What is it?
Green hydrogen is a clean, emissions-free liquid fuel produced through electrolysis powered by renewable energy that can replace fossil fuels in some transportation sectors. Unlike hydrogen from fossil fuels (gray or blue hydrogen), green hydrogen generates no CO₂
emissions during production. For transportation, green hydrogen can be used in two main ways: (1) in fuel cell electric vehicles (FCEVs) to generate electricity onboard and power electric motors, or (2) combusted in specially designed hydrogen combustion engines or turbines. For aviation, liquid hydrogen may fuel aircraft engines directly, be used to produce synthetic jet fuels, or power fuel cell airplanes. For long-haul trucking, hydrogen can replace diesel by powering fuel cell trucks, which offer long range and fast refueling.
Does it work?
Hydrogen combustion engines and fuel cells are currently in use and have been shown to reduce emissions compared to fossil fuels. Green hydrogen is being produced and used in pilot projects and select transportation initiatives globally. For aviation, aircraft manufacturers, such as Airbus, have hydrogen-powered planes in development, with test flights expected by 2030, but it could be several decades before they are put into commercial use. In heavy-duty trucking, several major automakers, including Toyota and Hyundai, have already commercialized hydrogen trucks in limited markets, such as China and Japan.
Why are we excited?
Green hydrogen is one of the few near-zero-emission fuels with the potential to decarbonize aviation and long-haul trucking, where battery-electric solutions currently face range and weight constraints. If produced using abundant, low-cost renewables, green hydrogen could significantly cut emissions in sectors responsible for nearly 15% of global transport emissions. In aviation, hydrogen-based fuels like e-kerosene could save around five million tons of CO₂
per year in Europe by 2030. In trucking, hydrogen fuel cell vehicles are beginning to roll out but remain a niche market. Looking ahead, hydrogen has strong potential: by 2050, it could meet up to 30% of energy demand in long-haul trucking and significantly reduce aviation emissions, particularly for short- and medium-haul flights, but it will have to compete with advances in battery-electric options. Hydrogen enables fast refueling and long range, making it a strong candidate for freight and intercity applications. Additionally, investment in green hydrogen infrastructure could unlock cross-sectoral benefits, supporting decarbonization of industry, power, and potentially heating. As electrolyzer costs fall and renewable power expands, the economics and emissions profile of green hydrogen are likely to improve.
Why are we concerned?
Despite its promise, green hydrogen for transport faces significant technical, economic, and logistical hurdles. Electrolysis is energy-intensive, and green hydrogen production is still expensive (US$300–600/t CO₂
avoided for trucking and US$500–1500/t CO₂
for aviation), making it much more costly than diesel or jet fuel but comparable to sustainable aviation fuel today. It is also less energy-dense by volume than other fuels, requiring complex transportation and storage (especially for aviation, where cryogenic tanks are needed) and limiting payload capacity. In addition to producing contrails, hydrogen leakage, though not a GHG, can contribute to indirect global warming effects. There are also safety concerns related to flammability and explosiveness, and a complete overhaul of transportation and refueling infrastructure is needed for both aviation and trucking. Green hydrogen requires entirely new infrastructure for production, storage, and distribution, including refueling stations for trucks and specialized handling systems for liquid or compressed hydrogen at each airport the airplane uses. The absence of this infrastructure creates a major barrier to adoption in aviation and long-haul trucking, where fuel logistics, safety standards, and scale are critical for commercial viability. Hydrogen remains a niche fuel due to its low energy density per volume, the need for cryogenic storage in aviation, limited refueling infrastructure, and high cost. While technically viable, major deployment for aviation and trucking is still nascent. Without a clear business case or strong policy incentives, uptake will remain limited in the near term.