This is a “Highly Recommended” climate solution based on its effectiveness, scalability, and evidence of impact.

Mobilize Hybrid Cars

Image
Image
Start button on a hybrid vehicle
Coming Soon
On
Summary

The Mobilize Hybrid Cars solution entails shifting trips from fossil fuel–powered internal combustion engine (ICE) cars to more efficient, lower emitting hybrid cars. Hybrid cars include hybrid electric cars (HEVs) and plug-in hybrid electric cars (PHEVs). They are four-wheeled passenger cars that combine an ICE with an electric motor and battery to improve fuel efficiency and reduce emissions. This definition includes hybrid sedans, sport utility vehicles (SUVs), and pickup trucks, but excludes fully electric cars, two-wheeled vehicles, and hybrid commercial or freight vehicles, such as hybrid buses and delivery trucks. Hybrid cars are a transitional climate solution because they are more efficient and produce fewer emissions per distance traveled than do fossil fuel–powered ICE cars but still rely on fossil fuel combustion.

Description for Social and Search
Mobilize Hybrid Cars is a Highly Recommended climate solution. By combining internal combustion engines with electric motors, hybrids reduce fuel use and air pollution.
Overview

Hybrid cars reduce fuel consumption and tailpipe emissions by relying on electric propulsion for part of their operation. There are currently more than 45 million hybrids making up 2.2% of the more than two billion global car stock. HEVs provide the same functionality as fossil fuel–powered ICE cars, but combine an ICE with an electric motor and battery to improve fuel efficiency. Unlike electric cars, HEVs do not require external charging; instead, they recharge their battery using regenerative braking and energy from the engine. This allows them to use electric power at low speeds and in stop-and-go traffic, reducing fuel consumption and emissions compared to traditional gasoline or diesel cars. PHEVs work similarly but have larger batteries that can be charged using the electricity grid. This enables them to operate in full-electric mode for a limited distance before switching to hybrid mode when the battery is depleted.

Hybrid cars typically offer better acceleration than their purely fossil fuel–powered ICE counterparts, especially at lower speeds. This is because electric motors deliver instant torque, allowing hybrids to respond quickly when accelerating from a stop. PHEVs tend to have stronger electric motors and thus better acceleration. The high torque at low speeds eliminates the need for inefficient gear changes and allows near-constant operation at optimal conditions because the ICE is usually engaged at efficient conditions. This improves the real-world fuel economy 39–58% compared to fossil fuel–powered ICE cars of similar size (Zhang et al., 2025).

While hybrid cars reduce fuel consumption and tailpipe emissions by relying on electric propulsion for part of their operation, their overall emissions depend on how much they use the ICE versus the electric motor, and, for PHEVs, on the emissions intensity of the electricity source used for charging. PHEVs can offer greater potential for emission reductions if charged from low-carbon electricity sources. If driven primarily in electric mode, PHEVs can significantly reduce GHG emissions compared to fossil fuel–powered ICE cars, but if the battery is not regularly charged, their fuel consumption may be similar to or even higher than standard HEVs (Dornoff, 2021; Plötz et al., 2020).

Hybrid technologies also improve car efficiency by reducing energy losses. First, both HEVs and PHEVs recover energy through regenerative braking, converting kinetic energy into electricity and storing it in the battery (Yang et al., 2024). Second, their electric powertrains are more efficient than those of traditional ICEs, particularly in urban driving conditions where frequent stops and starts are common (Verma et al., 2022). These advantages contribute to lower fuel consumption and emissions compared to fossil fuel–powered ICE cars. However, the environmental benefits of hybrids depend on driving patterns, battery charging habits, and the carbon intensity of the electricity grid used to charge PHEVs.

Hybrid cars reduce emissions of CO₂, methane, and nitrous oxide to the atmosphere by increasing fuel efficiency compared to fossil fuel–powered ICE cars, which emit these gases from their tailpipes. Because they are typically fueled by gasoline, hybrid cars produce more methane than any diesel-fueled cars they might be replacing. As a result, their 20-yr effectiveness at addressing climate change is lower than their 100-yr effectiveness. 

Agusdinata, D. B., Liu, W., Eakin, H., & Romero, H. (2018). Socio-environmental impacts of lithium mineral extraction: Towards a research agenda. Environmental Research Letters, 13(12). Article 123001. Link to source: https://doi.org/10.1088/1748-9326/aae9b1

Alberini, A., Di Cosmo, V., & Bigano, A. (2019). How are fuel efficient cars priced? Evidence from eight EU countries. Energy Policy, 134, Article 110978. Link to source: https://doi.org/10.1016/j.enpol.2019.110978

Anenberg, S., Miller, J., Henze, D., & Minjares, R. (2019). A global snapshot of the air pollution-related health impacts of transportation sector emissions in 2010 and 2015. International Council on Clean Transportation. Link to source: https://theicct.org/publication/a-global-snapshot-of-the-air-pollution-related-health-impacts-of-transportation-sector-emissions-in-2010-and-2015/

Asia-Pacific Economic Cooperation. (2024). Connecting traveler choice with climate outcomes: Innovative greenhouse gas emissions reduction policies and practices in the APEC region through traveler behavioral change. Link to source: https://www.apec.org/docs/default-source/publications/2024/9/224_tpt_connecting-traveler-choice-with-climate-outcomes.pdf 

Bell-Pasht, A. (2024). Combined energy burdens: Estimating total home and transportation energy burdens [Topic brief]. American Council for an Energy-Efficient Economy. Link to source: https://www.aceee.org/topic-brief/2024/05/combined-energy-burdens-estimating-total-home-and-transportation-energy-burdens

BEUC. (2021). Electric cars: Calculating the total cost of ownership for consumers [Technical report]. The European Consumer Organisation. Link to source: https://www.beuc.eu/reports/electric-cars-calculating-total-cost-ownership-consumers-technical-report

BloombergNEF. (2024). Electric vehicle outlook 2024. Bloomberg Finance L.P. Link to source: https://about.bnef.com/electric-vehicle-outlook/

Carey, J. (2023, January 11). The other benefit of electric vehicles [News feature]. Proceedings of the National Academy of Sciences, 120(3), Article e2220923120. Link to source: https://doi.org/10.1073/pnas.2220923120

