Increase Building Deconstruction & Recycling

Improving district heating for industry involves using low-carbon alternatives, such as biomass, electric boilers, heat pumps, and waste heat from other industries, to provide heat to industries for their operations. Currently, most district heating for industry relies heavily on fossil fuels to generate heat. Low-carbon alternatives have the potential to make a significant dent in the global emissions from industry, but such projects are also challenging to implement due to their scale and complexity, and there is currently a lack of publicly available data that would allow for a deeper analysis. Based on our assessment, we will “Keep Watching” this potential solution.
Based on our analysis, improving district heating for industry by integrating low-carbon heat sources has the potential to significantly reduce the use of fossil fuels and the emissions they generate. However, the lack of data, combined with the complexity of such projects and the growing interest in alternative decarbonization pathways, makes this a potential solution to “Keep Watching.”
Plausible | Could it work? | Yes |
---|---|---|
Ready | Is it ready? | Yes |
Evidence | Are there data to evaluate it? | No |
Effective | Does it consistently work? | Yes |
Impact | Is it big enough to matter? | Yes |
Risk | Is it risky or harmful? | No |
Cost | Is it cheap? | No |
District heating systems consist of a network of underground pipes that distribute heat to a large number of buildings, including industrial buildings. In the industrial sector, district heating is used by light industries and for processes such as drying, paper making, food processing, as well as space heating and even heat-driven chillers for refrigeration. Industry is well-suited to district heating because it typically has steady and predictable heat demand throughout the year. Current district heating systems rely heavily on coal and natural gas for heat generation, often as part of combined heat and power generation. Low-carbon alternatives for district heating can include burning biomass, electric heat pumps, solar thermal, deep geothermal, and even waste heat from other industries.
Shifting district heating for industry from conventional heat sources to low-carbon heat sources will significantly reduce emissions. Our analysis for district heating use by commercial and residential buildings shows that significant emissions can be avoided by shifting to electric boilers, heat pumps, biomass boilers, and the use of waste heat (see Improve District Heating: Buildings). Similar outcomes are likely possible for industrial district heating use, and emissions reductions will increase as more renewables are integrated into the electricity systems used to power electric boilers and heat pumps.
District heating for industry currently produces significant emissions. According to the International Energy Agency (IEA), district heating for all applications accounted for 4% of global emissions in 2022, and roughly 40% of the heat energy from district heating was delivered to industry. China is a major adopter of district heating for industries, with the combustion of coal supplying much of that heat. The shift to renewable heat sources is likely to increase because both China and the EU have policies targeting the adoption of renewables in district heating. Because district heating systems serve multiple buildings, a single project to replace fossil fuels with renewables can have a large impact. Such projects also have the benefit of reducing local air pollution.
Although simple on paper, replacing fossil fuel systems with lower-carbon alternatives in district heating systems can be an extended undertaking involving many stakeholders and years of planning. Some low-carbon options may not be suitable for industrial processes that require higher temperatures than those needed for space heating. There is also a significant lack of publicly available data about how industry currently uses district heating and the opportunities and challenges involved in shifting to renewables. In the meantime, industrial heat pumps with higher temperature outputs (100–200°C) are increasingly available and could become a low-carbon competitor to the use of a conventional district heating system.
Bellevrat, E., & West, K. (2018). Clean and efficient heat for industry. IEA. Link to source: https://www.iea.org/commentaries/clean-and-efficient-heat-for-industry
Difs, K., Danestig, M., & Trygg, L. (2009). Increased use of district heating in industrial processes – Impacts on heat load duration. Applied Energy, 86(11), 2327–2334. Link to source: https://doi.org/10.1016/j.apenergy.2009.03.011
European Commission. (2022). Implementing the repower EU action plan: Investment needs, hydrogen accelerator and achieving the bio-methane targets. Link to source: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:52022SC0230
Gouy, A., Mooney, E., & Voswinkel, F. (2023). Light Industry. IEA. Link to source: https://www.iea.org/energy-system/industry/light-industry
IEA. (2025). District heating. Link to source: https://www.iea.org/energy-system/buildings/district-heating#programmes
IRENA, IEA, & REN21. (2020). Renewable energy policies in a time of transition: Heating and cooling. Link to source: https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2020/Nov/IRENA_IEA_REN21_Policies_Heating_Cooling_2020.pdf
Lake, A., Rezaie, B., & Beyerlein, S. (2017). Review of district heating and cooling systems for a sustainable future. Renewable and Sustainable Energy Reviews, 67, 417–425. Link to source: https://doi.org/10.1016/j.rser.2016.09.061
Werner, S. (2017). International review of district heating and cooling. Energy, 137, 617–631. Link to source: https://doi.org/10.1016/j.energy.2017.04.045
Blue hydrogen production involves making hydrogen (H2) from fossil fuel feedstocks while using carbon capture and storage (CCS) to reduce CO₂ emissions from the production process. The captured CO₂ is concentrated, compressed, and permanently stored underground. Blue hydrogen is more expensive than grey hydrogen, the predominant hydrogen production method, but less expensive than zero-emissions green hydrogen. Blue hydrogen production could facilitate the expansion of hydrogen infrastructure and the development of the global hydrogen economy. However, current adoption is low, its effectiveness at reducing GHG emissions is variable, and it could compete with technologies that offer greater climate benefits. Because of its reliance on fossil fuels for both feedstock and energy, the expansion of blue hydrogen production would perpetuate and potentially expand the use of fossil fuels. Based on this risk, we conclude that producing blue hydrogen is “Not Recommended” as a climate solution.
Based on our analysis, blue hydrogen is feasible and ready to deploy, but there is little real-world evidence for its effectiveness or ability to scale. The expansion of this technology to replace current grey hydrogen production or to support the transition to a global hydrogen economy will perpetuate and possibly expand the use of fossil fuels. Because of this risk, we conclude that producing blue hydrogen is “Not Recommended”.
Plausible | Could it work? | Yes |
---|---|---|
Ready | Is it ready? | Yes |
Evidence | Are there data to evaluate it? | Limited |
Effective | Does it consistently work? | No |
Impact | Is it big enough to matter? | No |
Risk | Is it risky or harmful? | Yes |
Cost | Is it cheap? | Yes |
Blue hydrogen production is an industrial process that produces hydrogen (H2) from fossil fuels – either natural gas or coal – combined with carbon capture and storage (CCS) technology to reduce CO₂ emissions produced during the process. Today, most hydrogen is grey hydrogen made from natural gas without any CCS. The addition of CCS prevents the release of some of the CO₂ generated during the hydrogen production process; capturing, concentrating, and then storing it permanently underground.
The technologies for making hydrogen from natural gas, predominantly steam methane reformation (SMR), are well-established and have been used to produce hydrogen for close to a century. CCS technology is also available and currently deployed in multiple industrial and power generation applications. The SMR hydrogen production process generates GHG emissions from two sources: methane leaks from the gas used as feedstock and fuel used to power the production process, and GHG emissions from both the SMR process and combustion of gas (or other fuels) for energy, including CO₂, methane, nitrous oxide, and black carbon. CCS can be applied to capture CO₂ produced during the SMR process, for post-combustion capture of CO₂ from the plant’s energy use, or for both. Incorporating CCS to capture emissions from the H2 production process adds costs and increases energy use, but it could theoretically reduce CO₂ emissions by more than 90%. However, current adoption of blue hydrogen is very low – less than 1% of global hydrogen production – and there is little real-world evidence to support its effectiveness and scalability. The few commercial facilities currently in operation capture only about 60% or less of the emitted CO₂. Because CCS is energy-intensive, it requires more fuel to power the blue hydrogen production plant. This can also increase fugitive methane leaks due to increased gas-powered energy consumption. If implemented adequately, carbon storage can be permanent. The captured CO₂ can also be used as a chemical precursor for the manufacture of other products or for enhanced oil recovery; however, these post-capture uses of CO₂ emit GHGs, thereby reducing or eliminating the emissions reduction efficacy of CCS. Currently, only ~8% of CO₂ captured from blue hydrogen production is injected into dedicated geological storage, with the rest used in industry, enhanced oil recovery, and other applications.
Hydrogen can be combusted as a zero-emissions fuel, used to store energy to produce electricity, or deployed as a feedstock in industrial, transportation, and energy systems. The production of any hydrogen type – blue, grey, or green hydrogen – could facilitate the expansion of hydrogen infrastructure and the development of the global hydrogen economy, which is an important step in scaling hydrogen. Blue hydrogen is more technologically ready and cheaper than green hydrogen, which is made from water using electrolysis powered by renewable energy. Blue hydrogen is more expensive to produce than grey hydrogen, but the cost per ton of CO₂ removed could be relatively low. Estimates range from US$60–110/t CO₂, although these costs are uncertain and, with lower CCS effectiveness, they could increase to ~US$260/t CO₂. If implemented with low fugitive methane emissions and high CCS efficiencies, blue hydrogen could substantially reduce emissions compared to current grey hydrogen production. The climate impact of scaling blue hydrogen could be high. Estimates and targets for blue hydrogen production by 2050 range from ~30–85 Mt H2. At that scale, even modest emissions savings relative to grey hydrogen would have a climate impact above 0.09 Gt CO₂‑eq/yr by 2050. However, achieving this depends on the quality of the infrastructure and rate of technology scaling, both of which are unproven.
Currently, 6% of the world’s natural gas and 2% of its coal are used to make hydrogen. As hydrogen production ramps up, blue hydrogen – even though it reduces production emissions compared to grey hydrogen – would perpetuate and could even increase the global market for fossil fuels. If the future implementation of green hydrogen is set back, blue hydrogen could create a long-term dependency on fossil fuels. Furthermore, any hydrogen produced from natural gas leads to methane leaks, regardless of whether CO₂ is captured. Methane is a potent short-lived GHG, meaning its impact on climate warming is stronger in the near-term. This is why reducing methane emissions is an urgent emergency brake climate action. Building and expanding a new industry that relies on natural gas as both a feedstock and fuel, and which inevitably leaks methane, is counterproductive to solving the climate crisis.
