Deploy Blue Hydrogen

Image
Image
An image of a large, metal hydrogen storage tank that says 'H2 Hydrogen' on the side
Coming Soon
Off
Summary

Blue hydrogen is hydrogen produced from fossil fuel sources, with some of the GHG emissions captured and stored to prevent their release. This hydrogen, considered a low-carbon fuel or feedstock, is an alternative to hydrogen produced from fossil fuels without carbon capture (grey hydrogen). Blue hydrogen production uses available technologies, has limited risks, and is less expensive than some other low-carbon hydrogen fuels, such as green hydrogen produced from renewable-powered electrolysis. However, concerns exist about its low adoption, variable effectiveness, and competition with technologies that offer greater climate benefits. At its peak potential, blue hydrogen is less effective at reducing emissions than green hydrogen and more expensive than grey hydrogen, making investment in this possibly transitional technology risky. Blue hydrogen is theoretically an effective climate solution, but there are open questions around whether realistic deployment can meet its potential. We consider the deployment of blue hydrogen to be “Worth Watching.”

Page Description for Social
Our mission is to help the world reach “Drawdown" as quickly, safely, and equitably as possible.
Overview

What is our assessment?

Based on our analysis, blue hydrogen is ready to deploy and feasible, but there is mixed consensus and limited data on its effectiveness in reducing emissions. Its climate impact has the potential to be high, but only if the technology is adopted aggressively and there are technological improvements around methane leaks, hydrogen leaks, and CCS. Therefore, this potential climate solution is “Worth Watching.”

Plausible Could it work? Yes
Ready Is it ready? Yes
Evidence Are there data to evaluate it? Limited
Effective Does it consistently work? No
Impact Is it big enough to matter? No
Risk Is it risky or harmful? No
Cost Is it cheap? Yes

What is it?

Hydrogen is a fuel that can be used in place of fossil fuels in industrial, transportation, and energy systems. To deploy hydrogen (H) as an energy source or feedstock, it first needs to be extracted from other compounds. Each “color” is an informal term specifying hydrogen produced through a unique H2 production path, each with a different associated supply chain, process, and energy GHG emissions. Grey hydrogen, which uses natural gas as the source of hydrogen atoms and electricity, is the most produced and has high production emissions, estimated at 10–12 t CO-eq/t H2 on a 100-yr basis. One way to reduce emissions is by switching to blue hydrogen, which still uses fossil fuels but also uses carbon capture and storage (CCS) technologies to prevent the release of some of the CO generated during production. Blue hydrogen has the potential to be a lower-emission source of energy relative to grey hydrogen or direct fossil fuel combustion.

Does it work?

Blue hydrogen is a plausible way to reduce emissions from grey hydrogen production. However, expert opinions are mixed on the magnitude of emissions that can be abated by producing blue hydrogen in place of grey hydrogen. The effectiveness of emissions reduction hinges on two main factors: upstream methane leakage rates and carbon capture rates, both of which are challenging to predict on a global scale. There is uncertainty around these performance metrics and the ability to effectively store and transport CO at scale. Due to low current adoption, there is little real-world data to answer these questions. As of 2023, blue hydrogen comprised <1% of worldwide hydrogen production. While adding carbon capture to grey hydrogen production should help prevent emissions, there is limited evidence for both effectiveness and the ability to scale of this technology.

Why are we excited?

Compared to other types of low-carbon hydrogen, including green hydrogen produced from electrolysis powered by renewable energy, blue hydrogen is a technologically developed and lower-cost option. This makes it a near-term option to facilitate the transition to a global hydrogen economy. Expert estimates of cost per emissions avoided range widely, but the IEA estimates US$60–85/t CO for lower carbon capture rates (55–70%) and US$85–110/t CO for higher carbon capture rates (>90%). However, these costs are uncertain: with lower estimates of effectiveness, the cost could increase to ~US$260/t CO, including the cost to transport and store CO. If implemented with low GHG fugitive emissions and high CCS efficiencies, blue hydrogen can reduce emissions by more than 60% relative to current grey hydrogen production on a 100-yr CO₂‑eq basis. In this case, the climate impact of scaling blue hydrogen could be high. Estimates and targets for blue hydrogen production by 2050 range from ~30–85 Mt H. At that scale, even modest emissions savings relative to grey hydrogen (3 t CO₂‑eq/t H, 20-yr basis) would have a climate impact above 0.09 Gt CO-eq/yr by 2050. However, these adoption and effectiveness values are uncertain and depend on the quality of the infrastructure and rate of technology scaling, both of which are unproven.