Castelvecchi, D. (2021, August 17). Electric cars and batteries: How will the world produce enough? [News feature]. Nature, 596(7872), 336–339. Link to source: https://doi.org/10.1038/d41586-021-02222-1

Choma, E. F., Evans, J. S., Hammitt, J. K., Gómez-Ibáñez, J. A., & Spengler, J. D. (2020). Assessing the health impacts of electric vehicles through air pollution in the United States. Environment International, 144, Article 106015. Link to source: https://doi.org/10.1016/j.envint.2020.106015 

Dornoff, J. (2021). Plug-in hybrid vehicle CO2 emissions: How they are affected by ambient conditions and driver mode selection [White paper]. International Council on Clean Transportation. Link to source: https://theicct.org/publication/plug-in-hybrid-vehicle-co2-emissions-how-they-are-affected-by-ambient-conditions-and-driver-mode-selection/

Duncan, D., Ku, A. L., Julian, A., Carley, S., Siddiki, S., Zirogiannis, N., & Graham, J. D. (2019). Most consumers don’t buy hybrids: Is rational choice a sufficient explanation? Journal of Benefit-Cost Analysis, 10(1), 1–38. Link to source: https://doi.org/10.1017/bca.2018.24

Fortune Business Insights. (2025). Hybrid vehicle market size, share & growth report, 2024–2032. Link to source: https://www.fortunebusinessinsights.com/hybrid-vehicle-market-105435

Fulton, L. (2020). A publicly available simulation of battery electric, hybrid electric, and gas-powered vehicles. Energies13(10), Article 2569. Link to source: https://doi.org/10.3390/en13102569

Furch, J., Konečný, V., & Krobot, Z. (2022). Modelling of life cycle cost of conventional and alternative vehicles. Scientific Reports, 12(1), Article 10661. Link to source: https://doi.org/10.1038/s41598-022-14715-8

Garcia, E., Johnston, J., McConnell, R., Palinkas, L., & Eckel, S. P. (2023). California’s early transition to electric vehicles: Observed health and air quality co-benefits. Science of The Total Environment, 867, Article 161761. Link to source: https://doi.org/10.1016/j.scitotenv.2023.161761

International Energy Agency. (2021). Global fuel economy initiative 2021 data explorer [Data tool].Link to source: https://www.iea.org/data-and-statistics/data-tools/global-fuel-economy-initiative-2021-data-explorer

International Energy Agency. (2022). Electric vehicles: Total cost of ownership tool [Data tool]. Link to source: https://www.iea.org/data-and-statistics/data-tools/electric-vehicles-total-cost-of-ownership-tool

International Energy Agency. (2023). Energy technology perspectives 2023. Link to source: https://www.iea.org/reports/energy-technology-perspectives-2023

International Energy Agency. (2024). Global EV outlook 2024. Link to source: https://www.iea.org/reports/global-ev-outlook-2024

International Transport Forum. (2020). Good to go? Assessing the environmental performance of new mobility [Corporate Partnership Board Report]. OECD/ITF Publishing. Link to source: https://www.itf-oecd.org/sites/default/files/docs/environmental-performance-new-mobility.pdf

Isenstadt, A., & Slowik, P. (2025). Hybrid vehicle technology developments and opportunities in the 2025–2035 time frame [Working paper]. International Council on Clean Transportation. Link to source: https://theicct.org/publication/hybrid-vehicle-technology-developments-and-opportunities-in-the-2025-2035-time-frame-feb25/

Jones, S. J. (2019). If electric cars are the answer, what was the question? British Medical Bulletin, 129(1), 13–23. Link to source: https://doi.org/10.1093/bmb/ldy044

Kerr, G. H., Goldberg, D. L., & Anenberg, S. C. (2021). COVID-19 pandemic reveals persistent disparities in nitrogen dioxide pollution. Proceedings of the National Academy of Sciences, 118(30), Article e2022409118. Link to source: https://doi.org/10.1073/pnas.2022409118

Kittner, N., Tsiropoulos, I., Tarvydas, D., Schmidt, O., Staffell, I., & Kammen, D. M. (2020). Electric vehicles. In M. Junginger & A. Louwen (Eds.), Technological learning in the transition to a low‑carbon energy system: Conceptual issues, empirical findings, and use in energy modeling (pp. 145–163). Academic Press. Link to source: https://doi.org/10.1016/B978-0-12-818762-3.00009-1

Larson, E., Greig, C., Jenkins, J., Mayfield, E., Pascale, A., Zhang, C., Drossman, J., Williams, R., Pacala, S., Socolow, R., Baik, E., Birdsey, R., Duke, R., Jones, R., Haley, B., Leslie, E., Paustain, K., & Swan, A. (2020). Net-zero America: Potential pathways, infrastructure, and impacts [Interim report]. Princeton University, Andlinger Center for Energy and the Environment. Link to source: https://netzeroamerica.princeton.edu/the-report

Lutsey, N., Cui, H., & Yu, R. (2021). Evaluating electric vehicle costs and benefits in China in the 2020–2035 time frame [White paper]. International Council on Clean Transportation. Link to source: https://theicct.org/publication/evaluating-electric-vehicle-costs-and-benefits-in-china-in-the-2020-2035-time-frame/

Menes, M. (2021). Two decades of hybrid electric vehicle market. Journal of Civil Engineering and Transport, 3(1), 29–37. Link to source: https://doi.org/10.24136/tren.2021.003

Milovanoff, A., Posen, I. D., & MacLean, H. L. (2020). Electrification of light-duty vehicle fleet alone will not meet mitigation targets. Nature Climate Change, 10(12), 1102–1107. Link to source: https://doi.org/10.1038/s41558-020-00921-7

Mittal, V., & Shah, R. (2024). Modeling and comparing the total cost of ownership of passenger automobiles with conventional, electric, and hybrid powertrains. SAE International Journal of Sustainable Transportation, Energy, Environment, & Policy, 5(2), 179–192. Link to source: https://doi.org/10.4271/13-05-02-0013

