Cut Emissions Electricity Shift Production

Use Carbon Capture & Storage on Fossil Fuel Power Plants

Not Recommended
Image
Peatland

Carbon capture and storage (CCS) reduces the operational GHG emissions from fossil fuel power plants by selectively capturing CO₂ from the plant’s exhaust flue, preventing it from entering the atmosphere. The captured CO₂ is then concentrated, compressed, and permanently stored underground. The carbon capture technology is effective and available, but it is expensive and energy-intensive. Globally, emissions from coal and gas power plants are still increasing, potentially making retrofitting newer plants with CCS an appealing emissions reduction strategy. However, despite 30 years of pilot and commercial projects, most power plant CCS projects have failed. While CCS can cut CO₂ emissions, large-scale deployment of this technology on fossil-fueled power plants will likely drive continued production and use of coal and gas. Based on this risk, as well as the availability of cheaper, clean energy alternatives for power generation, we conclude that using CCS on fossil fuel power plants is “Not Recommended” as an effective climate solution.

Last updated September 9, 2025

What is our assessment?

Using CCS on fossil-fueled power plants will marginally reduce electricity production emissions, but it is more expensive, more energy-intensive, and more polluting than readily available, cheaper, and cleaner alternatives like wind, solar, and geothermal. Based on this, and the risk that large-scale deployment of CCS on fossil-fueled power plants could drive continued production and use of coal and gas, we conclude that using CCS on fossil fuel power plants is “Not Recommended” as an effective climate solution.

Plausible Could it work? Yes
Ready Is it ready? Yes
Evidence Are there data to evaluate it? Yes
Effective Does it consistently work? No
Impact Is it big enough to matter? Yes
Risk Is it risky or harmful? Yes
Cost Is it cheap? No

What is it?

Carbon capture and storage (CCS) is a technology that reduces GHG emissions from fossil fuel-powered electricity generation facilities by selectively capturing CO₂ from the power plant’s exhaust flue, preventing it from entering the atmosphere. The captured CO₂ is then concentrated, compressed, and permanently stored underground. There are other commercially available CCS technologies, such as pre-combustion capture and oxy-fuel combustion, but these are used almost exclusively for industrial processes like gas processing and cannot be readily retrofitted to existing power plants. CCS can also be applied to capture CO₂ from other industrial facilities that generate emissions from fuel combustion or production processes, like cement or ethanol production plants, or from biomass energy power plants. Instead of permanent storage, captured CO₂ can also be used as a chemical precursor for the manufacture of other products or for enhanced oil recovery, but, compared to geologic storage, these post-capture uses of CO₂ emit GHGs, thereby reducing or eliminating the emissions reduction efficacy of CCS. 

Does it work?

The technology and chemistry for the selective capture of CO₂ from the exhaust of a power plant are effective. There are numerous chemical, membrane, and cryogenic methods for capturing CO₂, but monoethanolamine (MEA) is the predominant commercially available chemical absorbent currently in use in power plants with CCS. CO₂ capture efficiency varies with the type of reactive absorbent material and plant operations. Most CCS installations target 90% CO₂ capture rates, although actual capture rates are usually lower. CCS infrastructure is large, and the process of capturing CO₂ from power plant exhaust is complex, expensive, and energy-intensive. CCS requires the flue gas to be pumped to different parts of the power plant, the CO₂ to be captured and then separated from the sorbent material, and the concentrated CO₂ to be compressed for transport and storage. Energy for all these processes comes from the power plant. Various studies estimate CCS consumes at least 15–25% of the plant’s total generation capacity, with most of the energy used to separate the CO₂ and regenerate the sorbent material. 

CCS has been used in pilot studies and commercial operations in a few dozen coal and natural gas power plants since the late 1990s. Despite the functional effectiveness of the technology, use of CCS to reduce power plant emissions has not been broadly adopted, and most CCS projects initiated in the past three decades have failed or been discontinued. Based on various assessments and projections, deployment of CCS on power plants has consistently lagged behind its expected contribution to emissions reduction. There are currently only four power plants with CCS in operation in the world, less than 0.05% of the global fossil fuel power plant fleet. According to a 2021 study, only 10% of proposed CCS projects for power plants have actually been implemented. Based on another study, 78% of all power plant and industrial manufacturing CCS pilot and demonstration plants with a project size greater than 0.3 Mt CO₂ /yr have been cancelled or put on hold. 

