around the world. we estimated by multiplying the global urban population (4.45 billion) by the global average car registrations per 1,000 people (286.2) (World Health Organization, 2021; World Bank, 2024).
This upper-bound scenario faces many of the same caveats as the upper-bound scenario for the Nonmotorized Transportation solution: It would require a revolution in support for electric bicycles:new infrastructure, new traffic laws, a substantial increase in electric battery production capacity, and major changes to built environments, including increases in population and land-use density to make more journeys feasible by electric bicycle. However, this scenario would require less dramatic change than a similar upper-bound scenario for the Improve Nonmotorized Transportation solution because electric bicycles go faster, have higher carrying capacities, can travel longer distances, and are easier to use than nonmotorized travel modes (Weiss et al., 2015).
A limitation of this analysis is that one electric bicycle per car does not necessarily correspond to one electric bicycle per person traveling in a car. For example, it is possible that replacing one car trip with electric bicycles would result in multiple electric bicycle trips in order to carry multiple passengers. Our estimates should therefore be seen as approximate.
It is also possible for total electric bicycle adoption and usage to exceed car use (i.e., electric bicycles also replace other modes of transportation or generate new trips). We do not consider this scenario in our adoption ceiling because additional adoption above car adoption would not produce a major climate benefit.
Table 6. Adoption ceiling.
Unit: 1,000 electric bicycles
Adoption ceiling | 2,022,000 |
Unit: 1,000 electric bicycles
Adoption ceiling | 1,273,000 |
Private electric bicycles are currently in use across the Asia-Pacific region at a rate of approximately 0.07 electric bicycles for every car. A low achievable adoption rate might see every country in the world achieve this same ratio, which would lead to a global electric bicycle fleet of 421 million (Table 7). For a higher rate of adoption, we posit one electric bicycle in use for every two cars. This would see just more than 1 billion electric bicycles in use worldwide.
Using the median and 75th percentile of the ratio of shared electric bicycles to cars (for which we have data) as the rate of adoption seen in every city in the world leads to 22 to 69 million shared electric bicycles in cities worldwide.
Note: We based these estimates on electric bicycles per car rather than electric bicycles per person because the climate impact of electric bicycle adoption in a given place depends on the availability of cars to replace.
Table 7. Range of achievable adoption levels.
Unit: 1,000 electric bicycles
Current Adoption | 277,600 |
Achievable – Low | 421,300 |
Achievable – High | 1,011,000 |
Adoption Ceiling | 2,022,000 |
Unit: 1,000 electric bicycles
Current Adoption | 2,000 |
Achievable – Low | 22,010 |
Achievable – High | 69,260 |
Adoption Ceiling | 1,273,000 |
If every motorist had an electric bicycle they used to replace at least some car trips), it would mitigate 224 Mt CO₂‑eq/yr – equal to the total global carbon emissions produced by cars, minus the emissions that would be produced due to electric bicycles traveling the same distance. If there were one electric bicycle for every two cars, it would avoid 117 Mt CO₂‑eq/yr. And if global electric bicycle adoption reached the rate currently seen in the Asia-Pacific region (China, India, Japan, South Korea, Australia, and New Zealand), it would avoid 47 Mt CO₂‑eq/yr (Table 8).
Our Achievable – Low scenario of 22 million shared electric bicycles in cities worldwide would save 284 kt CO₂‑eq/yr. Our Achievable – High scenario of 69.3 million shared electric bicycles worldwide would save 895 kt CO₂‑eq/yr. The maximum possible shared electric bicycle deployment would save approximately 16.6 Mt CO₂‑eq/yr.
Table 8. Climate impact at different levels of adoption.
Unit: Gt CO₂-eq/yr, 100-yr basis
Current Adoption | 0.0307 |
Achievable – Low | 0.0466 |
Achievable – High | 0.1117 |
Adoption Ceiling (Physical limit) | 0.2235 |
Unit: Gt CO₂-eq/yr, 100-yr basis
Current Adoption | 0.00002584 |
Achievable – Low | 0.0002844 |
Achievable – High | 0.0008949 |
Adoption Ceiling (Physical limit) | 0.01645 |
Electric assistance reduces the physical fitness and other health benefits of cycling. However, electric bicycles still require pedaling, and studies show that this level of effort required can still have substantial health benefits (Berjisian & Bigazzii, 2019; Langford et al., 2017). Electric bicycles can also enable people to cycle who might not otherwise be able to (Bourne et al., 2020). Additionally, electric bicycles can reduce total car traffic, which could reduce the risk of injury and death from car crashes, which kill 1.2 million people annually (WHO, 2023). Similarly, electric bicycles can reduce health impacts of traffic noise (de Nazelle et al., 2011).