If and when there is a transition to a global hydrogen economy, blue hydrogen is a less effective climate solution than green hydrogen. Although this technology could be a transitional solution between grey and green hydrogen, blue hydrogen risks diverting resources away from green hydrogen development or ready-to-deploy renewable energy technologies, such as onshore wind or distributed solar PV. There are mixed expert opinions about the realistic level of avoided emissions that blue hydrogen may reach. Additionally, there is uncertainty around whether CCS can meet its technical potential at a reasonable cost.
Ajanovic, A., Sayer, M., & Haas, R. (2022). The economics and the environmental benignity of different colors of hydrogen. International Journal of Hydrogen Energy, 47(57), 24136–24154. Link to source: https://doi.org/10.1016/j.ijhydene.2022.02.094
Arcos, J. M. M., & Santos, D. M. F. (2023). The hydrogen color spectrum: Techno-economic analysis of the available technologies for hydrogen production. Gases, 3(1), Article 1. https://doi.org/10.3390/gases3010002
Bauer, C., Treyer, K., Antonini, C., Bergerson, J., Gazzani, M., Gencer, E., Gibbins, J., Mazzotti, M., McCoy, S. T., McKenna, R., Pietzcker, R., Ravikumar, A. P., Romano, M. C., Ueckerdt, F., Vente, J., & Spek, M. van der. (2021). On the climate impacts of blue hydrogen production. Sustainable Energy & Fuels, 6(1), 66–75. https://doi.org/10.1039/D1SE01508G
Blank, T. K., Molloy, P., Ramirez, K., Wall, A., & Weiss, T. (2022, April 13). Clean energy 101: The colors of hydrogen. RMI. https://rmi.org/clean-energy-101-hydrogen/
Collodi, G., Azzaro, G., Ferrari, N., & Santos, S. (2017). Techno-economic evaluation of deploying CCS in SMR based merchant H2 production with NG as feedstock and fuel. Energy Procedia, 114, 2690–2712. Link to source: https://doi.org/10.1016/j.egypro.2017.03.1533
Gorski, J., Jutt, T., & Wu, K. T. (2021). Carbon intensity of blue hydrogen production. https://www.pembina.org/reports/carbon-intensity-of-blue-hydrogen-revised.pdf
Hossain Bhuiyan, M. M., & Siddique, Z. (2025). Hydrogen as an alternative fuel: A comprehensive review of challenges and opportunities in production, storage, and transportation. International Journal of Hydrogen Energy, 102, 1026–1044. https://doi.org/10.1016/j.ijhydene.2025.01.033
Howarth, R. W., & Jacobson, M. Z. (2021). How green is blue hydrogen? Energy Science & Engineering, 9(10), 1676–1687. https://doi.org/10.1002/ese3.956
IEA. (2019). The future of hydrogen. Link to source: https://iea.blob.core.windows.net/assets/9e3a3493-b9a6-4b7d-b499-7ca48e357561/The_Future_of_Hydrogen.pdf
IEA. (2023a). Hydrogen: Net zero emissions guide. Link to source: https://www.iea.org/reports/hydrogen-2156#overview
IEA. (2023b). Net zero roadmap: A global pathway to keep the 1.5 °C goal in reach. Link to source: https://www.iea.org/reports/net-zero-roadmap-a-global-pathway-to-keep-the-15-0c-goal-in-reach
IEA. (2024). Global hydrogen review 2024. Link to source: https://www.iea.org/reports/global-hydrogen-review-2024
IEA. (2025, February). Hydrogen. Link to source: https://www.iea.org/energy-system/low-emission-fuels/hydrogen
Ighalo, J. O., & Amama, P. B. (2024). Recent advances in the catalysis of steam reforming of methane (SRM). International Journal of Hydrogen Energy, 51, 688–700. Link to source: https://doi.org/10.1016/j.ijhydene.2023.10.177
Incer-Valverde, J., Korayem, A., Tsatsaronis, G., & Morosuk, T. (2023). “Colors” of hydrogen: Definitions and carbon intensity. Energy Conversion and Management, 291, 117294. Link to source: https://doi.org/10.1016/j.enconman.2023.117294
Lewis, E., McNaul, S., Jamieson, M., Henriksen, M. S., Matthews, H. S., White, J., Walsh, L., Grove, J., Shultz, T., Skone, T. J., & Stevens, R. (2022). Comparison of commercial, state-of-the-art, fossil-based hydrogen production technologies. https://netl.doe.gov/projects/files/ComparisonofCommercialStateofArtFossilBasedHydrogenProductionTechnologies_041222.pdf
Massarweh, O., Al-khuzaei, M., Al-Shafi, M., Bicer, Y., & Abushaikha, A. S. (2023). Blue hydrogen production from natural gas reservoirs: A review of application and feasibility. Journal of CO2 Utilization, 70, Article 102438. Link to source: https://doi.org/10.1016/j.jcou.2023.102438
Massarweh, O., Bicer, Y., & Abushaikha, A. (2025). Technoeconomic analysis of hydrogen versus natural gas considering safety hazards and energy efficiency indicators. Scientific Reports, 15, Article 29601. Link to source: https://doi.org/10.1038/s41598-025-14686-6
Pettersen, J., Steeneveldt, R., Grainger, D., Scott, T., Holst, L.-M., & Hamborg, E. S. (2022). Blue hydrogen must be done properly. Energy Science & Engineering, 10(9), 3220–3236. https://doi.org/10.1002/ese3.1232
Romano, M. C., Antonini, C., Bardow, A., Bertsch, V., Brandon, N. P., Brouwer, J., Campanari, S., Crema, L., Dodds, P. E., Gardarsdottir, S., Gazzani, M., Jan Kramer, G., Lund, P. D., Mac Dowell, N., Martelli, E., Mastropasqua, L., McKenna, R. C., Monteiro, J. G. M.-S., Paltrinieri, N., … Wiley, D. (2022). Comment on “How green is blue hydrogen?” Energy Science & Engineering, 10(7), 1944–1954. https://doi.org/10.1002/ese3.1126
Roy, R., Antonini, G., Hayibo, K. S., Rahman, M. M., Khan, S., Tian, W., Boutilier, M. S. H., Zhang, W., Zheng, Y., Bassi, A., & Pearce, J. M. (2025). Comparative techno-environmental analysis of grey, blue, green/yellow and pale-blue hydrogen production. International Journal of Hydrogen Energy, 116, 200–210. Link to source: https://doi.org/10.1016/j.ijhydene.2025.03.104
Sun, T., Shrestha, E., Hamburg, S. P., Kupers, R., & Ocko, I. B. (2024). Climate impacts of hydrogen and methane emissions can considerably reduce the climate benefits across key hydrogen use cases and time scales. Environmental Science & Technology, 58(12), 5299–5309. Link to source: https://doi.org/10.1021/acs.est.3c09030
Udemu, C., & Font-Palma, C. (2024). Potential cost savings of large-scale blue hydrogen production via sorption-enhanced steam reforming process. Energy Conversion and Management, 302, 118132. Link to source: https://doi.org/10.1016/j.enconman.2024.118132
Vallejo, V., Nguyen, Q., & Ravikumar, A. P. (2024). Geospatial variation in carbon accounting of hydrogen production and implications for the US Inflation Reduction Act. Nature Energy, 9(12), 1571–1582. Link to source: https://doi.org/10.1038/s41560-024-01653-0
Wu, W., Zhai, H., & Holubnyak, E. (2024). Technological evolution of large-scale blue hydrogen production toward the U.S. Hydrogen Energy Earthshot. Nature Communications, 15(1), 5684. https://doi.org/10.1038/s41467-024-50090-w
Bioplastics are renewable, plant-based alternatives to conventional plastics that can reduce emissions by replacing fossil-based feedstocks with biogenic carbon feedstocks. These feedstocks are biomass materials that absorb atmospheric CO₂ during growth and serve as the carbon source for plastic production. The chemical and biological properties of bioplastics are well understood, commercially validated, and can reduce emissions when produced sustainably and managed properly at their end-of-life. Benefits include reducing fossil fuel reliance, alleviating plastic pollution, and, in targeted uses, supporting circularity. However, these are counterbalanced by their inconsistent emissions savings, high costs, and scalability constraints. We conclude that deploying bioplastics as plastic alternatives remains a climate solution to “Keep Watching”, but would require changes in feedstock and appropriate end-of-life infrastructure to achieve reliable emissions reductions.
Based on our analysis, the widespread use of bioplastics is challenged by their potential ecological risks and currently high costs. While bioplastics offer some environmental benefits in niche applications, their climate impact is inconsistent and hinges on feedstock type, manufacturing practices, and waste management. Therefore, we conclude that Deploy Bioplastics is a solution to “Keep Watching.”
Plausible | Could it work? | Yes |
---|---|---|
Ready | Is it ready? | Yes |
Evidence | Are there data to evaluate it? | Yes |
Effective | Does it consistently work? | No |
Impact | Is it big enough to matter? | No |
Risk | Is it risky or harmful? | ? |
Cost | Is it cheap? | No |
Bioplastics (also called biopolymers) are plastic alternatives made from renewable biological sources, such as corn, sugarcane, crop residues, or other plants, instead of fossil fuels. Bioplastics are produced by extracting sugars or starches from plants and converting them through chemical or biological processes into chemical building blocks that form the basic structure of plastics. Because plants absorb atmospheric CO₂ through photosynthesis, the carbon stored in bioplastics is considered biogenic, as it is already part of the natural carbon cycle. In contrast, petrochemical plastics are made by extracting and refining oil or natural gas, which releases new (formerly buried) carbon into the atmosphere. Bioplastics cut emissions by replacing fossil carbon feedstocks with biomass-based feedstocks. Some bioplastics are durable, non-biodegradable, chemically identical to traditional plastics (i.e., “drop-in” bioplastics), and recyclable. Others are biodegradable and can be designed to break down in compost. Emissions from bioplastics come from growing and processing biomass (which requires energy and land use), manufacturing the plastics, and managing their end-of-life waste. Bioplastics can achieve climate benefits when the emissions from production and end-of-life are kept low enough to realize the advantages of biogenic carbon.