Why are we excited?

Globally, emissions from coal- and gas-fired power plants are still increasing, primarily in China and India, where large numbers of new thermal power plants have been built in the last two decades. Given the typical 30- to 45-year operational lifespan for coal and gas power plants, retrofitting these newer plants with CCS could substantially reduce their operational emissions while also allowing plant owners and investors to recover their investments. Installation of CCS to reduce emissions can also be prioritized for power plants located near places with geologic storage and where alternative electricity generation options are limited. There is a large amount of active research underway to develop and test alternative carbon capture technologies, most aimed at increasing carbon capture efficiencies and reducing energy demands and costs. Other research on the factors contributing to the failure of most CCS projects to date may lead to the development of regulations and policies that require or incentivize the use of CCS for power plants, which could increase the current low implementation and success rates for this emissions reduction technology. 

Why are we concerned? 

While CCS can reduce the operational CO₂ emissions from fossil-fueled power plants, large-scale deployment of this technology will likely drive continued production and use of coal and gas. Even before fossil fuels are burned, extraction, transport, and processing generate substantial GHG emissions, particularly for gas. Therefore, in addition to perpetuating the fossil fuel industry, even 90% efficient CCS reduces only a fraction of the life cycle emissions from coal and gas. 

Widespread deployment of CCS in the electricity sector could also delay or crowd out deployment of wind, solar, and geothermal energy, slowing the clean energy transition that is already underway. Beyond these risks, the three-decade-long failure of power plant CCS to make the transition from pilot-scale science and technology to large-scale commercial deployment reflects its systemic problems and limitations. Unlike wind and solar energy, which have seen costs decline rapidly with development and deployment, CCS on power plants shows little evidence of a learning curve. It remains very expensive and very energy-intensive. A large-scale CCS demonstration project can cost more than US$1 billion to build and, in addition to its operational costs, CCS consumes at least 15–25% of the energy that the plant could otherwise sell to customers. CCS-related energy requirements could mean that a power company would need to build an additional power plant to compensate for reduced electricity deliveries from every four of its power plants equipped with CCS. 

 

Due to these high project risks and costs, as well as the lack of regulations and policies to require or support CCS on power plants, public and private investments in the technology have been falling. Despite all this, recent research shows that the vast majority of lobbying spending for government support of CCS comes from fossil fuel interests, which have publicly stated that they view the technology as a strategy to extend society’s use of fossil fuels. Finally, in contrast to most other climate solutions that provide other benefits to natural systems or human well-being, CCS on power plants does nothing to address or alleviate the current harm from toxic air pollution produced by fossil-fueled power plants.

References

Abdulla, A., Hanna, R., Schell, K. R., Babacan, O., & Victor, D. G. (2020). Explaining successful and failed investments in US carbon capture and storage using empirical and expert assessments. Environmental Research Letters16(1), 014036. Link to source: https://iopscience.iop.org/article/10.1088/1748-9326/abd19e?trk=public_post_comment-text

Caesary, D., Kim, H., & Nam, M. J. (2025). Cost effectiveness of carbon capture and storage based on probability estimation of social cost of carbon. Applied Energy, 377, 124542. Link to source: https://www.sciencedirect.com/science/article/abs/pii/S0306261924019251

Corcuera, E. G. T., & Petrakopoulou, F. (2025). Evaluating the impact of CO2 capture and storage on total efficiency: A lifecycle analysis. Cleaner Engineering and Technology, 101002. Evaluating the impact of CO2 capture and storage on total efficiency: A lifecycle analysis - ScienceDirect

Dabbs, B., Anchondo, C., & Marshall, C. (2023) The complete guide to CCS and the EPA power plant rule. Energywire, E&E News, May 10, 2023. The complete guide to CCS and the EPA power plant rule - E&E News by POLITICO

Drugman, D. (2023) Big Oil’s Been Secretly Validating Critics’ Concerns about Carbon Capture. DeSmog. Big Oil’s Been Secretly Validating Critics’ Concerns about Carbon Capture - DeSmog 

Durmaz, T. (2018). The economics of CCS: Why have CCS technologies not had an international breakthrough?. Renewable and Sustainable Energy Reviews95, 328-340. The economics of CCS: Why have CCS technologies not had an international breakthrough? - ScienceDirect