In addition to being cheaper than car travel, electric bicycles allow people to travel farther and faster than they could on foot, on a conventional bicycle, or (often) on public transit. These time and money savings provide an economic benefit (Bourne, 2020).
The fossil fuel–powered vehicles most similar to electric bicycles (motorcycles, scooters, etc.) are extremely polluting (Platt et al., 2014). Substituting electric bicycles for these can substantially reduce air pollution.
Electric bicycles provide quality-of-life benefits for some people who use them (Bourne, 2020; Carracedo & Mostofi, 2022; Teixeira et al., 2022; Thomas, 2022). Electric bicycles can also reduce traffic congestion and save time (Koning & Conway, 2016).
Electric bicycles pose some safety concerns, centering on an ongoing debate over whether electric cyclists ride more recklessly than other cyclists (Fishman & Cherry, 2016; Langford et al., 2015). While electric bicycles have a lower injury rate than conventional bicycles, when injuries do happen during electric bicycle travel the health consequences tend to be more severe due to the higher speed (Berjisian & Bigazzi, 2019). There may also be risks related to the bicycles’ lithium-ion batteries catching fire. Strong regulations can minimize this risk (Pekow, 2024). Improved infrastructure, such as separated bike lanes and paths, can also reduce the safety risks associated with electric bicycles (Roberts, 2020).
Electric bicycles can complement other forms of low-carbon mobility, especially those that reduce dependence on private cars. People who rely on public transit, conventional travel, pedestrian travel, carpools, or other sustainable modes of transportation for some kinds of trips can use electric bicycles to fill in some of the gaps in their personal transportation arrangements (Roberts, 2023). For public transit in particular, electric bicycles can play an important last-mile role, enabling transit riders to more easily access stops. This is important because research suggests that the key to a low-carbon mobility system is to enable people to live high-quality lives without owning cars (Van Acker & Witlox, 2010).
Electric bicycles require a lot less space than private cars. If sufficient adoption of electric bicycles and other alternatives to private cars enables a reduction in car lanes, parking spaces, and related infrastructure, then some of this space could be reallocated to ecosystem conservation through revegetation and other land-based methods of GHG sequestration (Rodriguez Mendez et al., 2024).
Electric bicycles compete with electric and hybrid cars for adoption.
1,000 electric bicycles
CO₂, CH₄, N₂O
1,000 electric bicycles
CO₂, CH₄, N₂O
If an electric bicycle replaces primarily car trips, it provides an unambiguous climate benefit. If it replaces public transit, the size of the benefit will depend on the specifics of the public transit system it replaces. If it replaces pedestrian trips or conventional cycling trips, or generates new trips, the net climate benefit is negative. Travel survey data suggest that electric bicycles replace enough car journeys to more than offset any journeys by the more sustainable modes of transportation they replace (Bigazzi & Wong, 2020; Bourne et al., 2020; Cairns et al., 2017; Fukushige et al., 2021). However, electric bicycles in cities that already have very low-carbon mobility systems, or in lower-income countries where car ownership is rare, might have a net negative climate impact.
Electric bicycles also require batteries, the production and disposal of which generates pollution (Yang et al., 2021). However, electric bicycles require much less battery capacity than many other electrification technologies, such as electric vehicles (Weiss et al., 2015).
Cars are the largest source of road transportation vehicle emissions, which are shown here for urban areas.
Kott, T., Foster, K., Villafane-Delgado, M., Loschen, W., Sicurello, P., Ghebreselassie, M., Reilly, E., and Hughes, M. (2024). Transportation sector - Global road emissions [Data set]. The Johns Hopkins University Applied Physics Laboratory (JHU/APL), Climate TRACE Emissions Inventory. Retrieved March 12, 2025 from https://climatetrace.org
Cars are the largest source of road transportation vehicle emissions, which are shown here for urban areas.