The basic idea of bioplastics is scientifically and chemically sound, with their development and commercialization ongoing since the 1990s. Numerous studies support the effectiveness of bioplastics in reducing atmospheric CO₂ emissions from feedstock production and manufacturing stages compared to fossil-based plastics, particularly when made from sustainably sourced biomass under energy-efficient conditions and properly composted or recycled. However, other studies show bioplastics have inconsistent emissions reduction performance. Global adoption also remains limited, representing only about 0.5% of total plastics production (approximately 2–2.5 million tons (Mt) out of 414 Mt, according to the organization European Bioplastics).
Bioplastics, particularly biologically derived and biodegradable polymers, have functional advantages in reducing fossil fuel dependence and mitigating plastic pollution. By sourcing raw materials from renewable biomass instead of petroleum (e.g., oil, natural gas), bioplastics can lower CO₂ emissions in the production stage, especially when accounting for biogenic carbon uptake during plant cultivation. Some types of bioplastics are interchangeable with traditional plastics and can be produced with existing plastic manufacturing systems, easing the transition. Compostable plastics simplify disposal in applications where contamination with food or organic waste occurs, enabling organic recycling and returning carbon and other nutrients to soil. Biodegradable bioplastics are also advantageous for products that are often discarded and may leak into the environment. Studies show that two widely used commercial bioplastics, polylactic acid (PLA) and polyhydroxybutyrate (PHB), biodegrade 60–80% in composting conditions within 28–30 days, while cellulose-based and starch-based plastics can fully degrade in soil and marine environments in 180 days and 50 days, respectively. These functional benefits, combined with potential additional benefits, such as soil enrichment and waste stream simplification, make bioplastics appealing in specific, targeted use cases. More broadly, they can significantly contribute to emissions reduction efforts in materials production when designed for circularity and supported by infrastructure that facilitates appropriate end-of-life waste treatment.
Despite their promise, bioplastics have several limitations as a viable climate solution, including relatively low emissions reduction potential and possible risks and adverse impacts from their large-scale deployment. Current production is low. To reach a meaningful 20–30% marketplace share by 2040, bioplastics would need to expand manufacturing by approximately 30% per year, nearly double the current pace. This could put pressure on land and food systems, since current bioplastics rely on food-based crops for industrial-level production. This raises sustainability concerns around food security and could potentially drive unintended land-use changes such as deforestation or cropland conversion. Furthermore, the effectiveness of reducing emissions by replacing conventional plastics with bioplastics is low and inconsistent. Some bioplastics produce more life cycle emissions than conventional plastics. The likely climate impact of replacing 20–30% of traditional plastics with bioplastics is <0.1 Gt CO₂‑eq/yr. End-of-life treatment is also a major challenge. Many bioplastics are incompatible with home composting and current recycling streams, and improperly composted or landfilled biodegradable bioplastics can emit methane. Finally, bioplastics remain 2–3 times more expensive than conventional plastics.
Barbu, B. (2024). Can biodegradable polymers make microplastics? C&EN Global Enterprise, 102(37), 21–22. Link to source: https://doi.org/10.1021/cen-10237-cover4
Bauer, F., Nielsen, T. D., Nilsson, L. J., Palm, E., Ericsson, K., Fråne, A., & Cullen, J. (2022). Plastics and climate change—Breaking carbon lock-ins through three mitigation pathways. One Earth, 5(4), 361–376. Link to source: https://doi.org/10.1016/j.oneear.2022.03.007
Benavides, P. T., Lee, U., & Zarè-Mehrjerdi, O. (2020). Life cycle greenhouse gas emissions and energy use of polylactic acid, bio-derived polyethylene, and fossil-derived polyethylene. Journal of Cleaner Production, 277(124010), 124010. Link to source: https://doi.org/10.1016/j.jclepro.2020.124010
Bishop, G., Styles, D., & Lens, P. N. L. (2022). Land-use change and valorisation of feedstock side-streams determine the climate mitigation potential of bioplastics. Resources, Conservation and Recycling, 180, 106185. Link to source: https://doi.org/10.1016/j.resconrec.2022.106185
Chen, G., Li, J., Sun, Y., Wang, Z., Leeke, G. A., Moretti, C., Cheng, Z., Wang, Y., Li, N., Mu, L., Li, J., Tao, J., Yan, B., & Hou, L. (2024). Replacing traditional plastics with biodegradable plastics: Impact on carbon emissions. Engineering, 32, 152–162. Link to source: https://doi.org/10.1016/j.eng.2023.10.002
Cotterill, M. (2020, August 5). Bioplastics: Don’t let the label fool you. Canadian Geographic.
Link to source: https://canadiangeographic.ca/articles/bioplastics-dont-let-the-label-fool-you/
Di Bartolo, A., Infurna, G., & Dintcheva, N. T. (2021). A review of bioplastics and their adoption in the circular economy. Polymers, 13(8), 1229. Link to source: https://doi.org/10.3390/polym13081229
Dokl, M., Copot, A., Krajnc, D., Fan, Y. V., Vujanović, A., Aviso, K. B., Tan, R. R., Kravanja, Z., & Čuček, L. (2024). Global projections of plastic use, end-of-life fate and potential changes in consumption, reduction, recycling and replacement with bioplastics to 2050. Sustainable Production and Consumption, 51, 498–518. Link to source: https://doi.org/10.1016/j.spc.2024.09.025
Escobar, N., & Britz, W. (2021). Metrics on the sustainability of region-specific bioplastics production, considering global land use change effects. Resources, Conservation and Recycling, 167, 105345. Link to source: https://doi.org/10.1016/j.resconrec.2020.105345
European Bioplastics. (2023). Bioplastics market development update 2023. European Bioplastics E.V. Link to source: https://docs.european-bioplastics.org/publications/market_data/2023/EUBP_Market_Data_Report_2023.pdf
European Bioplastics. (2024). Bioplastics market development update 2024. European Bioplastics E.V. Link to source: https://www.european-bioplastics.org/market/
Ferreira-Filipe, D. A., Paço, A., Duarte, A. C., Rocha-Santos, T., & Patrício Silva, A. L. (2021). Are biobased plastics green alternatives?—A critical review. International Journal of Environmental Research and Public Health, 18(15), 7729. Link to source: https://doi.org/10.3390/ijerph18157729
Helm, L. T., Venier-Cambron, C., & Verburg, P. H. (2025). The potential land-use impacts of bio-based plastics and plastic alternatives. Nature Sustainability, 8, 190–201. Link to source: https://doi.org/10.1038/s41893-024-01492-7
Islam, M., Xayachak, T., Haque, N., Lau, D., Bhuiyan, M., & Pramanik, B. K. (2024). Impact of bioplastics on environment from its production to end-of-life. Process Safety and Environmental Protection, 188, 151–166. Link to source: https://doi.org/10.1016/j.psep.2024.05.113
Ita-Nagy, D., Vázquez-Rowe, I., Kahhat, R., Chinga-Carrasco, G., & Quispe, I. (2020). Reviewing environmental life cycle impacts of biobased polymers: current trends and methodological challenges. The International Journal of Life Cycle Assessment, 25(11), 2169–2189. Link to source: https://doi.org/10.1007/s11367-020-01829-2
Karali, N., Khanna, N., & Shah, N. (2024, April 12). Climate Impact of Primary Plastic Production [Review of Climate Impact of Primary Plastic Production]. Lawrence Berkeley National Laboratory. Link to source: https://escholarship.org/uc/item/6cc1g99q
Meng, F., Brandão, M., & Cullen, J. M. (2024). Replacing plastics with alternatives is worse for greenhouse gas emissions in most cases. Environmental Science & Technology, 58(6), 2716–2727. Link to source: https://doi.org/10.1021/acs.est.3c05191
Patria, R. D., Rehman, S., Yuen, C. W. M., Lee, D.-J., Vuppaladadiyam, A. K., & Leu, S. (2024). Energy-environment-economic (3E) hub for sustainable plastic management – Upgraded recycling, chemical valorization, and bioplastics. Applied Energy, 357, 122543. Link to source: https://doi.org/10.1016/j.apenergy.2023.122543
Piemonte, V., & Gironi, F. (2010). Land-use change emissions: How green are the bioplastics? Environmental Progress & Sustainable Energy, 30(4), 685–691. Link to source: https://doi.org/10.1002/ep.10518
Plastics Europe. (2024, November 18). Plastics – the fast Facts 2024 • Plastics Europe. Plastics Europe. Link to source: https://plasticseurope.org/knowledge-hub/plastics-the-fast-facts-2024/
Rosenboom, J.-G., Langer, R., & Traverso, G. (2022). Bioplastics for a circular economy. Nature Reviews Materials, 7, 117–137. Link to source: https://doi.org/10.1038/s41578-021-00407-8
The multifaceted challenges of bioplastics. (2024). Nature Reviews Bioengineering, 2(4), 279–279. Link to source: https://doi.org/10.1038/s44222-024-00181-6
Vanderreydt, I., Rommens, T., Tenhunen, A., Mortensen, L. F., & Tange, I. (2021, May). Greenhouse gas emissions and natural capital implications of plastics (including biobased plastics). Eionet Portal; European Environment Agency (EEA) European Topic Centre on Waste and Materials in a Green Economy.