Gibbons, B. (2024) In Illinois, a massive taxpayer-funded carbon capture project fails to capture about 90 percent of plant’s emissions. Oil and Gas Watch, Environmental Integrity Project. Link to source: https://news.oilandgaswatch.org/post/in-illinois-a-massive-taxpayer-funded-carbon-capture-project-fails-to-capture-about-90-percent-of-plants-emissions 

Gonzales, V., Krupnick, A. and Dunlap, L. (2020) Carbon Capture and Storage 101. Resources for the Future. Link to source: https://media.rff.org/documents/CCS_101.pdf

Grubert, E., & Sawyer, F. (2023). US power sector carbon capture and storage under the Inflation Reduction Act could be costly with limited or negative abatement potential. Environmental Research: Infrastructure and Sustainability3(1), 015008. Link to source: https://iopscience.iop.org/article/10.1088/2634-4505/acbed9

Gulden, L. E., & Harvey, C. (2025). Tracing sources of funds used to lobby the US government about carbon capture, use, and storage. Environmental Science & Policy, 171, 104171. Link to source: https://www.sciencedirect.com/science/article/pii/S146290112500187X

Guo, J. X., & Huang, C. (2020). Feasible roadmap for CCS retrofit of coal-based power plants to reduce Chinese carbon emissions by 2050. Applied Energy, 259, 114112. Link to source: https://www.sciencedirect.com/science/article/abs/pii/S0306261919317994

Herzog, H. & Krol, A. (2025) Carbon Capture. MIT Climate Portal.  “Carbon Capture” Carbon Capture | MIT Climate Portal 

Herzog, H. & MIT Climate Portal Writing Team. (2024) If a fossil fuel power plant uses carbon capture and storage, what percent of the energy it makes goes to the CCS equipment? MIT Climate Portal. If a fossil fuel power plant uses carbon capture and storage, what percent of the energy it makes goes to the CCS equipment? | MIT Climate Portal

Hiar. C. (2023) Oil companies want to remove carbon from the air — using taxpayer dollars. Climatewire, E&E News, July, 13, 2023. Oil companies want to remove carbon from the air — using taxpayer dollars - E&E News by POLITICO

International Energy Agency (2020) The role of CCUS in low-carbon power systemsThe role of CCUS in low-carbon power systems. subsection How carbon capture technologies support the power transition – The role of CCUS in low-carbon power systems – Analysis - IEA

International Energy Agency (2023). Emissions from Oil and Gas Operations in Net Zero Transitions: A World Energy Outlook Special Report on the Oil and Gas Industry and COP28. Link to source: https://iea.blob.core.windows.net/assets/2f65984e-73ee-40ba-a4d5-bb2e2c94cecb/EmissionsfromOilandGasOperationinNetZeroTransitions.pdf

International Energy Agency (2025) Global Energy Review 2025: CO2 EmissionsCO2 Emissions – Global Energy Review 2025 – Analysis - IEA

Jacobson, M. Z., Fu, D., Sambor, D. J., & Muhlbauer, A. (2025). Energy, health, and climate costs of carbon-capture and direct-air-capture versus 100%-wind-water-solar climate policies in 149 countries. Environmental Science & Technology59(6), 3034-3045. Energy, Health, and Climate Costs of Carbon-Capture and Direct-Air-Capture versus 100%-Wind-Water-Solar Climate Policies in 149 Countries | Environmental Science & Technology 

Jacobson, M. Z. (2019). The health and climate impacts of carbon capture and direct air capture. Energy & Environmental Science12(12), 3567-3574. The health and climate impacts of carbon capture and direct air capture

Liu, S., Li, H., Zhang, K., & Lau, H. C. (2022). Techno-economic analysis of using carbon capture and storage (CCS) in decarbonizing China's coal-fired power plants. Journal of Cleaner Production351, 131384. Techno-economic analysis of using carbon capture and storage (CCS) in decarbonizing China's coal-fired power plants - ScienceDirect

Loria, P., & Bright, M. B. (2021). Lessons captured from 50 years of CCS projects. The Electricity Journal, 34(7), 106998. Link to source: https://www.sciencedirect.com/science/article/abs/pii/S1040619021000890

Ma, J., Li, L., Wang, H., Du, Y., Ma, J., Zhang, X., & Wang, Z. (2022). Carbon capture and storage: history and the road ahead. Engineering14, 33-43. Carbon Capture and Storage: History and the Road Ahead - ScienceDirect