Mustapa, S. I., Ayodele, B. V., Mohamad Ishak, W. W., & Ayodele, F. O. (2020). Evaluation of cost competitiveness of electric vehicles in Malaysia using life cycle cost analysis approach. Sustainability, 12(13), Article 5303. Link to source: https://doi.org/10.3390/su12135303

Ouyang, D., Zhou, S., & Ou, X. (2021). The total cost of electric vehicle ownership: A consumer-oriented study of China’s post-subsidy era. Energy Policy, 149, Article 112023. Link to source: https://doi.org/10.1016/j.enpol.2020.112023

Pennington, A. F., Cornwell, C. R., Sircar, K. D., & Mirabelli, M. C. (2024). Electric vehicles and health: A scoping review. Environmental Research, 251, Article 118697. Link to source: https://doi.org/10.1016/j.envres.2024.118697

Peters, D. R., Schnell, J. L., Kinney, P. L., Naik, V., & Horton, D. E. (2020). Public health and climate benefits and trade‐offs of U.S. vehicle electrification. GeoHealth, 4(10), Article e2020GH000275. Link to source: https://doi.org/10.1029/2020GH000275

Petrauskienė, K., Galinis, A., Kliaugaitė, D., & Dvarionienė, J. (2021). Comparative environmental life cycle and cost assessment of electric, hybrid, and conventional vehicles in Lithuania. Sustainability, 13(2), Article 957. Link to source: https://doi.org/10.3390/su13020957

Plötz, P., Moll, C., Li, Y., Bieker, G., & Mock, P. (2020). Real-world usage of plug-in hybrid electric vehicles: Fuel consumption, electric driving, and CO2 emissions [White paper]. International Council on Clean Transportation. Link to source: https://theicct.org/publication/real-world-usage-of-plug-in-hybrid-electric-vehicles-fuel-consumption-electric-driving-and-co2-emissions

Requia, W. J., Mohamed, M., Higgins, C. D., Arain, A., & Ferguson, M. (2018). How clean are electric vehicles? Evidence-based review of the effects of electric mobility on air pollutants, greenhouse gas emissions and human health. Atmospheric Environment185, 64–77. Link to source: https://doi.org/10.1016/j.atmosenv.2018.04.040

Roberts, C. (2022). Easy street for low-carbon mobility? The political economy of mass electric car adoption. In G. Parkhurst & W. Clayton (Eds.), Electrifying mobility: Realising a sustainable future for the car (Vol. 15, pp. 13–31). Emerald Publishing Limited. Link to source: https://doi.org/10.1108/S2044-994120220000015004

Romm, J. J., & Frank, A. A. (2006, April). Hybrid vehicles gain traction. Scientific American, 294(4), 72–79. https://doi.org/10.1038/scientificamerican0406-72

Sovacool, B. K. (2019). The precarious political economy of cobalt: Balancing prosperity, poverty, and brutality in artisanal and industrial mining in the Democratic Republic of the Congo. The Extractive Industries and Society, 6(3), 915–939. Link to source: https://doi.org/10.1016/j.exis.2019.05.018

Suttakul, P., Wongsapai, W., Fongsamootr, T., Mona, Y., & Poolsawat, K. (2022). Total cost of ownership of internal combustion engine and electric vehicles: A real-world comparison for the case of Thailand. Energy Reports, 8, 545–553. Link to source: https://doi.org/10.1016/j.egyr.2022.05.213

Vega-Perkins, J., Newell, J. P., & Keoleian, G. (2023). Mapping electric vehicle impacts: Greenhouse gas emissions, fuel costs, and energy justice in the United States. Environmental Research Letters, 18(1), Article 014027. Link to source: https://doi.org/10.1088/1748-9326/aca4e6

Verma, S., Dwivedi, G., & Verma, P. (2022). Life cycle assessment of electric vehicles in comparison to combustion engine vehicles: A review. Materials Today: Proceedings, 49, 217–222. Link to source: https://doi.org/10.1016/j.matpr.2021.01.666

Weiss, M., Zerfass, A., & Helmers, E. (2019). Fully electric and plug-in hybrid cars - An analysis of learning rates, user costs, and costs for mitigating CO2 and air pollutant emissions. Journal of Cleaner Production, 212, 1478–1489. Link to source: https://doi.org/10.1016/j.jclepro.2018.12.019

World Health Organization. (2022). Number of registered vehicles [Data set]. The Global Health Observatory. https://www.who.int/data/gho/data/indicators/indicator-details/GHO/number-of-registered-vehicles

Yang, C., Sun, T., Wang, W., Li, Y., Zhang, Y., & Zha, M. (2024). Regenerative braking system development and perspectives for electric vehicles: An overview. Renewable and Sustainable Energy Reviews, 198, Article 114389. Link to source: https://doi.org/10.1016/j.rser.2024.114389

Zhang, Y., Fan, P., Lu, H., & Song, G. (2025). Fuel consumption of hybrid electric vehicles under real-world road and temperature conditions. Transportation Research Part D: Transport and Environment, 142, Article 104691. Link to source: https://doi.org/10.1016/j.trd.2025.104691 

Credits

Lead Fellow

  • Heather Jones, Ph.D.

  • Cameron Roberts, Ph.D.

Contributors

  • Ruthie Burrows, Ph.D.

  • James Gerber, Ph.D.

  • Yusuf Jameel, Ph.D.

  • Daniel Jasper

  • Alex Sweeney

Internal Reviewers

  • Aiyana Bodi

  • Hannah Henkin

  • Zoltan Nagy, Ph.D. 

  • Ted Otte

  • Amanda D. Smith, Ph.D.

  • Christina Swanson, Ph.D.

Effectiveness

Each million pkm shifted from fossil fuel–powered cars to hybrid cars saves 27.11 t CO₂‑eq on a 100-yr basis (26.94 t CO₂‑eq on a 20-yr basis, Table 1). Fossil fuel–powered cars emit 115.3 t CO‑eq/million pkm on a 100-yr basis (116.4 t CO‑eq/million pkm on a 20-yr basis). The emissions from fossil fuel–powered ICE cars are calculated from the current global fleet mix which is mostly gasoline and diesel powered cars. PHEVs have lower emissions in countries with large shares of renewable, nuclear, or hydropower generation in their electricity grids (International Transport Forum, 2020; Verma et al., 2022).