Link to source: https://www.eionet.europa.eu/etcs/etc-wmge/products/etc-wmge-reports/greenhouse-gas-emissions-and-natural-capital-implications-of-plastics-including-biobased-plastics
Walker, S., & Rothman, R. (2020). Life cycle assessment of bio-based and fossil-based plastic: A review. Journal of Cleaner Production, 261, 121158. Link to source: https://doi.org/10.1016/j.jclepro.2020.121158
Zhao, X., Cornish, K., & Vodovotz, Y. (2020). Narrowing the gap for bioplastic use in food packaging: An update. Environmental Science & Technology, 54(8), 4712–4732. Link to source: https://doi.org/10.1021/acs.est.9b03755
Zhao, X., Wang, Y., Chen, X., Yu, X., Li, W., Zhang, S., Meng, X., Zhao, Z.-M., Dong, T., Anderson, A., Aiyedun, A., Li, Y., Webb, E., Wu, Z., Kunc, V., Ragauskas, A., Ozcan, S., & Zhu, H. (2023). Sustainable bioplastics derived from renewable natural resources for food packaging. Matter, 6(1), 97–127. Link to source: https://doi.org/10.1016/j.matt.2022.11.006
A composting system diverts organic waste (OW) from landfills, reducing the production of methane and other GHG emissions. OW is defined as the combination of food waste and green waste, composed of yard and garden trimmings. Composting transforms it into a nutrient-rich soil supplement.
Our focus is on centralized (city- or regional-level) composting systems for the OW components of municipal solid waste (MSW). Decentralized (home- and community-level) and on-farm composting are also valuable climate actions, but are not included here due to limited data availability at the global level (see Increase Decentralized Composting).
There are many stages involved in a composting system to convert organic MSW into finished compost that can be used to improve soil health (Figure 1). Within this system, composting is the biochemical process that transforms OW into a soil amendment rich in nutrients and organic matter.
Figure 1. Stages of a composting system. Solution boundaries exclude activities upstream and downstream of centralized MSW composting such as waste collection and compost application. Modified from Kawai et al. (2020) and Manea et al. (2024).
Sources: Kawai, K., Liu, C., & Gamaralalage, P. J. D. (2020). CCET guideline series on intermediate municipal solid waste treatment technologies: Composting. United Nations Environment Programme; Manea, E. E., Bumbac, C., Dinu, L. R., Bumbac, M., & Nicolescu, C. M. (2024). Composting as a sustainable solution for organic solid waste management: Current practices and potential improvements. Sustainability, 16(15), Article 6329.
The composting process is based on aerobic decomposition, driven by complex interactions among microorganisms, biodegradable materials, and invertebrates and mediated by water and oxygen (see the Appendix). Without the proper balance of oxygen and water, anaerobic decomposition occurs, leading to higher methane emissions during the composting process (Amuah et al., 2022; Manea et al., 2024). Multiple composting methods can be used depending on the amounts and composition of OW feedstocks, land availability, labor availability, finances, policy landscapes, and geography. Some common methods include windrow composting, bay or bin systems, and aerated static piles (Figure 2; Amuah et al., 2022; Ayilara et al., 2020; Cao et al., 2023).
Figure 2. Examples of commonly used centralized composting methods. Bay systems (left) move organics between different bays at different stages of the composting process. Windrows (center) are long, narrow piles that are often turned using large machinery. Aerated static piles (right) can be passively aerated as shown here or actively aerated with specialized blowing equipment.
Credit: Bays, iStock | nikolay100; Windrows, iStock | Jeremy Christensen; Aerated static pile, iStock | AscentXmedia
Centralized composting generally refers to processing large quantities (>90 t/week) of organic MSW (Platt, 2017). Local governments often manage centralized composting as part of an integrated waste management system that can also include recycling non-OW, processing OW anaerobically in methane digesters, landfilling, and incineration (Kaza et al., 2018).
Organic components of MSW include food waste and garden and yard trimmings (Figure 2). In most countries and territories, these make up 40–70% of MSW, with food waste as the largest contribution (Ayilara et al., 2020; Cao et al., 2023; Food and Agriculture Organization [FAO], 2019; Kaza et al., 2018; Manea et al., 2024; U.S. Environmental Protection Agency [U.S. EPA], 2020; U.S. EPA, 2023).
Diverting OW, particularly food waste, from landfill disposal to composting reduces GHG emissions (Ayilara et al., 2020; Cao et al., 2023; FAO, 2019). Diversion of organics from incineration could also have emissions and pollution reduction benefits, but we did not include incineration as a baseline disposal method for comparison since it is predominantly used in high-capacity and higher resourced countries and contributes less than 1% to annual waste-sector emissions (Intergovernmental Panel On Climate Change [IPCC], 2023; Kaza et al., 2018).
Disposal of waste in landfills leads to methane emissions estimated at nearly 1.9 Gt CO₂‑eq (100-yr basis) annually (International Energy Agency [IEA], 2024). Landfill emissions come from anaerobic decomposition of inorganic waste and OW and are primarily methane with smaller contributions from ammonia, nitrous oxide, and CO₂ (Cao et al., 2023; Kawai et al., 2020; Manea et al., 2024). Although CO₂, methane, and nitrous oxide are released during composting, methane emissions are up to two orders of magnitude lower than emissions from landfilling for each metric ton of waste (Ayilara et al., 2020; Cao et al, 2023; FAO, 2019; IEA, 2024; Nordahl et al., 2023; Perez et al., 2023). GHG emissions can be minimized by fine-tuning the nutrient balance during composting.
Depending on the specifics of the composting method used, the full transformation from initial feedstocks to finished compost can take weeks or months (Amuah et al., 2022; Manea et al., 2024; Perez et al., 2023). Finished compost can be sold and used in a variety of ways, including application to agricultural lands and green spaces as well as for soil remediation (Gilbert et al., 2020; Platt et al., 2022; Ricci-Jürgensen et al., 2020a; Sánchez et al., 2025).
Alves Comesaña, D., Villar Comesaña, I., & Mato de la Iglesia, S. (2024). Community composting strategies for biowaste treatment: Methodology, bulking agent and compost quality. Environmental Science and Pollution Research, 31(7), 9873–9885. Link to source: https://doi.org/10.1007/s11356-023-25564-x
Amuah, E. E. Y., Fei-Baffoe, B., Sackey, L. N. A., Douti, N. B., & Kazapoe, R. W. (2022). A review of the principles of composting: Understanding the processes, methods, merits, and demerits. Organic Agriculture, 12(4), 547–562. Link to source: https://doi.org/10.1007/s13165-022-00408-z
Ayilara, M., Olanrewaju, O., Babalola, O., & Odeyemi, O. (2020). Waste management through composting: Challenges and potentials. Sustainability, 12(11), Article 4456. Link to source: https://doi.org/10.3390/su12114456
Bekchanov, M., & Mirzabaev, A. (2018). Circular economy of composting in Sri Lanka: Opportunities and challenges for reducing waste related pollution and improving soil health. Journal of Cleaner Production, 202, 1107–1119. Link to source: https://doi.org/10.1016/j.jclepro.2018.08.186
Bell, B., & Platt, B. (2014). Building healthy soils with compost to protect watersheds. Institute for Local Self-Reliance. Link to source: https://ilsr.org/wp-content/uploads/2013/05/Compost-Builds-Healthy-Soils-ILSR-5-08-13-2.pdf
Brown, S. (2015, July 14). Connections: YIMBY. Biocycle. Link to source: https://www.biocycle.net/connections-yimby/
Cai, B., Lou, Z., Wang, J., Geng, Y., Sarkis, J., Liu, J., & Gao, Q. (2018). CH4 mitigation potentials from China landfills and related environmental co-benefits. Science Advances, 4(7), Article eaar8400. Link to source: https://doi.org/10.1126/sciadv.aar8400
Cao, X., Williams, P. N., Zhan, Y., Coughlin, S. A., McGrath, J. W., Chin, J. P., & Xu, Y. (2023). Municipal solid waste compost: Global trends and biogeochemical cycling. Soil & Environmental Health, 1(4), Article 100038. Link to source: https://doi.org/10.1016/j.seh.2023.100038
Casey, J. A., Cushing, L., Depsky, N., & Morello-Frosch, R. (2021). Climate justice and California’s methane superemitters: Environmental equity Assessment of community proximity and exposure intensity. Environmental Science & Technology, 55(21), 14746–14757. Link to source: https://doi.org/10.1021/acs.est.1c04328
Coker, C. (2020, March 3). Composting business management: Revenue forecasts for composters. Biocycle. Link to source: https://www.biocycle.net/composting-business-management-revenue-forecasts-composters/
Coker, C. (2020, March 10). Composting business management: Capital cost of composting facility construction. Biocycle. Link to source: https://www.biocycle.net/composting-business-management-capital-cost-composting-facility-construction/
Coker, C. (2020, March 17). Composting business management: Composting facility operating cost estimates. Biocycle. Link to source: https://www.biocycle.net/composting-business-management-composting-facility-operating-cost-estimates/
Coker, C. (2022, August 23). Compost facility planning: Composting facility approvals and permits. Biocycle. Link to source: https://www.biocycle.net/composting-facility-approval-permits/
Coker, C. (2022, September 27). Compost facility planning: Composting facility cost estimates. Biocycle. Link to source: https://www.biocycle.net/compost-facility-planning-cost/
Coker, C. (2024, August 20). Compost market development. Biocycle. Link to source: https://www.biocycle.net/compost-market-development/
European Energy Agency. (2024). Greenhouse gas emissions by source sector. (Last Updated: April 18, 2024). Eurostat. [Data set and codebook]. Link to source: https://ec.europa.eu/eurostat/databrowser/view/env_air_gge__custom_16006716/default/table
Farhidi, F., Madani, K., & Crichton, R. (2022). How the US economy and environment can both benefit from composting management. Environmental Health Insights, 16. Link to source: https://doi.org/10.1177/11786302221128454
Food and Agriculture Organization of the United Nations. (2024). The state of food and agriculture 2024 – Value-driven transformation of agrifood systems. Link to source: https://doi.org/10.4060/cd2616en
Finlay, K. (2024). Turning down the heat: how the U.S. EPA can fight climate change by cutting landfill emissions. Industrious Labs. Link to source: https://cdn.sanity.io/files/xdjws328/production/657706be7f29a20fe54692a03dbedce8809721e8.pdf
González, D., Barrena, R., Moral-Vico, J., Irigoyen, I., & Sánchez, A. (2024). Addressing the gaseous and odour emissions gap in decentralised biowaste community composting. Waste Management, 178, 231–238. Link to source: https://doi.org/10.1016/j.wasman.2024.02.042