Mackler, S., Fishman, X., & Broberg, D. (2021). A policy agenda for gigaton-scale carbon management. The Electricity Journal34(7), 106999. A policy agenda for gigaton-scale carbon management - ScienceDirect

National Energy Technology Laboratory. (2018). Carbon Capture and Storage Database (Washington, DC: U.S. Department of Energy). Link to source: https://netl.doe.gov/carbon-management/carbon-storage/worldwide-ccs-database

Osman, A. I., Hefny, M., Abdel Maksoud, M. I. A., Elgarahy, A. M., & Rooney, D. W. (2021). Recent advances in carbon capture storage and utilisation technologies: a review. Environmental Chemistry Letters19(2), 797-849. Recent advances in carbon capture storage and utilisation technologies: a review

Patel, S. (2024) Capturing Progress: The State of CCS in the Power Sector. POWER Magazine. Link to source: https://www.powermag.com/capturing-progress-the-state-of-ccs-in-the-power-sector/

Peridas, G., & Schmidt, B. M. (2021). The role of carbon capture and storage in the race to carbon neutrality. The Electricity Journal, 34(7), 106996. Link to source: https://www.sciencedirect.com/science/article/pii/S1040619021000877

Rathi, A. K. A., & Rathi, J. A. (2025). CO2 capture: a concise, comprehensive overview of recent research trends. Academia Environmental Sciences and Sustainability2(2). Rathi and Rathi 2025 CO2_capture_a_concise_comprehensive_overview.pdf

Scott, M. & Slavin, T. (2023)  Fossil-fuel industry embrace raises alarm bells over direct air capture. Reuters, October 10, 2023. Fossil-fuel industry embrace raises alarm bells over direct air capture | Reuters

Singh, S. P., Ku, A. Y., Macdowell, N., & Cao, C. (2022). Profitability and the use of flexible CO2 capture and storage (CCS) in the transition to decarbonized electricity systems. International Journal of Greenhouse Gas Control120, 103767. Profitability and the use of flexible CO2 capture and storage (CCS) in the transition to decarbonized electricity systems - ScienceDirect

Stephens, J. C. (2014). Time to stop investing in carbon capture and storage and reduce government subsidies of fossil‐fuels. Wiley Interdisciplinary Reviews: Climate Change5(2), 169-173. Time to stop investing in carbon capture and storage and reduce government subsidies of fossil‐fuels - Stephens - 2014 - WIREs Climate Change - Wiley Online Library

Wang, N., Akimoto, K., & Nemet, G. F. (2021). What went wrong? Learning from three decades of carbon capture, utilization and sequestration (CCUS) pilot and demonstration projects. Energy Policy158, 112546. What went wrong? Learning from three decades of carbon capture, utilization and sequestration (CCUS) pilot and demonstration projects - ScienceDirect

Credits

Lead Fellow

  • Christina Swanson, Ph.D.

Internal Reviewers

  • Sarah Gleeson, Ph.D.
  • Greenhouse gas quantity expressed relative to CO₂ with the same warming impact over 100 years, calculated by multiplying emissions by the 100-yr GWP for the emitted gases.

  • Greenhouse gas quantity expressed relative to CO with the same warming impact over 20 years, calculated by multiplying emissions by the 20-yr GWP for the emitted gases.

  • 8th World Congress on Conservation Agriculture

  • Reducing greenhouse gas concentrations in the atmosphere by preventing or reducing emissions.

  • The process of increasing the acidity of water or soil due to increased levels of certain air pollutants.

  • The extent to which emissions reduction or carbon removal is above and beyond what would have occurred without implementing a particular action or solution.

  • An upper limit on solution adoption based on physical or technical constraints, not including economic or policy barriers. This level is unlikely to be reached and will not be exceeded.

  • The quantity and metric to measure implementation for a particular solution that is used as the reference unit for calculations within that solution.

  • The interactions of aerodynamic forces and flexible structures, often including the stucture's control system.

  • Farming practices that work to create socially and ecologically sustainable food production.

  • Addition of trees and shrubs to crop or animal farming systems.

  • Spread out the cost of an asset over its useful lifetime.

  • A crop that live one year or less from planting to harvest; also called annual.

  • black carbon

  • Made from material of biological origin, such as plants, animals, or other organisms.

  • A renewable energy source generated from organic matter from plants and/or algae.