Why are we concerned?

While it has some advantages, blue hydrogen is still a less effective solution than green hydrogen, while costing more than grey hydrogen. Though it could be useful for near-term energy decarbonization, this risks taking resources away from renewable energy and green hydrogen development. The infrastructure required to scale hydrogen-based energy is expensive and will require technical advances and policy incentives to be competitive with fossil fuels. There are mixed expert opinions about the realistic level of avoided emissions that blue hydrogen may reach. The theoretical worst-performing blue hydrogen plants (low capture rates, high methane leaks, high-emission electricity sources) have been predicted to lead to more emissions on a near-term basis than direct natural gas combustion. Additionally, there is uncertainty around whether CCS can meet its technical potential at a reasonable cost. While experts predict >95% carbon capture rates are possible, facilities currently in operation capture less than this target, some less than 60% of all emitted carbon. For blue hydrogen to be feasible and scalable, CO transport and storage need to be low-emitting, stable, and available. Only ~8% of CO currently captured from blue hydrogen production is injected in dedicated storage, with the rest used in industry, enhanced oil recovery, and other applications. Finally, an understudied risk is hydrogen leaks. Hydrogen transport and storage require larger volumes than fossil fuels, increasing the risk of leaks. Hydrogen has an indirect planet-warming effect by increasing the levels of other atmospheric GHGs. At scale, the IEA estimates that high H leakage rates could contribute 0.1 Gt CO-eq/yr in additional emissions, potentially canceling out any positive climate impacts.

Solution in Action
References

Arcos, J. M. M., & Santos, D. M. F. (2023). The hydrogen color spectrum: Techno-economic analysis of the available technologies for hydrogen production. Gases, 3(1), Article 1. https://doi.org/10.3390/gases3010002

Bauer, C., Treyer, K., Antonini, C., Bergerson, J., Gazzani, M., Gencer, E., Gibbins, J., Mazzotti, M., McCoy, S. T., McKenna, R., Pietzcker, R., Ravikumar, A. P., Romano, M. C., Ueckerdt, F., Vente, J., & Spek, M. van der. (2021). On the climate impacts of blue hydrogen production. Sustainable Energy & Fuels, 6(1), 66–75. https://doi.org/10.1039/D1SE01508G

Blank, T. K., Molloy, P., Ramirez, K., Wall, A., & Weiss, T. (2022, April 13). Clean energy 101: The colors of hydrogen. RMI. https://rmi.org/clean-energy-101-hydrogen/

Collodi, G., Azzaro, G., Ferrari, N., & Santos, S. (2017). Techno-economic Evaluation of Deploying CCS in SMR Based Merchant H2 Production with NG as Feedstock and Fuel. Energy Procedia, 114, 2690–2712. https://doi.org/10.1016/j.egypro.2017.03.1533

Gorski, J., Jutt, T., & Wu, K. T. (2021). Carbon intensity of blue hydrogen production. https://www.pembina.org/reports/carbon-intensity-of-blue-hydrogen-revised.pdf

Hossain Bhuiyan, M. M., & Siddique, Z. (2025). Hydrogen as an alternative fuel: A comprehensive review of challenges and opportunities in production, storage, and transportation. International Journal of Hydrogen Energy, 102, 1026–1044. https://doi.org/10.1016/j.ijhydene.2025.01.033

Howarth, R. W., & Jacobson, M. Z. (2021). How green is blue hydrogen? Energy Science & Engineering, 9(10), 1676–1687. https://doi.org/10.1002/ese3.956

IEA. (2023). Hydrogen: Net zero emissions guide. https://www.iea.org/reports/hydrogen-2156#overview