International Energy Agency. (2024), Global Methane Tracker 2024. Link to source: https://www.iea.org/reports/global-methane-tracker-2024
International Energy Agency. (2025). Outlook for biogas and biomethane. Link to source: https://www.iea.org/reports/outlook-for-biogas-and-biomethane
Intergovernmental Panel On Climate Change. (2023). Climate change 2022 – Impacts, adaptation and vulnerability: Working Group II contribution to the sixth assessment report of the Intergovernmental Panel on Climate Change (1st ed.). Cambridge University Press. Link to source: https://doi.org/10.1017/9781009325844
Intergovernmental Panel On Climate Change. (2019). 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories, Calvo. Buendia, E., Tanabe, K., Kranjc, A., Baasansuren, J., Fukuda, M., Ngarize S., Osako, A., Pyrozhenko, Y., Shermanau, P. and Federici, S. (eds). Link to source: https://www.ipcc-nggip.iges.or.jp/public/2019rf/index.html
Jamroz, E., Bekier, J., Medynska-Juraszek, A., Kaluza-Haladyn, A., Cwielag-Piasecka, I., & Bednik, M. (2020). The contribution of water extractable forms of plant nutrients to evaluate MSW compost maturity: A case study. Scientific Reports, 10(1), Article 12842. Link to source: https://doi.org/10.1038/s41598-020-69860-9
Kawai, K., Liu, C., & Gamaralalage, P. J. D. (2020). CCET guideline series on intermediate municipal solid waste treatment technologies: Composting. United Nations Environment Programme. Link to source: https://www.unep.org/ietc/resources/publication/ccet-guideline-series-intermediate-municipal-solid-waste-treatment
Kaza, S., Yao, L. C., Bhada-Tata, P., Van Woerden, F., (2018). What a waste 2.0: A global snapshot of solid waste management to 2050. Urban Development. World Bank. Link to source: http://hdl.handle.net/10986/30317
Krause, M., Kenny, S., Stephenson, J., & Singleton, A. (2023). Quantifying methane emissions from landfilled food waste (Report No. EPA-600-R-23-064). U.S. Environmental Protection Agency Office of Research and Development. Link to source: https://www.epa.gov/system/files/documents/2023-10/food-waste-landfill-methane-10-8-23-final_508-compliant.pdf
Liu, K-. M., Lin, S-. H., Hsieh, J-., C., Tzeng, G-., H. (2018). Improving the food waste composting facilities site selection for sustainable development using a hybrid modified MADM model. Waste Management, 75, 44–59. Link to source: https://doi.org/10.1016/j.wasman.2018.02.017
Maalouf, A., & Agamuthu, P. (2023). Waste management evolution in the last five decades in developing countries – A review. Waste Management & Research: The Journal for a Sustainable Circular Economy, 41(9), 1420–1434. Link to source: https://doi.org/10.1177/0734242X231160099
Manea, E. E., Bumbac, C., Dinu, L. R., Bumbac, M., & Nicolescu, C. M. (2024). Composting as a sustainable solution for organic solid waste management: Current practices and potential improvements. Sustainability, 16(15), Article 6329. Link to source: https://doi.org/10.3390/su16156329
Martínez-Blanco, J., Lazcano, C., Christensen, T. H., Muñoz, P., Rieradevall, J., Møller, J., Antón, A., & Boldrin, A. (2013). Compost benefits for agriculture evaluated by life cycle assessment. A review. Agronomy for Sustainable Development, 33(4), 721–732. Link to source: https://doi.org/10.1007/s13593-013-0148-7
Martuzzi, M., Mitis, F., & Forastiere, F. (2010). Inequalities, inequities, environmental justice in waste management and health. The European Journal of Public Health, 20(1), 21–26. Link to source: https://doi.org/10.1093/eurpub/ckp216
Nordahl, S. L., Devkota, J. P., Amirebrahimi, J., Smith, S. J., Breunig, H. M., Preble, C. V., Satchwell, A. J., Jin, L., Brown, N. J., Kirchstetter, T. W., & Scown, C. D. (2020). Life-Cycle greenhouse gas emissions and human health trade-offs of organic waste management strategies. Environmental Science & Technology, 54(15), 9200–9209. Link to source: https://doi.org/10.1021/acs.est.0c00364
Nordahl, S. L., Preble, C. V., Kirchstetter, T. W., & Scown, C. D. (2023). Greenhouse gas and air pollutant emissions from composting. Environmental Science & Technology, 57(6), 2235–2247. Link to source: https://doi.org/10.1021/acs.est.2c05846
Organisation for Economic Co-operation and Development. (2021). Waste - Municipal waste: generation and treatment. (Downloaded: March 20, 2025) [Data set]. Link to source: https://data-explorer.oecd.org/vis?lc=en&df[ds]=dsDisseminateFinalDMZ&df[id]=DSD_MUNW%40DF_MUNW&df[ag]=OECD.ENV.EPI&dq=.A.INCINERATION_WITHOUT%2BLANDFILL.T&pd=2014%2C&to[TIME_PERIOD]=false&vw=ov
Pérez, T., Vergara, S. E., & Silver, W. L. (2023). Assessing the climate change mitigation potential from food waste composting. Scientific Reports, 13(1), Article 7608. Link to source: https://doi.org/10.1038/s41598-023-34174-z
Platt, B., Bell, B., & Harsh, C. (2013). Pay dirt: Composting in Maryland to reduce waste, create jobs, & protect the bay. Institute for Local Self-Reliance. Link to source: https://ilsr.org/wp-content/uploads/2013/05/Pay-Dirt-Report.pdf
Platt, B. (2017, April 4). Hierarchy to Reduce Food Waste & Grow Community, Institute for Local Self-Reliance. Link to source: https://ilsr.org/articles/food-waste-hierarchy/
Platt, B., and Fagundes, C. (2018). Yes! In my backyard: A home composting guide for local government. Institute for Local Self-Reliance. Link to source: https://ilsr.org/articles/yimby-compost/
Platt, B., Libertelli, C., & Matthews, M. (2022). A growing movement: 2022 community composter census. Institute for Local Self-Reliance. Link to source: https://ilsr.org/articles/composting-2022-census/
Ricci-Jürgensen, M., Gilbert, J., & Ramola, A.. (2020a). Global assessment of municipal organic waste production and recycling. International Solid Waste Association. Link to source: https://www.altereko.it/wp-content/uploads/2020/03/Report-1-Global-Assessment-of-Municipal-Organic-Waste.pdf
Ricci-Jürgensen, M., Gilbert, J., & Ramola, A.. (2020b). Benefits of compost and anaerobic digestate when applied to soil. International Solid Waste Association. Link to source: https://www.altereko.it/wp-content/uploads/2020/03/Report-2-Benefits-of-Compost-and-Anaerobic-Digestate.pdf
Rynk, R., Black, G., Biala, J., Bonhotal, J., Cooperband, L., Gilbert, J., & Schwarz, M. (Eds.). (2021). The composting handbook. Compost Research & Education Foundation and Elsevier. Link to source: https://www.compostingcouncil.org/store/viewproduct.aspx?id=19341051
Sánchez, A., Gea, T., Font, X., Artola, A., Barrena, R., & Moral-Vico, J. (Eds.). (2025). Composting: Fundamentals and Recent Advances: Chapter 1. Royal Society of Chemistry. Link to source: https://doi.org/10.1039/9781837673650
Souza, M. A. d., Gonçalves, J. T., & Valle, W. A. d. (2023). In my backyard? Discussing the NIMBY effect, social acceptability, and residents’ involvement in community-based solid waste management. Sustainability, 15(9), Article 7106. Link to source: https://doi.org/10.3390/su15097106
The Environmental Research & Education Foundation. (2024). Analysis of MSW landfill tipping fees — 2023. Link to source: https://erefdn.org/product/analysis-of-msw-landfill-tipping-fees-2023/
U.S. Composting Council. (2008). Greenhouse gases and the role of composting: A primer for compost producers [Fact sheet]. Link to source: https://cdn.ymaws.com/www.compostingcouncil.org/resource/resmgr/documents/GHG-and-Role-of-Composting-a.pdf
U.S. Environmental Protection Agency. (2020). 2018 wasted food report (EPA Publication No. EPA 530-R-20-004). Office of Resource Conservation and Recovery. Link to source: https://www.epa.gov/system/files/documents/2025-02/2018_wasted_food_report-v2.pdf
U.S. Environmental Protection Agency. (2023). 2019 Wasted food report (EPA Publication No. 530-R-23-005). National Institutes of Health. Link to source: https://www.epa.gov/system/files/documents/2024-04/2019-wasted-food-report_508_opt_ec_4.23correction.pdf
U.S. Environmental Protection Agency. (2023). Documentation for Greenhouse Gas Emission and Energy Factors Used in the Waste Reduction Model (WARM): Organic Materials Chapters (EPA Publication No. EPA-530-R-23-019). Office of Resource Conservation and Recovery. Link to source: https://www.epa.gov/system/files/documents/2023-12/warm_organic_materials_v16_dec.pdf
U.S. Environmental Protection Agency. (2025, January). Approaches to composting. Link to source: https://www.epa.gov/sustainable-management-food/approaches-composting
U.S. Environmental Protection Agency. (2025, April). Benefits of using compost. Link to source: https://www.epa.gov/sustainable-management-food/benefits-using-compost
United Nations Environment Programme. (2023). Towards Zero Waste: A Catalyst for delivering the Sustainable Development Goals. Link to source: https://doi.org/10.59117/20.500.11822/44102
United Nations Environment Programme. (2024). Global Waste Management Outlook 2024 Beyond an age of waste: Turning rubbish into a resource. Link to source: https://www.unep.org/resources/global-waste-management-outlook-2024
Urra, J., Alkorta, I., & Garbisu, C. (2019). Potential benefits and risks for soil health derived from the use of organic amendments in agriculture. Agronomy, 9(9), 542. Link to source: https://doi.org/10.3390/agronomy9090542
Wilson, D. C., Paul, J., Ramola, A., & Filho, C. S. (2024). Unlocking the significant worldwide potential of better waste and resource management for climate mitigation: With particular focus on the Global South. Waste Management & Research: The Journal for a Sustainable Circular Economy, 42(10), 860–872. Link to source: https://doi.org/10.1177/0734242X241262717
World Bank. (2018). What a waste global database: Country-level dataset. (Last Updated: June 4, 2024) [Data set]. World Bank. Link to source: https://datacatalogfiles.worldbank.org/ddh-published/0039597/3/DR0049199/country_level_data.csv
Yasmin, N., Jamuda, M., Panda, A. K., Samal, K., & Nayak, J. K. (2022). Emission of greenhouse gases (GHGs) during composting and vermicomposting: Measurement, mitigation, and perspectives. Energy Nexus, 7, Article 100092. Link to source: https://doi.org/10.1016/j.nexus.2022.100092
Zaman, A. U. (2016). A comprehensive study of the environmental and economic benefits of resource recovery from global waste management systems. Journal of Cleaner Production, 124, 41–50. Link to source: https://doi.org/10.1016/j.jclepro.2016.02.086
Zero Waste Europe & Bio-based Industries Consortium. (2024). Bio-waste generation in the EU: Current capture levels and future potential (Second edition). LIFE Programme of the European Union. Link to source: https://zerowasteeurope.eu/library/bio-waste-generation-in-the-eu-current-capture-levels-and-future-potential-second-edition/
Zhu, J., Luo, Z., Sun, T., Li, W., Zhou, W., Wang, X., Fei, X., Tong, H., & Yin, K. (2023). Cradle-to-grave emissions from food loss and waste represent half of total greenhouse gas emissions from food systems. Nature Food, 4(3), 247–256. Link to source: https://doi.org/10.1038/s43016-023-00710-3
Megan Matthews, Ph. D.