  • An energy source composed primarily of methane and CO that is produced by microorganisms when organic matter decomposes in the absence of oxygen.

  • Carbon stored in biological matter, including soil, plants, fungi, and plant products (e.g., wood, paper, biofuels). This carbon is sequestered from the atmosphere but can be released through decomposition or burning.

  • Living or dead renewable matter from plants or animals, not including organic material transformed into fossil fuels. Peat, in early decay stages, is partially renewable biomass.

  • A type of carbon sequestration that captures carbon from CO via photosynthesis and stores it in soils, sediments, and biomass, distinct from sequestration through chemical or industrial pathways.

  • A climate pollutant, also called soot, produced from incomplete combustion of organic matter, either naturally (wildfires) or from human activities (biomass or fossil fuel burning).

  • High-latitude (>50°N or >50°S) climate regions characterized by short growing seasons and cold temperatures.

  • The components of a building that physically separate the indoors from the outdoor environment.

  • Businesses involved in the sale and/or distribution of solution-related equipment and technology, and businesses that want to support adoption of the solution.

  • A chemical reaction involving heating a solid to a high temperature; to make cement clinker, limestone is calcined into lime in a process that requires high heat and produces CO.

  • The ratio of the actual electricity an energy technology generates over a period of time to the maximum it could have produced if it operated at full capacity continuously.

  • A four-wheeled passenger vehicle.

  • Technologies that collect CO before it enters the atmosphere, preventing emissions at their source. Collected CO can be used onsite or in new products, or stored long term to prevent release.

  • A greenhouse gas that is naturally found in the atmosphere. Its atmospheric concentration has been increasing due to human activities, leading to warming and climate impacts.

  • Total GHG emissions resulting from a particular action, material, technology, or sector.

  • Amount of GHG emissions released per activity or unit of production. 

  • A marketplace where carbon credits are purchased and sold. One carbon credit represents activities that avoid, reduce, or remove one metric ton of GHG emissions.

  • A colorless, odorless gas released during the incomplete combustion of fuels containing carbon. Carbon monoxide can harm health and be fatal at high concentrations.

  • The time it takes for the emissions reduction from a measure to equal the emissions invested in implementing the measure.

  • Activities or technologies that pull CO out of the atmosphere, including enhancing natural carbon sinks and deploying engineered sinks.

  • Long-term storage of carbon in soils, sediment, biomass, oceans, and geologic formations after removal of CO from the atmosphere or CO capture from industrial and power generation processes.

  • carbon capture and storage

  • carbon capture, utilization, and storage

  • A binding ingredient in concrete responsible for most of concrete’s life-cycle emissions. Cement is made primarily of clinker mixed with other mineral components.

  • methane

  • Gases or particles that have a planet-warming effect when released to the atmosphere. Some climate pollutants also cause other forms of environmental damage.

  • A binding ingredient in cement responsible for most of the life-cycle emissions from cement and concrete production.

  • carbon monoxide

  • Neighbors, volunteer organizations, hobbyists and interest groups, online communities, early adopters, individuals sharing a home, and private citizens seeking to support the solution.

  • A solution that potentially lowers the benefit of another solution through reduced effectiveness, higher costs, reduced or delayed adoption, or diminished global climate impact.

  • A farming system that combines reduced tillage, cover crops, and crop rotations.

  • carbon dioxide

  • A  measure standardizing the warming effects of greenhouse gases relative to CO. CO-eq is calculated as quantity (metric tons) of a particular gas multiplied by its GWP.

  • carbon dioxide equivalent

  • Parts of plants, such as stalks and stubble, left in a field after harvest.

  • The process of cutting greenhouse gas emissions (primarily CO) from a particular sector or activity.

  • A solution that works slower than gradual solutions and is expected to take longer to reach its full potential.

  • Microbial conversion of nitrate into inert nitrogen gas under low-oxygen conditions, which produces the greenhouse gas nitrous oxide as an intermediate compound.

  • Greenhouse gas emissions produced as a direct result of the use of a technology or practice.

  • Ability of a solution to reduce emissions or remove carbon, expressed in CO-eq per installed adoption unit. Effectiveness is quantified per year when the adoption unit is cumulative over time.

  • Greenhouse gas emissions accrued over the lifetime of a material or product, including as it is produced, transported, used, and disposed of.

  • Solutions that work faster than gradual solutions, front-loading their impact in the near term.