We found this by collecting data on fuel consumption per kilometer for a range of HEV and PHEV models (IEA, 2021; International Transport Forum, 2020) and multiplying it by the emissions intensity of the fuel the vehicle uses (weighting PHEVs for percentage traveled using fuel). Simultaneously, we collected data on electricity consumption for a range of PHEV models (International Energy Agency [IEA], 2021; International Transport Forum, 2020), and multiplied them by the global average emissions per kWh of electricity generation. This was then weighted by the share of HEVS (73.4%) and PHEVs (26.6%) of the global hybrid car stock.

The amount of emissions savings for PHEVs depends on how often they are charged, the distance traveled using the electric motor, and the emissions intensity of the electrical grid from which they are charged. Hybrid cars today are disproportionately used in high and upper-middle income countries, where electricity grids emit less than the global average per unit of electricity generated (IEA, 2024). HEVS and PHEVs benefit from braking so are more efficient (relative to fossil fuel–powered ICE cars) in urban areas.

Hybrid cars have higher embodied emissions than fossil fuel–powered ICE cars due to the presence of both an ICE and electric motor with a battery that has a GHG-intensive manufacturing process. This gives them a carbon payback period of 2.6 to under 16 years (Alberini et al., 2019; Duncan et al., 2019) for HEVS and as low as one year for PHEVs (Fulton, 2020). Embodied emissions are outside the scope of this assessment. 

left_text_column_width

Table 1. Effectiveness at reducing emissions.

Unit: t CO‑eq/million pkm, 100-yr basis

25th percentile 19.51
mean 22.36
median (50th percentile) 27.11
75th percentile 65.85
Left Text Column Width
Cost

Hybrid cars cost on average US$0.01 more per pkm (US$7,200/million pkm) than fossil fuel–powered ICE cars, including purchase price, financing, fuel and electricity costs, and maintenance costs. This is based on a population-weighted average of the cost differential between hybrid and fossil fuel–powered ICE cars in the EU and 11 other countries: Argentina, China, Czechia, India, Indonesia, Lithuania, Malaysia, South Africa, Thailand, Ukraine, and the United States (BEUC, 2021; Furch et al., 2022; IEA, 2022; Isenstadt & Slowik, 2025; Lutsey et al., 2021; Mittal & Shah, 2024; Mustapa et al., 2020; Ouyang et al., 2021; Petrauskienė et al., 2021; Suttakul et al., 2022). The hybrid cost is weighted by the share of car stock of HEVs and PHEVs. 

While this analysis found that hybrid cars are slightly more expensive than fossil fuel–powered ICE cars almost everywhere, the margin is often quite small and hybrids are less expensive in China, Czechia, India, Thailand, and the United States.

This amounts to a cost of US$264/t CO₂‑eq on a 100-yr basis (US$266/t CO₂‑eq avoided emissions on a 20-yr basis, Table 2).

This analysis did not include costs that are the same for both hybrid and fossil fuel–powered ICE cars, including taxes, insurance costs, public costs of building road infrastructure, etc.

left_text_column_width

Table 2. Cost per unit of climate impact.

Unit: 2023 US$/t CO₂‑eq , 100-yr basis

median 264
Left Text Column Width
Learning Curve

Hybrid car prices are declining. For every doubling in hybrid car production, costs decline in accordance with the learning rate of approximately 10% (Table 3).

The learning curve for hybrids is expected to continue its historical trend of 6–17% declines in production costs with each generation (Kittner et al., 2020; Ouyang et al., 2021; Weiss et al., 2019). For hybrid cars, production costs are driven more by the integration of electric and internal combustion powertrain components than by advancements in battery technology. Because they still rely on ICEs, hybrids do not experience the same rapid cost declines from battery improvements as fully electric cars. Instead, their cost reductions stem from manufacturing efficiencies, economies of scale, and advancements in hybrid powertrain efficiency and electric components (Weiss et al., 2019).

left_text_column_width

Table 3. Learning rate: drop in cost per doubling of the installed solution base %.

Unit: %

25th percentile 8.00
mean 11.00
median (50th percentile) 10.00
75th percentile 13.50
Left Text Column Width
Speed of Action

Speed of action refers to how quickly a climate solution physically affects the atmosphere after it is deployed. This is different from speed of deployment, which is the pace at which solutions are adopted. 

At Project Drawdown, we define the speed of action for each climate solution as emergency brake, gradual, or delayed.

Mobilize Hybrid Cars is a GRADUAL climate solution. It has a steady, linear impact on the atmosphere. The cumulative effect over time builds as a straight line.

left_text_column_width
Caveats

Hybrid cars are often considered a transitional technology for climate change mitigation. While they offer immediate reductions in fuel consumption and emissions compared to fossil fuel–powered ICE cars as the world transitions to fully electric transportation, hybrids still rely on the combustion of fossil fuels. The Mobilize Hybrid Cars solution is a move toward lower emissions – not zero emissions. By combining electric and gasoline powertrains, hybrids improve efficiency and reduce GHG emissions without requiring extensive charging infrastructure, making them a practical short-term solution (IEA, 2021). However, as battery costs decline, renewable energy expands, and charging networks improve, fully electric cars (EVs) are expected to replace hybrids as the dominant low-emission transportation option (Plӧtz et al., 2020).

The effectiveness of hybrid cars in reducing fuel consumption and emissions depends significantly on their ability to use electric power, which is influenced by charging habits and regenerative braking efficiency. PHEVs achieve the greatest fuel savings and emissions reductions when they are regularly charged from a low-emissions-intensity electricity grid because this maximizes their electric driving capability and minimizes reliance on the ICE. However, studies show that real-world charging behaviors vary, with some PHEV users failing to charge frequently, leading to higher-than-expected fuel consumption. Regenerative braking also plays a crucial role because it recaptures kinetic energy during deceleration and converts it into electricity to recharge the battery, improving overall efficiency. The extent of these benefits depends on driving conditions, with stop-and-go urban traffic allowing for more energy recovery than highway driving, where regenerative braking opportunities are limited (Plötz et al., 2020).