Ruthie Burrows, Ph.D.
James Gerber, Ph.D.
Daniel Jasper
Alex Sweeney
Aiyana Bodi
Hannah Henkin
Ted Otte
Sarah Gleeson, Ph. D.
Amanda D. Smith, Ph.D.
Paul C. West, Ph.D.
We estimated that composting reduces emissions by 3.9 t CO₂‑eq /t OW (9.3 t CO₂‑eq /t OW, 20-yr basis) based on avoided landfill emissions minus the emissions during composting of MSW OW (Table 1). In our analysis, composting emissions were an order of magnitude lower than landfill emissions.
Table 1. Effectiveness at reducing emissions.
Unit: t CO₂‑eq (100-yr basis)/t OW
25th percentile | 2.5 |
mean | 3.2 |
median (50th percentile) | 3.9 |
75th percentile | 4.3 |
Emissions data from composting and landfilling OW are geographically limited, but our analysis includes three global reports and studies from the U.S., China, Denmark, and the EU (European Energy Agency [EEA], 2024; Industrious Labs, 2024; Perez et al., 2023; U.S. EPA, 2020; Yang et al., 2017, Yasmin et al., 2022). We assumed OW was 39% of MSW in accordance with global averages (Kaza et al., 2018; World Bank, 2018).
We estimated that landfills emit 4.3 t CO₂‑eq /t OW (9.9 t CO₂‑eq /t OW, 20-yr basis). We estimated composting emissions were 10x lower at 0.4 t CO₂‑eq /t OW (0.6 t CO₂‑eq /t OW, 20-yr basis). We quantified emissions from a variety of composting methods and feedstock mixes (Cao et al., 2023; Perez et al., 2023; Yasmin et al., 2022). Consistent with Amuah et al. (2022), we assumed a 60% moisture content by weight to convert reported wet waste quantities to dry waste weights. We based effectiveness estimates only on dry OW weights. For adoption and cost, we did not distinguish between wet and dry OW.
Financial data were geographically limited. We based cost estimates on global reports with selected studies from the U.K., U.S., India, and Saudi Arabia for landfilling and the U.S. and Sri Lanka for composting. Transportation and collection costs can be significant in waste management, but we did not include them in this analysis. We calculated amortized net cost for landfilling and composting by subtracting revenues from operating costs and amortized initial costs over a 30-yr facility lifetime.
Landfill initial costs are one-time investments, while operating expenses, which include maintenance, wages, and labor, vary annually. Environmental costs, including post-closure operations, are not included in our analysis, but some countries impose taxes on landfilling to incentivize alternative disposal methods and offset remediation costs. Landfills generate revenue through tip fees and sales of landfill gas (Environmental Research & Education Foundation [EREF], 2023; Kaza et al., 2018). We estimated that landfilling is profitable, with a net cost of –US$30/t OW.
Initial and operational costs for centralized composting vary depending on method and scale (IPCC, 2023; Manea et al., 2024), but up-front costs are generally cheaper than landfilling. Since composting is labor-intensive and requires monitoring, operating costs can be higher, particularly in regions that do not impose landfilling fees (Manea et al., 2024).
Composting facilities generate revenue through tip fees and sales of compost products. Compost sales alone may not be sufficient to recoup costs, but medium- to large-scale composting facilities are economically viable options for municipalities (Kawai et al., 2020; Manea et al., 2024). We estimated the net composting cost to be US$20/t OW. The positive value indicates that composting is not globally profitable; however, decentralized systems that locally process smaller waste quantities can be profitable using low-cost but highly efficient equipment and methods (see Increase Decentralized Composting).
We estimated that composting costs US$50/t OW more than landfilling. Although composting systems cost more to implement, the societal and environmental costs are greatly reduced compared to landfilling (Yasmin et al., 2022). The high implementation cost is a barrier to adoption in lower-resourced and developing countries (Wilson et al., 2024).
Combining effectiveness with the net costs presented here, we estimated a cost per unit climate impact of US$10/t CO₂‑eq (US$5/t CO₂‑eq , 20-yr basis) (Table 2).
Table 2. Cost per unit climate impact.
Unit: US$ (2023)/t CO₂‑eq (100-yr basis)
median | 10 |
Global cost data on composting are limited, and costs can vary depending on composting methods, so we did not quantify a learning rate for centralized composting.
Speed of action refers to how quickly a climate solution physically affects the atmosphere after it is deployed. This is different from speed of deployment, which is the pace at which solutions are adopted.
At Project Drawdown, we define the speed of action for each climate solution as emergency brake, gradual, or delayed.
Increase Centralized Composting is an EMERGENCY BRAKE climate solution. It has the potential to deliver a more rapid impact than nominal and delayed solutions. Because emergency brake solutions can deliver their climate benefits quickly, they can help accelerate our efforts to address dangerous levels of climate change. For this reason, they are a high priority.
The composting process has a low risk of reversal since carbon is stored stably in finished compost instead of decaying and releasing methane in a landfill (Ayilara et al., 2020; Manea et al., 2024). However, a composting system, from collection to finished product, can be challenging to sustain. Along with nitrogen-rich food and green waste, additional carbon-rich biomass, called bulking material, is critical for maintaining optimal composting conditions that minimize GHG emissions. Guaranteeing the availability of sufficient bulking materials can challenge the success of both centralized and decentralized facilities.
Financially and environmentally sustainable composting depends not only on the quality of incoming OW feedstocks, but also on the quality of the final product. Composting businesses require a market for sales of compost products (in green spaces and/or agriculture), and poor source separation could lead to low-quality compost and reduced demand (Kawai et al., 2020; Wilson et al., 2024). Improvements in data collection and quality through good feedback mechanisms can also act as leverage for expanding compost markets, pilot programs, and growing community support.
If composting facilities close due to financial or other barriers, local governments may revert to disposing of organics in landfills. Zoning restrictions also vary broadly across geographies, affecting how easily composting can be implemented (Cao et al., 2023). In regions where centralized composting is just starting, reversal could be more likely without community engagement and local government support (Kawai et al., 2020; Maalouf & Agamuthu, 2023); however, even if facilities close, the emissions savings from past operation cannot be reversed.
We estimated global composting adoption at 78 million t OW/yr, as the median between two datasets (Table 3). The most recent global data on composting were compiled in 2018 from an analysis from 174 countries and territories (World Bank, 2018). We also used an Organisation for Economic Co-operation and Development (OECD) analysis from 45 countries (OECD, 2021). However, there were still many countries and territories that did not report composting data in one or both datasets. Although the World Bank dataset is comprehensive, it is based on data collected in 2011–2018, so more recent, high-quality, global data on composting are needed.
Table 3. Current adoption level (2021).
Unit: t OW composted/yr
25th percentile | 67,000,000 |
mean | 78,000,000 |
median (50th percentile) | 78,000,000 |
75th percentile | 89,000,000 |
Globally in 2018, nearly 40% of all waste was disposed of in landfills, 19% was recovered through composting and other recovery and recycling methods, and the remaining waste was either unaccounted for or disposed of through open dumping and wastewater (Kaza et al., 2018)
We calculated total tonnage composted using the reported composting percentages and the total MSW tonnage for each country. Composting percentages were consistently lower than the total percentage of OW present in MSW, suggesting there is ample opportunity for increased composting, even in geographies where it is an established disposal method. In 2018, 26 countries/territories had a composting rate above 10% of MSW, and 15 countries/territories had a composting rate above 20% of MSW. Countries with the highest composting rates were Austria (31%), the Netherlands (27%), and Switzerland (21%) (World Bank, 2018).