  • Methane produced by microbes in the digestive tracts of ruminant livestock, such as cattle, sheep and goats.

  • U.S. Environmental Protection Agency

  • environmental, social, and governance

  • exchange-traded fund

  • A process triggered by an overabundance of nutrients in water, particularly nitrogen and phosphorus, that stimulates excessive plant and algae growth and can harm aquatic organisms.

  • Electric vehicle

  • An ecological process that releases water into the atmosphere as a gas from soil and ice (evaporation) and plants (transpiration).

     

  • The scientific literature that supports our assessment of a solution's effectiveness.

  • A group of human-made molecules that contain fluorine atoms. They are potent greenhouse gases with GWPs that can be hundreds to thousands times higher than CO.

  • Food and Agriculture Organization of the United Nations

  • Raw input material in manufacturing, processing, and waste disposal.

  • food loss and waste

  • Food discarded during pre-consumer supply chain stages, including production, harvest, and processing.

  • Food discarded at the retail and consumer stages of the supply chain.

  • Combustible materials found in Earth's crust that can be burned for energy, including oil, natural gas, and coal. They are formed from decayed organisms through prehistoric geological processes.

  • A group of countries representing the majority of the world's population, trade, and GDP. There are 19 member countries plus the European Union and the African Union

  • greenhouse gas

  • gigajoule or billion joules

  • The glass layers or panes in a window.

  • A measure of how effectively a gas traps heat in the atmosphere relative to CO. GWP converts greenhouse gases into CO-eq emissions based on their 20- or 100-year impacts.

  • A solution that has a steady impact so that the cumulative effect over time builds as a straight line. Most climate solutions fall into this category.

  • Yard and garden trimmings.

  • A gas that traps heat in the atmosphere, contributing to climate change.

  • metric gigatons or billion metric tons

  • global warming potential

  • hectare

  • household air pollution

  • Number of years a person is expected to live without disability or other limitations that restrict basic functioning and activity.

  • A unit of land area comprising 10,000 square meters, roughly equal to 2.5 acres.

  • Hybrid electric car

  • hydrofluorocarbon

  • hydrofluoroolefin

  • Particles and gases released from use of polluting fuels and technologies such as biomass cookstoves that cause poor air quality in and around the home.

  • Organic compounds that contain hydrogen and carbon.

  • Human-made F-gases that contain hydrogen, fluorine, and carbon. They typically have short atmospheric lifetimes and GWPs hundreds or thousands times higher than CO

  • Human-made F-gases that contain hydrogen, fluorine, and carbon, with at least one double bond. They have low GWPs and can be climate-friendly alternatives to HFC refrigerants.

  • internal combustion engine

  • Greenhouse gas emissions produced as a result of a technology or practice but not directly from its use.

  • Device used to power vehicles by the intake, compression, combustion, and exhaust of fuel that drives moving parts.

  • The annual discount rate that balances net cash flows for a project over time. Also called IRR, internal rate of return is used to estimate profitability of potential investments.

  • Individuals or institutions willing to lend money in search of a return on their investment.

  • Intergovernmental Panel on Climate Change

  • Indigenous People’s Land

  • Integrated pest management.

  • internal rate of return

  • International Union for Conservation of Nature

  • A measure of energy

  • Definition to come

  • International agreement adopted in 2016 to phase down the use of high-GWP HFC F-gases over the time frame 2019–2047.

  • International agreement adopted in 2016 to phase down the use of high-GWP HFC F-gases over the time frame 2019–2047.

  • A measure of energy equivalent to the energy delivered by 1,000 watts of power over one hour.

  • kiloton or one thousand metric tons

  • kilowatt-hour

  • A land-holding system, e.g. ownership, leasing, or renting. Secure land tenure means farmers or other land users will maintain access to and use of the land in future years.

  • Gases, mainly methane and CO, created by the decomposition of organic matter in the absence of oxygen.

  • leak detection and repair

  • Regular monitoring for fugitive methane leaks throughout oil and gas, coal, and landfill sector infrastructure and the modification or replacement of leaking equipment.

  • Relocation of emissions-causing activities outside of a mitigation project area rather than a true reduction in emissions.

  • The rate at which solution costs decrease as adoption increases, based on production efficiencies, technological improvements, or other factors.

  • Percent decrease in costs per doubling of adoption.

  • landfill gas

  • Greenhouse gas emissions from the sourcing, production, use, and disposal of a technology or practice.