IEA. (2023). Net zero roadmap: A global pathway to keep the 1.5 °C goal in reach. https://www.iea.org/reports/net-zero-roadmap-a-global-pathway-to-keep-the-15-0c-goal-in-reach

IEA. (2024). Global hydrogen review 2024. https://www.iea.org/reports/global-hydrogen-review-2024
Incer-Valverde, J., Korayem, A., Tsatsaronis, G., & Morosuk, T. (2023). “Colors” of hydrogen: Definitions and carbon intensity. Energy Conversion and Management, 291, 117294. https://doi.org/10.1016/j.enconman.2023.117294

Lewis, E., McNaul, S., Jamieson, M., Henriksen, M. S., Matthews, H. S., White, J., Walsh, L., Grove, J., Shultz, T., Skone, T. J., & Stevens, R. (2022). Comparison of commercial, state-of-the-art, fossil-based hydrogen production technologies. https://netl.doe.gov/projects/files/ComparisonofCommercialStateofArtFossilBasedHydrogenProductionTechnologies_041222.pdf

Pettersen, J., Steeneveldt, R., Grainger, D., Scott, T., Holst, L.-M., & Hamborg, E. S. (2022). Blue hydrogen must be done properly. Energy Science & Engineering, 10(9), 3220–3236. https://doi.org/10.1002/ese3.1232

Romano, M. C., Antonini, C., Bardow, A., Bertsch, V., Brandon, N. P., Brouwer, J., Campanari, S., Crema, L., Dodds, P. E., Gardarsdottir, S., Gazzani, M., Jan Kramer, G., Lund, P. D., Mac Dowell, N., Martelli, E., Mastropasqua, L., McKenna, R. C., Monteiro, J. G. M.-S., Paltrinieri, N., … Wiley, D. (2022). Comment on “How green is blue hydrogen?” Energy Science & Engineering, 10(7), 1944–1954. https://doi.org/10.1002/ese3.1126

Sun, T., Shrestha, E., Hamburg, S. P., Kupers, R., & Ocko, I. B. (2024). Climate impacts of hydrogen and methane emissions can considerably reduce the climate benefits across key hydrogen use cases and time scales. Environmental Science & Technology, 58(12), 5299–5309. https://doi.org/10.1021/acs.est.3c09030

Udemu, C., & Font-Palma, C. (2024). Potential cost savings of large-scale blue hydrogen production via sorption-enhanced steam reforming process. Energy Conversion and Management, 302, 118132. https://doi.org/10.1016/j.enconman.2024.118132

Vallejo, V., Nguyen, Q., & Ravikumar, A. P. (2024). Geospatial variation in carbon accounting of hydrogen production and implications for the US Inflation Reduction Act. Nature Energy, 9(12), 1571–1582. https://doi.org/10.1038/s41560-024-01653-0

Wu, W., Zhai, H., & Holubnyak, E. (2024). Technological evolution of large-scale blue hydrogen production toward the U.S. Hydrogen Energy Earthshot. Nature Communications, 15(1), 5684. https://doi.org/10.1038/s41467-024-50090-w 

Credits

Lead Fellow 

  • Sarah Gleeson

Internal Reviewer

  • Christina Swanson
Speed of Action
left_text_column_width
Caveats
left_text_column_width
Risks
left_text_column_width
Consensus
left_text_column_width
Trade-offs
left_text_column_width
Action Word
Deploy
Solution Title
Blue Hydrogen
Classification
Watching
Lawmakers and Policymakers
Practitioners
Business Leaders
Nonprofit Leaders
Investors
Philanthropists and International Aid Agencies
Thought Leaders
Technologists and Researchers
Communities, Households, and Individuals
Updated Date

Use Other “Colors” of Hydrogen

Coming Soon
On
Page Description for Social
Our mission is to help the world reach “Drawdown" as quickly, safely, and equitably as possible.
Solution in Action
Speed of Action
left_text_column_width
Caveats
left_text_column_width
Additional Benefits
left_text_column_width
Risks
left_text_column_width
Consensus
left_text_column_width
Trade-offs
left_text_column_width
Action Word
Use
Solution Title
Other “Colors” of Hydrogen
Classification
Not Recommended
Updated Date
Subscribe to Improve Processes