We used OECD data to estimate the composting adoption trend from 2014–2021 (OECD, 2021), which fluctuated significantly from year to year (Table 4). Negative rates indicate less OW was composted globally than in the previous year. Taking the median composting rate across seven years, we estimate the global composting trend as 260,000 t OW/yr/yr. However, the mean composting trend is –1.3 Mt OW/yr/yr, suggesting that on average, composting rates are decreasing globally.
Table 4. Adoption trend (2014–2021).
Unit: t OW composted/yr/yr
25th percentile | -1,200,000 |
mean | -1,300,000 |
median (50th percentile) | 260,000 |
75th percentile | 4,300,000 |
Although some regions are increasing their composting capacity, others are either not composting or composting less over time. Germany, Italy, Spain, and the EU overall consistently show increases in composting rates year-to-year, while Greece, Japan, Türkiye, and the U.K. show decreasing composting rates. In Europe, the main drivers for consistent adoption were disposal costs, financial penalties, and the landfill directive (Ayilara et al., 2020).
Lack of reported data could also contribute to a negative global average composting rate over the past seven years. A large decline in composting rates from 2018–2019 was driven by a lack of data in 2019 for the U.S. and Canada. If we assumed that the U.S. composted the same tonnage in 2019 as in 2018, instead of no tonnage as reported in the data, then the annual trend for 2018–2019 is much less negative (–450,000 t OW/yr/yr) and the overall mean trend between 2014–2019 would be positive (1,400,000 t OW/yr/yr).
We estimate the global adoption ceiling for Increase Centralized Composting to be 991 million t OW/yr (Table 5). In 2016, 2.01 Gt of MSW were generated, and generation is expected to increase to 3.4 Gt by 2050 (Kaza et al., 2018). Due to limited global data availability on composting infrastructure or policies, we estimated the adoption ceiling based on the projected total MSW for 2050 and assumed the OW fraction remains the same over time.
Table 5. Adoption ceiling. upper limit for adoption level.
Unit: t OW composted/yr
median (50th percentile) | 991,000,000 |
In reality, amounts of food waste within MSW are also increasing, suggesting that there are sufficient global feedstocks to support widespread composting adoption (Zhu et al., 2023).
We assume that 75% of OW could be processed via composting and the remaining 25% via methane digesters (see Deploy Methane Digesters). Biowaste from MSW makes up approximately 15% of incoming feedstocks for methane digesters (IEA, 2025).
Since the global annual trend fluctuates, we used country-specific composting rates and organic fractions of MSW from 2018 to estimate the achievable range of composting adoption (see Appendix for an example). In our analysis, achievable increases in country-specific composting rates cannot exceed the total organic fraction of 2018 MSW.
For the 106 countries/territories that did not report composting rates, we defined achievable levels of composting relative to the fraction of OW in MSW. When countries also did not report OW percentages, the country-specific composting rate was kept at zero. For the remaining 86 countries/territories, we assumed that 25% of organic MSW could be diverted to composting for low achievable adoption and that 50% could be diverted for high achievable adoption.
For the 68 countries/territories with reported composting rates, we define low and high achievable adoption as a 25% or 50% increase to the country-specific composting rate, respectively. If the increased rate for either low or high adoption exceeded the country-specific OW fraction of MSW, we assumed that all organic MSW could be composted (see Appendix for an example). Our Achievable – Low adoption level is 156 Mt OW/yr, or 16% of our estimated adoption ceiling (Table 6). Our Achievable – High adoption level is 244 Mt OW/yr, or 25% of our estimated adoption ceiling.
Table 6. Range of achievable adoption levels.
Unit: t OW composted/yr
Current Adoption | 78,000,000 |
Achievable – Low | 156,000,000 |
Achievable – High | 244,000,000 |
Adoption Ceiling | 991,000,000 |
Our estimated adoption levels are conservative because some regions without centralized composting of MSW could have subnational decentralized composting programs that aren’t reflected in global data.
Although our achievable range is conservative compared to the estimated adoption ceiling, increased composting has the potential to reduce GHG emissions from landfills (Table 7). We estimated that current adoption reduces annual GHG emissions by 0.3 Gt CO₂‑eq/yr (0.73 Gt CO₂‑eq/yr, 20-yr basis). Our estimated low and high achievable adoption levels reduce 0.60 and 0.95 Gt CO₂‑eq/yr (1.4 and 2.3 Gt CO₂‑eq/yr, 20-yr basis), respectively. Using the adoption ceiling, we estimate that annual GHG reductions increase to 3.8 Gt CO₂‑eq/yr (9.2 Gt CO₂‑eq/yr, 20-yr basis).
Table 7. Climate impact at different levels of adoption.
Unit: Gt CO₂‑eq (100-yr basis)/yr
Current Adoption | 0.30 |
Achievable – Low | 0.60 |
Achievable – High | 0.95 |
Adoption Ceiling | 3.8 |
The IPCC estimated in 2023 that the entire waste sector accounted for 3.9% of total global GHG emissions, and solid waste management represented 36% of total waste sector emissions (IPCC, 2023). Disposal of waste in landfills leads to methane emissions estimated at nearly 1.9 Gt CO₂‑eq (100-yr basis) annually (IEA, 2024). Based on these estimates, current composting adoption reduces annual methane emissions from landfills more than 16%.
Increasing adoption to low and high achievable levels could reduce the amount of OW going to landfills by up to 40% and avoid 32–50% of landfill emissions. Reaching our estimated adoption ceilings for both Increase Centralized Composting and Deploy Methane Digesters solutions could avoid all food-related landfill emissions.
These climate impacts can be considered underestimates of beneficial mitigation from increased composting since we did not quantify the carbon sequestration benefits of compost application and reduced synthetic fertilizer use. Our estimated climate impacts from composting are also an underestimate because we didn’t include decentralized composting.
Composting creates more jobs than landfills or incinerators and can save money compared with other waste management options (Bekchanov & Mirzabaev, 2018; Farhidi et al., 2022; Platt et al., 2013; Zaman, 2016). It is less expensive to build and maintain composting plants than incinerators (Kawai et al., 2020). According to a survey of Maryland waste sites, composting creates twice as many jobs as landfills and four times as many jobs as incineration plants (Platt et al., 2013). Composting also indirectly sustains jobs in the distribution and use of compost products (Platt et al., 2013). Compost is rich in nutrients and can also reduce costs associated with synthetic fertilizer use in agriculture (Farhidi et al., 2022).
Odors coming from anaerobic decomposition landfills, such as ammonia and hydrogen sulfide, are another source of pollutants that impact human well-being, which can be reduced by aerobic composting (Cai et al., 2018).
Reducing community exposure to air pollution from landfills through composting has implications for environmental justice (Casey et al., 2021; Nguyen et al., 2023). A large review of waste sites in the United States and Europe found that landfills are disproportionately located near populations with low socioeconomic status and near racially and ethnically marginalized neighborhoods (Marzutti et al., 2010). Reducing disproportionate exposures to air pollution from landfills may mitigate poor health outcomes in surrounding communities (Brender et al., 2011)
Compost provides an important soil amendment that adds organic matter and nutrients to soil, reducing the need for synthetic fertilizers (Urra et al., 2019; U.S. EPA, 2025). Healthy soils that are rich in organic matter can benefit the surrounding ecosystem and watershed and lead to more plant growth through improved water retention and filtration, improved soil quality and structure, and reduced erosion and nutrient runoff (Bell & Platt, 2014; Martinez-Blanco et al., 2013; U.S. EPA, 2025). By reducing the need for synthetic fertilizers and by improving soils’ ability to filter and conserve water, compost can also reduce eutrophication of water bodies (U.S. EPA, 2025). These soil benefits are partially dependent on how compost is sorted because there may be risks associated with contamination of microplastics and heavy metals (Manea et al., 2024; Urra et al., 2019).
For a description of water resources benefits, please see Land Resources above.
Composting can reduce air pollution such as CO₂, methane, volatile organic compounds, and particulate matter that is commonly released from landfills and waste-to-energy systems (Kawai et al., 2020; Nordahl et al., 2020; Siddiqua et al., 2022). An analysis comparing emissions from MSW systems found composting to have lower emissions than landfilling and other waste-to-energy streams (Nordahl et al., 2020). Composting can also reduce the incidence of landfill fires, which release black carbon and carbon monoxide, posing risks to the health and safety of people in nearby communities (Nguyen et al., 2023).
Before the composting process can start, feedstocks are sorted to remove potential contaminants, including nonbiodegradable materials such as metal and glass as well as plastics, bioplastics, and paper products (Kawai et al., 2020; Perez et al., 2023; Wilson et al., 2024). While most contaminants can be removed through a variety of manual and mechanical sorting techniques, heavy metals and microplastics can become potential safety hazards or reduce finished compost quality (Manea et al., 2024). Paper and cardboard should be separated from food and green waste streams because they often contain contaminants such as glue or ink, and they degrade more slowly than other OW, leading to longer processing time and lower-quality finished compost (Kawai et al., 2020; Krause et al., 2023).
Successful and safe composting requires careful monitoring of compost piles to avoid anaerobic conditions and ensure sufficient temperatures to kill pathogens and weed seeds (Amuah et al., 2022; Ayilara et al., 2020; Cao et al., 2023; Kawai et al., 2020; Manea et al., 2024). Anaerobic conditions within the compost pile increase GHGs emitted during composting. Poorly managed composting facilities can also pose safety risks for workers and release odors, leading to community backlash (Cao et al., 2023; Manea et al., 2024; UNEP, 2024). Regional standards, certifications, and composter training programs are necessary to protect workers from hazardous conditions and to guarantee a safe and effective compost product (Kawai et al., 2020). Community outreach and education on the benefits of separating waste and composting prevent “not-in-my-backyard” attitudes or “NIMBYism” (Brown, 2015; Platt & Fagundes 2018) that may lead to siting composting facilities further from the communities they serve (Souza, et al., 2023; Liu et al., 2018).