Hybrid car adoption faces a major obstacle in the form of constraints on battery production. While electric car battery production is being aggressively upscaled (IEA, 2024), building enough batteries to build enough cars to replace a significant fraction of fossil fuel–powered ICE cars is an enormous challenge. This will likely slow down a transition to hybrids, even if consumer demand is high (Milovanoff et al., 2020). This suggests that EV batteries should be prioritized for users whose transport needs are harder to serve with other forms of low-emissions transportation (such as nonmotorized transportation, public transit, etc.). This could include emergency vehicles, commercial vehicles, and vehicles for people who live in rural areas or have disabilities. 

left_text_column_width
Current Adoption

Approximately 12 million PHEVs (IEA, 2024) and more than 33 million HEVs (IEA, 2023) are in use worldwide. This corresponds to about 2.2% of the total car stock of 2,022,057,847 (World Health Organization [WHO], 2022) and means that hybrid cars worldwide travel about 1.3 trillion pkm/yr. We assumed this travel would occur in a fossil fuel–powered ICE car if the car’s occupants did not use a hybrid car. Adoption is much higher in some countries, such as Japan, where the global hybrid car stock share was 20–30% in 2023.

To convert this number into pkm traveled by hybrid car, we need to determine the average passenger-distance that each passenger car travels per year. Using population-weighted data from several different countries, the average car carries 1.5 people and travels about 19,500 vehicle-kilometers (vkm)/yr, or an average of 29,250 pkm/yr. Multiplying this number by the number of hybrid cars in use (48.5 million) gives the total travel distance shifted (1.3 trillion pkm) from fossil fuel–powered ICE cars to hybrid cars (Table 4).

left_text_column_width

Table 4. Current (2024) adoption level.

Unit: million pkm/yr

Population-weighted mean 1,318,000

Implied travel shifted from fossil fuel–powered cars to hybrid cars.

Left Text Column Width
Adoption Trend

Globally, the pkm driven in hybrid cars rather than fossil fuel–powered ICE cars increases by an average of about 178,200 million pkm/yr (Table 5). PHEV car purchases between 2019–2023 grew 45%/yr (IEA, 2024), while HEV purchases increased 10% annually between 2021–2023 (IEA, 2021, 2023). Global purchases of hybrid cars are increasing by around 6.1 million cars/yr. This is based on globally representative data (Bloomberg New Energy Finance [BloombergNEF], 2024; Fortune Business Insights, 2025; IEA, 2024; Menes, 2021).

It is worth noting that despite this impressive rate of growth, hybrid cars still have a long way to go before they replace a large percentage of the more than two billion cars currently driven (WHO, 2022).

left_text_column_width

Table 5. 2023–2024 adoption trend.

Unit: million pkm/yr

Population-weighted mean 178,200

Implied travel shifted from fossil fuel–powered cars to hybrid cars.

Left Text Column Width
Adoption Ceiling

The total adoption ceiling for hybrid cars is equal to the total passenger-distance driven by private cars worldwide. Using a population-weighted mean of the average distance (in pkm) traveled per car annually, this translates to about 59 trillion pkm traveled (Table 6).

Replacing every single fossil fuel–powered ICE passenger car with a hybrid car would require an enormous upscaling of hybrid car production capacity, rapid development of charging infrastructure for PHEVs, cost reductions to make hybrid cars more affordable for more people, and technological improvements to make them more suitable for more kinds of drivers and trips. This shift would also face cultural obstacles from drivers who are attached to fossil fuel–powered cars (Roberts, 2022).

left_text_column_width

Table 6. Adoption ceiling.

Unit: million pkm/yr

Population-weighted mean 59,140,000

Implied travel shifted from fossil fuel–powered cars to hybrid cars.

Left Text Column Width
Achievable Adoption

The achievable adoption of hybrid car travel is about 12-30 trillion pkm shifted from fossil fuel–powered ICE vehicles.

Various organizations have produced forecasts of future hybrid car adoption. These are not assessments of feasible adoption per se; they are instead predictions of likely rates of adoption, given various assumptions about the future (Bloomberg New Energy Finance, 2024; Fortune Business Insights, 2025; IEA, 2021, 2023, 2024). But they are useful in that they take a large number of variables into account. To convert these estimates of future likely adoption into estimates of the achievable adoption range, we applied some optimistic assumptions to the numbers in the scenario projections. 

To find a high rate of hybrid car adoption, we assumed that every country could reach the highest rate of adoption projected to occur for any country. Bloomberg (Bloomberg New Energy Finance, 2024) predicts that some countries will reach 20–50% hybrid vehicle stock share by 2030. We therefore set our high adoption rate at 50% adoption worldwide. This corresponds to 1.011 trillion total hybrid cars in use, or 29.6 trillion pkm traveled by hybrid cars (Table 7). An important caveat is that with a global supply constraint in the production of electric car batteries that are also used by hybrids, per-country adoption rates are somewhat zero-sum. Every hybrid car purchased in Japan is one that cannot be purchased somewhere else. This means that for the whole world to achieve 50% hybrid car stock share, global hybrid car production (especially battery production) would have to radically increase. 

To identify a lower feasible rate of electric car adoption, we took the lower end of Bloomberg’s 20–50% global hybrid car adoption ceiling. This is also the current adoption rate in the most intensive country (Japan at 20%), proving it feasible. This translates to 404 million hybrid cars, or 11.8 trillion pkm traveled by hybrid car.

left_text_column_width

Table 7. Range of achievable adoption levels.

Unit: million pkm/yr

Current Adoption 1,318,000
Achievable – Low 11,830,000
Achievable – High 29,570,000
Adoption Ceiling 59,140,000
Left Text Column Width

Hybrid cars currently displace 0.036 Gt CO₂‑eq/yr of GHG emissions from the transportation system on a 100-yr basis (Table 8; 0.036 Gt CO₂‑eq/yr on a 20-yr basis). 

If hybrid cars reach 20% of the global private car stock share as BloombergNEF (2024) projects, then with the current number of cars on the road, they will displace 0.321 Gt CO₂‑eq/yr GHG emissions on a 100-yr basis (0.319 Gt CO₂‑eq/yr on a 20-yr basis).