  • low- and middle-income countries

  • liquefied petroleum gas

  • A measure of the amount of light produced by a light source per energy input.

  • marginal abatement cost curve

  • Livestock grazing practices that strategically manage livestock density, grazing intensity, and timing. Also called improved grazing, these practices have environmental, soil health, and climate benefits, including enhanced soil carbon sequestration.

  • A tool to measure and compare the financial cost and abatement benefit of individual actions based on the initial and operating costs, revenue, and emission reduction potential.

  • A greenhouse gas with a short lifetime and high GWP that can be produced through a variety of mechanisms including the breakdown of organic matter.

  • A measure of mass equivalent to 1,000 kilograms (~2,200 lbs).

  • million hectares

  • Soils mostly composed of inorganic materials formed through the breakdown of rocks. Most soils are mineral soils, and they generally have less than 20% organic matter by weight.

  • A localized electricity system that independently generates and distributes power. Typically serving limited geographic areas, mini-grids can operate in isolation or interconnected with the main grid.

  • Reducing the concentration of greenhouse gases in the atmosphere by cutting emissions or removing CO.

  • Percent of trips made by different passenger and freight transportation modes.

  • Marine Protected Area

  • Municipal solid waste

  • megaton or million metric tons

  • Materials discarded from residential and commercial sectors, including organic waste, glass, metals, plastics, and paper and cardboard.

  • square meter kelvins per watt (a measure of thermal resistance, also called R-value)

  • A commitment from a country to reduce national emissions and/or sequester carbon in alignment with global climate goals under the Paris Agreement, including plans for adapting to climate impacts.

  • A gaseous form of hydrocarbons consisting mainly of methane.

  • Chemicals found in nature that are used for cooling and heating, such as CO, ammonia, and some hydrocarbons. They have low GWPs and are ozone friendly, making them climate-friendly refrigerants.

  • Microbial conversion of ammonia or ammonium to nitrite and then to nitrate under aerobic conditions.

  • A group of air pollutant molecules composed of nitrogen and oxygen, including NO and NO.

  • A greenhouse gas produced during fossil fuel combustion and agricultural and industrial processes. NO is hundreds of times more potent than CO at trapping atmospheric heat, and it depletes stratospheric ozone.

  • Social welfare organizations, civic leagues, social clubs, labor organizations, business associations, and other not-for-profit organizations.

  • A material or energy source that relies on resources that are finite or not naturally replenished at the rate of consumption, including fossil fuels like coal, oil, and natural gas.

  • nitrogen oxides

  • nitrous oxide

  • The process of increasing the acidity of seawater, primarily caused by absorption of CO from the atmosphere.

  • An agreement between a seller who will produce future goods and a purchaser who commits to buying them, often used as project financing for producers prior to manufacturing.

  • Protected Area

  • Productive use of wet or rewetted peatlands that does not disturb the peat layer, such as for hunting, gathering, and growing wetland-adapted crops for food, fiber, and energy.

  • Airborne particles composed of solids and liquids.

  • A measure of transporting one passenger over a distance of one kilometer.

  • The longevity of any greenhouse gas emission reductions or removals. Solution impacts are considered permanent if the risk of reversing the positive climate impacts is low within 100 years.

  • A mixture of hydrocarbons, small amounts of other organic compounds, and trace amounts of metals used to produce products such as fuels or plastics.

  • Plug-in hybrid electric car

  • Private, national, or multilateral organizations dedicated to providing aid through in-kind or financial donations.

  • An atmospheric reaction among sunlight, VOCs, and nitrogen oxide that leads to ground-level ozone formation. Ground-level ozone, a component of smog, harms human health and the environment.

  • passenger kilometer

  • particulate matter

  • Particulate matter 2.5 micrometers or less in diameter that can harm human health when inhaled.

  • Elected officials and their staff, bureaucrats, civil servants, regulators, attorneys, and government affairs professionals.

  • System in a vehicle that generates power and delivers it to the wheels. It typically includes an engine and/or motor, transmission, driveshaft, and differential.

  • Purchase Power Agreement.

  • People who most directly interface with a solution and/or determine whether the solution is used and/or available. 

  • The process of converting inorganic matter, including carbon dioxide, into organic matter (biomass), primarily by photosynthetic organisms such as plants and algae.