Kott, T., Foster, K., Villafane-Delgado, M., Loschen, W., Sicurello, P., Ghebreselassie, M., Reilly, E., and Hughes, M. (2024). Transportation sector - Global road emissions [Data set]. The Johns Hopkins University Applied Physics Laboratory (JHU/APL), Climate TRACE Emissions Inventory. Retrieved March 12, 2025 from https://climatetrace.org
Electric bicycle effectiveness in mitigating climate change varies by region, depending on the carbon intensity of the charging electricity, the extent to which they replace higher-emission travel (such as cars, motorcycles, or taxis), and the need and type of vehicle used for rebalancing shared electric bicycles (International Transport Forum, 2020). They are most effective in areas with cleaner electricity grids and where they can substitute for cars.
Since electric bicycles are more effective when replacing cars, this means that wider adoption of electric bicycles in car-dependent regions, such as North American suburbs, will have a much more significant climate impact than in a dense, pedestrianized European city center or in a low-income country where most people do not have access to a car (although in these contexts electric bicycles could still produce significant social and economic benefits) (Wamburu et al., 2021).
Socio-economic and infrastructural factors play a major role in adoption. These include upfront costs of private electric bicycles, availability and affordability of shared electric bicycles, supportive cycling infrastructure, and policies such as subsidies or rebates. In many countries, electric bicycles increase the accessibility of nonmotorized transport to older adults, people with disabilities, and those commuting longer distances or in hilly areas by reducing physical effort (Bourne et al., 2020).
Future geographic targets for scaling adoption with strong climate and equity outcomes include South and Southeast Asian cities (e.g., Dhaka, Jakarta, Ho Chi Minh City) with high trip density, short trip lengths, and growing pollution concerns, all of which make them ideal for adoption. Sub-Saharan African cities (e.g., Kampala, Accra) where electric bicycles could complement or replace informal motorcycle taxis, reducing emissions and improving affordability and safety, are also important targets. North America has potential as both private and shared programs are beginning to expand in urban areas, helped by municipal investment and rising consumer interest.
When people purchase electric bicycles, they tend to use them often, with many of the trips they take on electric bicycles replacing trips that would otherwise have been taken via private car (Bigazzi & Wong, 2020; Bourne et al., 2020; Cairns et al., 2017; Fukushige et al., 2021). The evidence is similarly conclusive regarding the ability of shared electric bicycles to replace a large number of car trips. However, evidence regarding the carbon benefits of shared electric bicycles is more mixed due to the additional emissions required to run a shared electric-bicycle system.
Berjiisian and Bigazzi (2019) reviewed much of the literature on electric bicycles. and found that electric bicycle trips are shifted from car trips (44%) and transit trips (12%) providing significant emissions benefits. Other net benefits include less travel by cars, lower GHG emissions and more physical activity. “E-bike adoption is expected to provide net benefits in the forms of reduced motor vehicle travel, reduced greenhouse gas emissions, and increased physical activity. A little more than half of e-bike trips are expected to shift travel from motor vehicles (44% car trips and 12% transit trips), which is sufficient to provide significant emissions benefits.”
Weiss et al. (2015) surveyed evidence of the economic, social, and environmental impacts of electric bicycles. They found that electric bicycles are more efficient and less polluting than cars. They reduce exposure to pollution as their environmental impacts come mainly from being produced and the electricity that they use, both of which are usually outside of urban areas.
Philips et al. (2022) investigated the potential for electric bicycles to replace car trips in the UK. Their geospatial model provided a good indication of what might be possible in other places and showed that electric bicycles have considerable potential in rural areas as well as urban ones.
Li et al. (2023) reported that based on the mix of mode share replaced, shared electric bicycle trips decreased carbon emissions by 108–120 g/km carbon emissions than fossil fuel-powered cars per kilometer.”
This research is biased toward high-income countries. While there is substantial research on electric bicycles in China, that country often considers e-scooters (which do not have pedals) and throttle-assisted electric bikes as interchangeable with pedelecs electric bicycles. This made it hard to include Chinese research in our analysis. We recognize this limited geographic scope creates bias, and hope this work inspires research harmonization and data sharing on this topic in underrepresented regions in the future.