If hybrid cars globally reach 50% of global private car stock share, as BloombergNEF (2024) estimates might happen in some markets, they will displace 0.802 Gt CO₂‑eq/yr GHG emissions on a 100-yr basis (0.796 Gt CO₂‑eq/yr on a 20-yr basis).

If hybrid cars replace 100% of the global car fleet, they will displace 1.603 Gt CO₂‑eq/yr GHG emissions on a 100-yr basis (1.593 Gt CO₂‑eq/yr on a 20-yr basis).

These numbers are based on the present-day average fuel consumption for hybrids and include emissions intensity from electrical grids for PHEVs. If fuel efficiency continues to improve (including hybrids getting lighter) and grids become cleaner, the total climate impact from hybrids cars will increase.

left_text_column_width

Table 8. Climate impact at different levels of adoption.

Unit: Gt CO₂‑eq/yr, 100-yr basis

Current Adoption 0.036
Achievable – Low 0.321
Achievable – High 0.802
Adoption Ceiling 1.603
Left Text Column Width
Additional Benefits

Air Quality

HEVs and PHEVs cars can reduce emissions of air pollutants, including sulfur oxides, sulfur dioxide, particulate matter, nitrogen oxides, and especially carbon monoxide and volatile organic compounds (Requia et al., 2018). Some air pollution reductions are limited (particularly particulate matter and ozone) because hybrid cars are heavy. The added weight can increase emissions from brakes, tires, and wear on the batteries (Carey, 2023; Jones, 2019).

Health

Because hybrid cars have lower tailpipe emissions than fossil fuel–powered ICE cars, they can reduce traffic-related air pollution, which is associated with asthma, lung cancer, increased emergency department visits for respiratory disease, and increased mortality (Anenberg et al., 2019). Transitioning to hybrid cars can reduce exposure to air pollution, improve health, and prevent premature mortality (Garcia et al., 2023; Larson et al., 2020; Peters et al., 2020).

The health benefits of lower traffic-related air pollution vary spatially and – for PHEVs – partly depend on how communities generate electricity (Choma et al., 2020). Racial and ethnic minority communities located near highways and major traffic corridors are disproportionately exposed to air pollution (Kerr et al., 2021). Transitioning to HEVs and PHEVs could improve health in marginalized urban neighborhoods located near highways, industry, or ports (Pennington et al., 2024). These benefits depend on an equitable distribution of hybrid cars and infrastructure to support the adoption of plug-in hybrid cars (Garcia et al., 2023). 

Income and Work

Adopting hybrid cars can lead to savings in a household’s energy burden spent on fuel, or the proportion of income spent on fuel for transportation (Vega-Perkins et al., 2023). Plug-in hybrids can be charged during off-peak times, leading to further reductions in transportation costs (Romm & Frank, 2006). Savings from HEVs and PHEVs may be especially important for low-income households because they have the highest energy burdens (Bell-Pasht, 2024). 

left_text_column_width
Risks

There is some criticism against any solution that advocates for car ownership (electric cars in particular and hybrids – which use fossil fuels – by extension) and that the focus should be on solutions such as public transport systems that reduce car ownership and usage (Jones, 2019; Milovanoff et al., 2020).

There is potential for a rebound effect, where improved fuel efficiency encourages people to drive more, potentially offsetting some of the expected fuel and emissions savings. This can occur because lower fuel costs per kilometer make driving more affordable and so increase vehicle use.

There is a risk that allocating the limited global battery supply to hybrid cars might undermine the deployment of solutions that also require batteries but are more effective at avoiding GHG emissions (Castelvecchi, 2021). These could include electric buses, electric rail, and electric bicycles.

Mining minerals necessary to produce hybrid car batteries carries environmental and social risks. Such mining has been associated with significant harm, particularly in lower-income countries that supply many of these minerals (Agusdinata et al., 2018; Sovacool, 2019).

Hybrid cars might also pose additional safety risks due to their higher weight, which means that they have longer stopping distances and can cause greater damage in collisions and to pedestrians and cyclists (Jones, 2019). 

The operating efficiency depends on charging for PHEVs and braking intensity for all hybrids. The results of efficiency studies also depend on assumptions such as car type, fuel efficiency, battery size, electricity grid, km/yr, and car lifetime. 

left_text_column_width
Interactions with Other Solutions

Reinforcing

The effectiveness of PHEVs in reducing GHG emissions increases as electricity grids become cleaner, since lower-carbon electricity further reduces the emissions associated with car charging. 

left_text_column_width

Competing

Hybrid cars compete directly with electric cars for adoption as well as for batteries, public resources, and infrastructural investment.

left_text_column_width

Scaling up the production of hybrid cars requires more mining of critical minerals, which could affect ecosystems that are valuable carbon sinks (Agusdinata et al., 2018).

left_text_column_width

Traveling by bicycle, sidewalk, public transit network, fully electric car, or smaller electric vehicle (such as electric bicycle) provides a greater climate benefit than traveling by hybrid car. There is an opportunity cost to deploying hybrid cars because those resources could otherwise be used to support these more effective solutions (Asia-Pacific Economic Cooperation [APEC], 2024).

left_text_column_width
Dashboard

Solution Basics

million passenger kilometers (million pkm)

t CO₂-eq (100-yr)/unit
019.5127.11
units/yr
Current 1.318×10⁶ 01.183×10⁷2.957×10⁷
Achievable (Low to High)

Climate Impact

Gt CO₂-eq (100-yr)/yr
Current 0.036 0.3210.802
US$ per t CO₂-eq
264
Gradual

CO₂ , CH₄, N₂O, BC

Trade-offs

Hybrid cars have higher embodied emissions than fossil fuel–powered ICE cars due to the presence of both an ICE and electric motor with a battery that has a GHG-intensive manufacturing process. While the embodied emissions are higher for hybrid cars than ICE cars, coupling them with operating emissions yields a carbon payback period of several years. Embodied emissions were outside the scope of this assessment.