Increased composting could positively impact annual cropping by providing consistent, high-quality finished compost that can reduce dependence on synthetic fertilizers and improve soil health and crop yields.
High-quality sorting systems also allow for synergies that benefit all waste streams and create flexible, resilient waste management systems. Improving waste separation programs for composting can have spillover effects that also improve other waste streams, such as recyclables, agricultural waste, or e-waste. Access to well-sorted materials can also help with nutrient balance for various waste streams, including agricultural waste.
Composting facilities require a reliable source of carbon-rich bulking material. Agricultural waste can be diverted to composting rather than burning to reduce emissions from crop residue burning.
Diverting OW from landfills will lead to lower landfill methane emissions and, therefore, less methane available to be captured and resold as revenue.
OW diverted from landfills can also be managed using anaerobic digestion in methane digesters, which reduces the available volumes of OW for composting.
t organic waste
CO₂, CH₄
Robust collection networks and source separation of OW are vital for successful composting, but they also increase investment costs. However, well-sorted OW can reduce the need for separation equipment and allow for simpler facility designs, leading to lower operational costs. The emissions from transporting OW are not included here, but are expected to be significantly less than the avoided landfill emissions. Composting facilities are typically located close to the source of OW (Kawai et al., 2020; U.S. Composting Council [USCC], 2008), but since centralized composting facilities are designed to serve large communities and municipalities, there can be trade-offs between sufficient land availability and distance from waste sources.
We also exclude emissions from onsite vehicles and equipment such as bulldozers and compactors, assuming that those emissions are small compared to the landfill itself.
Composting reduces OW, prevents pollution and GHG emissions from landfilled OW, and creates soil amendments that can reduce the use of synthetic fertilizers (Kaza et al., 2018; Manea et al., 2024). Although we do not quantify carbon sequestration from compost use in this analysis, a full life-cycle analysis that includes application could result in net negative emissions for composting (Morris et al., 2013).
Globally, the waste sector was responsible for an estimated 3.9% of total global GHG emissions in 2023, and solid waste management represented 36% of those emissions (IPCC, 2023; UNEP, 2024). Emissions estimates based on satellite and field measurements from landfills or direct measurements of carbon content in food waste can be significantly higher than IPCC Tier 1-based estimates. Reviews of global waste management estimated that food loss and food waste account for around 6% of global emissions or approximately 2.8 Gt CO₂‑eq/yr (Wilson et al., 2024; Zhu et al., 2023). Facility-scale composting reduces emissions 38–84% relative to landfilling (Perez et al., 2023), and monitoring and managing the moisture content, aeration, and carbon to nitrogen ratios can further reduce emissions (Ayilara et al., 2020).
Unclear legislation and regulation for MSW composting can prevent adoption, and there is not a one-size-fits-all approach to composting (Cao et al., 2023). Regardless of the method used, composting converts OW into a nutrient-rich resource and typically reduces incoming waste volumes 40–60% in the process (Cao et al., 2023; Kaza et al., 2018). A comparative cost and energy analysis of MSW components highlighted that while composting adoption varies geographically and economically, environmental benefits also depend on geography and income (Zaman, 2016). Food and green waste percentages of MSW are higher in lower-resourced countries than in high-income countries due to less packaging, and more than one-third of waste in high-income countries is recovered through recycling and composting (Kaza et al., 2018).
The results presented in this document summarize findings from 22 reports, 31 reviews, 12 original studies, two books, nine web articles, one fact sheet, and three data sets reflecting the most recent evidence for more than 200 countries and territories.
Analysis of MSW in this section is based on the 2018 What a Waste 2.0 global dataset and report as well as the references cited in the report (Kaza et al., 2018; World Bank 2018). In 2018, approximately 2 Gt of waste was generated globally. Most of that went to landfills (41%) and open dumps (22%). Out of 217 countries and territories, 24 sent more than 80% of all MSW to landfills and 3 countries reported landfilling 100% of MSW. The average across all countries/territories was 28% of MSW disposed of in landfills. Both controlled and sanitary landfills with gas capture systems are included in the total landfilled percentage.
Approximately 13% of MSW was treated through recycling and 13% through incineration, but slightly more waste was incinerated than recycled per year. Incineration was predominately used in upper-middle and high-income countries with negligible amounts of waste incinerated in low- and lower-middle income countries.
Globally, only about 5% of MSW was composted and nearly no MSW was processed via methane digestion. However, OW made up nearly 40% of global MSW, so most OW was processed through landfilling, open dumping, and incineration all of which result in significant GHG emissions and pollution. There is ample opportunity to divert more OW from polluting disposal methods toward composting. Due to lack of data on open dumping, and since incineration only accounts for 1% of global GHG emissions, we chose landfilling as our baseline disposal method for comparison.
In addition to MSW, other waste streams include medical waste, e-waste, hazardous waste, and agricultural waste. Global agricultural waste generation in 2018 was more than double total MSW (Kaza et al., 2018). Although these specialized waste streams are treated separately from MSW, integrated waste management systems with high-quality source separation programs could supplement organic MSW with agricultural waste. Rather than being burned or composted on-farm, agricultural waste can provide bulking materials that are critical for maintaining moisture levels and nutrient balance in the compost pile, as well as scaling up composting operations.
Successful centralized composting starts with collection and separation of OW from other waste streams, ideally at the source of waste generation. Financial and regulatory barriers can hinder creation or expansion of composting infrastructure. Composting systems require both facilities and robust collection networks to properly separate OW from nonbiodegradable MSW and transport OW to facilities. Mixed waste streams increase contamination risks with incoming feedstocks, so separation of waste materials at the source of generation is ideal.
Establishing OW collection presents a financial and logistical barrier to increased composting adoption (Kawai et al., 2020; Kaza et al., 2018). However, when considering a full cost-chain analysis that includes collection, transportation, and treatment, systems that rely on source-separated OW can be more cost-effective than facilities that process mixed organics.
OW and inorganic waste can also be sorted at facilities manually or mechanically with automated techniques including electromagnetic separation, ferrous metal separation, and sieving or screening (Kawai et al., 2020). Although separation can be highly labor-intensive, it’s necessary to remove potential contaminants, such as plastics, heavy metals, glass, and other nonbiodegradable or hazardous waste components (Kawai et al., 2020; Manea et al., 2024). After removing contaminants, organic materials are pre-processed and mixed to achieve the appropriate combination of water, oxygen, and solids for optimal aerobic conditions during the composting process.
Regardless of the specific composting method used, aerobic decomposition is achieved by monitoring and balancing key parameters within the compost pile. Key parameters are moisture content, temperature, carbon-to-nitrogen ratio, aeration, pH, and porosity (Cao et al., 2023; Kawai et al., 2020; Manea et al., 2024). The aerobic decomposition process can be split into distinct stages based on whether mesophilic (active at 20–40 oC) or thermophilic (active at 40–70 oC) bacteria and fungi dominate. Compost piles are constructed to allow for sufficient aeration while optimizing moisture content (50–60%) and the initial carbon-to-nitrogen ratio (25:1–40:1), depending on composting method and feedstocks (Amuah et al., 2022; Manea et al, 2024). Optimal carbon-to-nitrogen ratios are achieved through appropriate mixing of carbon-rich “brown” materials, such as sawdust or dry leaves, with nitrogen-rich “green” materials, such as food waste or manure (Manea et al., 2024). During the thermophilic stage, temperatures exceeding 62 oC are necessary to kill most pathogens and weed seeds (Amuah et al., 2022; Ayilara et al., 2020).
Throughout the composting process key nutrients (nitrogen, phosphorus, potassium, calcium, magnesium, and sodium), are mineralized and mobilized and microorganisms release GHGs and heat as by-products of their activity (Manea et al., 2024; Nordahl et al., 2023). Water is added iteratively to maintain moisture content and temperature in the optimal ranges, and frequent turning and aeration are necessary to ensure microorganisms have enough oxygen. Without the proper balance of oxygen and water, anaerobic conditions can lead to higher methane emissions (Amuah et al., 2022; Manea et al., 2024). Although CO₂, methane, and nitrous oxide are released during the process, these emissions are significantly lower than associated emissions from landfilling (Ayilara et al., 2020; Cao et al., 2023; FAO, 2019; Perez et al., 2023).
Once aerobic decomposition is completed, compost goes through a maturation stage where nutrients are stabilized before finished compost can be sold or used as a soil amendment. In stable compost, microbial decomposition slows until nutrients no longer break down, but can be absorbed by plants. Longer maturation phases reduce the proportion of soluble nutrients that could potentially leach into soils.
The baseline waste management method of landfilling OW is cheaper than composting; however it also leads to significant annual GHG emissions. Composting, although more expensive due to higher labor and operating costs, reduces emissions and produces a valuable soil amendment. Establishing a composting program can have significant financial risks without an existing market for finished compost products (Bogner et al., 2007; Kawai et al., 2020; UNEP, 2024).
In 2018, Austria had the highest composting rate of 31.2%, and Vietnam composted 15% of MSW (World Bank, 2018).
For low adoption, we assumed composting increases by 25% of the existing rate or until all OW in MSW is composted. In Austria, OW made up 31.4% of MSW in 2018, so the Adoption – Low composting rate was 31.4%. In Vietnam, the Adoption – Low composting rate came out to 18.75%, which is still less than the total OW percentage of MSW (61.9%).
For high adoption, we assumed that composting rates increase by 50% of the existing rate or until all OW in MSW is composted. So high adoption in Austria remains 31.4% (i.e., all OW generated in Austria is composted). In Vietnam, the high adoption composting rate increases to 22.5% but still doesn’t capture all OW generated (61.9% of MSW).
Join the 85,000+ subscribers discovering how to drive meaningful climate action around the world! Every other week, you'll get expert insights, cutting-edge research, and inspiring stories.