  • Defined by the International Union for the Conservation of Nature as "A clearly defined geographical space, recognised, dedicated and managed, through legal or other effective means, to achieve the long-term conservation of nature with associated ecosystem services and cultural values". References to PAs here also include other effective area-based conservation measures defined by the IUCN. 

  • Long-term contract between a company (the buyer) and a renewable energy producer (the seller).

  • A situation in which improvements in efficiency or savings lead to consumers increasing consumption, partially or fully offsetting or exceeding the emissions or cost benefits.

  • Renewable Energy Credit.

  • Renewable Energy Certificate.

  • Chemical or mixture used for cooling and heating in refrigeration, air conditioning, and heat pump equipment. Refrigerants absorb and release heat as they move between states under changing pressure.

  • A group of approaches to farming and ranching that emphasizes enhancing the health of soil by restoring its carbon content and providing other benefits to the farm and surrounding ecosystem.

  • A solution that can increase the beneficial impact of another solution through increased effectiveness, lower costs, improved adoption, enhanced global climate impact, and/or other benefits to people and nature.

  • A material or energy source that relies on naturally occuring and replenishing resources such as plant matter, wind, or sunlight.

  • A market-based instrument that tracks ownership of renewable energy generation.

  • Very large or small numbers are formatted in scientific notation. A positive exponent multiplies the number by powers of ten; a negative exponent divides the number by powers of ten.

  • Seasonal coefficient of performance

  • Sustainable Development Goals

  • A measure of average heat pump efficiency over the heating season.

  • A practice in which multiple utility companies own and operate high-voltage power lines, with both paying costs and receiving benefits.

  • A practice in which multiple utility companies own and operate high-voltage power lines, sharing both costs and benefits.

  • Small-scale family farmers and other food producers, often with limited resources, usually in the tropics. The average size of a smallholder farm is two hectares (about five acres).

  • soil organic carbon

  • Carbon stored in soils, including both organic (from decomposing plants and microbes) and inorganic (from carbonate-containing minerals).

  • Carbon stored in soils in organic forms (from decomposing plants and microbes). Soil organic carbon makes up roughly half of soil organic matter by weight.

  • Biologically derived matter in soils, including living, dead, and decayed plant and microbial tissues. Soil organic matter is roughly half carbon on a dry-weight basis.

  • soil organic matter

  • sulfur oxides

  • sulfur dioxide

  • How quickly a climate solution physically affects the atmosphere after it is deployed.

  • Climate regions between latitudes 23.4° to 35° above and below the equator characterized by warm summers and mild winters.

  • A polluting gas produced primarily from burning fossil fuels and industrial processes that directly harms the environment and human health.

  • A group of gases containing sulfur and oxygen that predominantly come from burning fossil fuels. They contribute to air pollution, acid rain, and respiratory health issues.

  • Processes, people, and resources involved in producing and delivering a product from supplier to end customer, including material acquisition.

  • Sport utility vehicle

  • metric tons

  • Technology developers, including founders, designers, inventors, R&D staff, and creators seeking to overcome technical or practical challenges.

  • Climate regions between 35° to 50° above and below the equator characterized by moderate mean annual temperatures and distinct seasons, with warm summers and cold winters.

  • A measure of energy equivalent to the energy delivered by one trillion (1,000,000,000,000) watts of power over one hour. 

  • A measure of how well a material prevents heat flow, often called R-value or RSI-value for insulation. A higher R-value means better thermal performance.

  • Individuals with an established audience for their work, including public figures, experts, journalists, and educators.

  • Charge for disposal of materials paid to facility operators. Fees can be charged per ton of waste disposed or based on economic indicators like the Consumer Price Index (CPI).

  • Low-latitude (23.4°S to 23.4°N) climate regions near the Equator characterized by year-round high temperatures and distinct wet and dry seasons.

  • United Nations

  • United Nations Environment Programme

  • Self-propelled machine for transporting passengers or freight on roads.

  • A measure of one vehicle traveling a distance of one kilometer.

  • vehicle kilometer

  • volatile organic compound

  • Gases made of organic, carbon-based molecules that are readily released into the air from other solid or liquid materials. Some VOCs are greenhouse gases or can harm human health.

  • watt (a measure of power or energy transfer.)

  • A measure of power equal to one joule per second.

  • A subset of forest ecosystems that may have sparser canopy cover,  smaller-stature trees, and/or trees characterized by basal branching rather than a single main stem.

  • year