left_text_column_width
Action Word
Mobilize
Solution Title
Hybrid Cars
Classification
Highly Recommended
Lawmakers and Policymakers
  • Create time-bound government procurement policies and targets to transition government fleets to hybrid cars when fully electric cars aren’t possible.
  • Provide financial incentives such as tax breaks, subsidies, or grants for hybrid car production and purchases that gradually reduce as market adoption increases.
  • Provide complimentary benefits for hybrid car drivers, such as privileged parking areas, free tolls, and access schemes.
  • Use targeted financial incentives to help low-income communities buy hybrid cars and incentivize manufacturers to produce more affordable options.
  • Develop charging infrastructure, ensuring adequate spacing between stations and equitable distribution of stations.
  • Invest in R&D or implement regulations to improve manufacturing, adoption, supply chain standards, and circularity of hybrid cars – particularly batteries.
  • Transition fossil fuel electricity production to renewables while promoting the transition to hybrid cars.
  • Disincentivize fossil fuel–powered ICE car ownership by gradually introducing taxes, penalties, buy-back programs, or other mechanisms.
  • Offer one-stop shops for information on hybrid vehicles, including demonstrations and educational resources on cost savings, environmental impact, and maintenance.
  • Work with industry and labor leaders to construct new hybrid car plants and transition fossil fuel–powered ICE car manufacturing into hybrid car production.
  • Set regulations for sustainable use of hybrid car batteries and improve recycling infrastructure.
  • Join international efforts to promote and ensure supply chain environmental and human rights standards.
  • Incentivize or mandate life-cycle assessments and product labeling (e.g., Environmental Product Declarations).
  • Create, support, or join partnerships that offer information, training, and general support for hybrid car adoption.
Practitioners
  • Produce and sell affordable hybrid car models.
  • Collaborate with dealers to provide incentives, low-interest financing, or income-based payment options.
  • Develop charging infrastructure, ensuring adequate spacing between stations and equitable distribution of stations.
  • Offer lifetime warranties for hybrid batteries and easy-to-understand maintenance instructions.
  • Invest in R&D to improve manufacturing, adoption, supply chain standards, and circularity of hybrid cars, particularly batteries.
  • Provide customers with real-world data to help alleviate fuel efficiency concerns.
  • Offer one-stop shops for information on hybrid cars, including educational resources on cost savings, environmental impact, optimal charging, and maintenance.
  • Work with policymakers and labor leaders to construct new hybrid car plants and transition fossil fuel–powered ICE car manufacturing into hybrid car production.
  • Join international efforts to promote and ensure supply chain environmental and human rights standards.
  • Invest in recycling and circular economy infrastructure.
  • Conduct life-cycle assessments and ensure product labeling (e.g., Environmental Product Declarations).
  • Create, support, or join partnerships that offer information, training, and general support for hybrid car adoption.
Business Leaders
  • Set time-bound company procurement policies and targets to transition corporate fleets to hybrid cars when fully electric cars aren’t feasible and report on these metrics regularly.
  • Encourage supply chain partners to transition their delivery fleets to hybrid vehicles when fully electric cars aren’t feasible.
  • Take advantage of financial incentives, such as tax breaks, subsidies, or grants for hybrid car purchases.
  • Create purchasing agreements with hybrid car manufacturers to support stable demand and improve economies of scale.
  • Install charging stations and offer employee benefits for hybrid car drivers, such as privileged parking areas.
  • Invest in R&D to improve manufacturing, adoption, supply chain standards, and circularity of hybrid cars – particularly batteries.
  • Work with industry and labor leaders to transition fossil fuel–powered ICE car manufacturing into hybrid car production.
  • Advocate for financial incentives and policies that promote hybrid car adoption.
  • Join international efforts to promote and ensure supply chain environmental and human rights standards.
  • Educate employees, customers, and investors about the company's transition to hybrid cars and encourage them to learn more about them.
  • Offer one-stop shops for information on hybrid cars, including demonstrations and educational resources on cost savings, environmental impact, and maintenance.
  • Create, support, or join partnerships that offer information, training, and general support for hybrid car adoption.

Further information:

Nonprofit Leaders
  • Set time-bound organizational procurement policies and targets to transition fleets to hybrid cars when fully electric cars aren’t feasible.
  • Take advantage of financial incentives, such as tax breaks, subsidies, or grants for hybrid car purchases.
  • Advocate for financial incentives and policies that promote hybrid car adoption.
  • Install charging stations and offer employee benefits for hybrid car drivers, such as privileged parking areas.
  • Advocate for or provide improved charging infrastructure.
  • Offer workshops or support to low-income communities for purchasing and owning hybrid cars.
  • Work with industry and labor leaders to transition fossil fuel–powered ICE car manufacturing into hybrid car production.
  • Join international efforts to promote and ensure supply chain environmental and human rights standards.
  • Advocate for regulations on lithium-ion batteries and investments in recycling facilities.
  • Offer one-stop shops for information on hybrid cars, including demonstrations and educational resources on cost savings, environmental impact, and maintenance.
  • Create, support, or join partnerships that offer information, training, and general support for hybrid car adoption.
Investors
  • Invest in hybrid car companies and companies that provide charging equipment or installation.
  • Pressure and support portfolio companies in transitioning their corporate fleets.
  • Pressure portfolio companies to establish and report on time-bound targets for corporate fleet transition and roll-out of employee incentives.
  • Invest in R&D to improve manufacturing, adoption, supply chain standards, and circularity of hybrid cars – particularly batteries.
  • Invest in hybrid car companies, associated supply chains, and end-user businesses like rideshare apps.
  • Join international efforts to promote and ensure supply chain environmental and human rights standards.
  • Create, support, or join partnerships that offer information, training, and general support for hybrid car adoption.
  • Offer low-interest loans for purchasing hybrid cars or charging infrastructure.
Philanthropists and International Aid Agencies
  • Set time-bound organizational procurement policies to transition fleets to hybrid cars when fully electric cars aren’t feasible.
  • Install charging stations and offer employee benefits for hybrid car drivers, such as privileged parking areas.
  • Take advantage of financial incentives, such as tax breaks, subsidies, or grants for hybrid car purchases.
  • Advocate for financial incentives and policies that promote hybrid car adoption.
  • Advocate for or provide improved charging infrastructure.
  • Advocate for regulations on lithium-ion batteries and public investments in recycling facilities.
  • Offer financial services such as low-interest loans or grants for purchasing hybrid cars and charging equipment.
  • Offer workshops or support to low-income communities for purchasing and owning hybrid cars.
  • Work with industry and labor leaders to transition fossil fuel–powered ICE car manufacturing into hybrid car production.
  • Join international efforts to promote and ensure supply chain environmental and human rights standards.
  • Offer one-stop shops for information on hybrid vehicles, including demonstrations and educational resources on cost savings, environmental impact, and maintenance.
  • Create, support, or join partnerships that offer information, training, and general support for hybrid car adoption.
Thought Leaders
  • If purchasing a new car, buy a hybrid car if fully electric isn’t feasible.
  • Take advantage of financial incentives, such as tax breaks, subsidies, or grants for hybrid car purchases.
  • Share your experiences with hybrid cars through social media and peer-to-peer networks, highlighting the cost savings, benefits, incentive programs, and troubleshooting tips.
  • Advocate for financial incentives and policies that promote hybrid car adoption.
  • Advocate for improved charging infrastructure.
  • Help improve circularity of hybrid car supply chains.
  • Conduct in-depth life-cycle assessments of hybrid cars in particular geographies.
  • Research ways to reduce weight and improve the performance of hybrid cars while appealing to customers.
  • Join international efforts to promote and ensure supply chain environmental and human rights standards.
  • Create, support, or join partnerships that offer information, training, and general support for hybrid car adoption.
Technologists and Researchers
  • Improve circularity of hybrid car supply chains.
  • Reduce the amount of critical minerals required for hybrid car batteries.
  • Innovate low-cost methods to improve safety, labor standards, and supply chains in mining for critical minerals.
  • Increase the longevity of batteries.
  • Research ways to reduce weight and improve the performance of hybrid cars while appealing to customers.
  • Improve techniques to repurpose used hybrid car batteries for stationary energy storage.
  • Develop methods of adapting fossil fuel–powered car manufacturing and infrastructure to include electric components.
Communities, Households, and Individuals
  • If purchasing a new car, buy a hybrid car when fully electric cars aren’t feasible.
  • Take advantage of financial incentives, such as tax breaks, subsidies, or grants for hybrid car purchases.
  • Share your experiences with hybrid cars through social media and peer-to-peer networks, highlighting the cost savings, benefits, incentive programs, and troubleshooting tips.
  • Help shift the narrative around hybrid cars by demonstrating capability and performance.
  • Advocate for financial incentives and policies that promote hybrid car adoption.
  • Advocate for improved charging infrastructure.
  • Help improve circularity of supply chains for hybrid car components.
  • Join international efforts to promote and ensure supply chain environmental and human rights standards.
  • Create, support, or join partnerships that offer information, training, and general support for hybrid car adoption.
Sources
Evidence Base

Consensus of effectiveness in reducing emissions: Mixed

There is a high level of consensus that hybrid cars emit fewer GHGs per kilometer traveled compared to fossil fuel–powered ICE cars. Hybrid cars achieve these reductions by combining an ICE with an electric motor that improves fuel efficiency and, for some models, allow for limited all-electric driving, further reducing fuel consumption and emissions. This advantage is strongest in places where trips are short and require a lot of braking, such as in cities. 

Globally, cars and vans were responsible for 3.8 Gt CO₂‑eq emissions in 2023 – more than 60% of road transport emissions (IEA, 2024).

Major climate research organizations generally see hybrid cars as a transitional means of reducing GHG emissions from passenger transportation. These technologies offer immediate emissions reductions while the electricity grid decarbonizes and battery technology improves. Any improvement to fuel efficiency or time spent driving electrically reduces emissions. These technologies can be a gateway to fully electric cars by eliminating range anxiety and allowing drivers the experience of electric driving without fully committing to the limitations of current EV infrastructure. 

Hybrid cars, while more fuel-efficient than fossil fuel–powered ICE cars, still rely on gasoline or diesel, meaning they continue to produce tailpipe emissions and contribute to air pollution. Additionally, their dual powertrains add complexity, leading to higher embodied emissions, manufacturing costs, increased maintenance requirements, and potential long-term reliability concerns. The added weight from both an ICE and an electric motor, along with a battery pack, can reduce overall efficiency and raise safety concerns. Embodied emissions are outside the scope of this assessment.

Isenstadt & Slowik (2025) estimated that HEVs reduce tailpipe GHG emissions by 30% while costing an average of US$2,000 more upfront. Over a 10-yr period, they offered an estimated fuel cost savings of US$4,500. ICCT expected future HEVs to achieve an additional 15% reduction in GHG emissions, with a decrease in the price premium of US$300–800. PHEVs reduce GHG emissions by 11–30%, depending on emissions intensity of the electric grid and the proportion of distance driven electrically. 

The IEA (2024) noted that a PHEV bought in 2023 will emit 30% less GHGs than a fossil fuel–powered ICE car over its lifetime. This includes full life cycle impacts, including those from producing the car. 

The International Transport Forum (2020) estimated that fossil fuel–powered ICE cars emit 162 g CO‑eq/pkm while HEVs emit 132 g CO‑eq/pkm and PHEVs emit 124 g CO‑eq/pkm. This includes embodied and upstream emissions.

The results presented in this document summarize findings from 12 reviews and meta-analyses and 29 original studies reflecting current evidence from 72 countries, primarily from the IEA’s Global Electric Vehicle Outlook (2024) and Electric Vehicles: Total Cost of Ownership Tool (2022) and the International Transport Forum’s life-cycle analysis on sustainable transportation (2020). We recognize this limited geographic scope creates bias, and hope this work inspires research and data sharing on this topic in underrepresented regions.

left_text_column_width
Updated Date

Deploy Low-Emission Industrial Feedstocks

Image
Image
Peatland
Coming Soon
On
Description for Social and Search
The Deploy Low-Emission Industrial Feedstocks solution is coming soon.
Action Word
Deploy
Solution Title
Low-Emission Industrial Feedstocks
Classification
Highly Recommended
Updated Date

Deploy Alternative Insulation Materials

Image
Image
Worker sprays insulation in building frame.
Coming Soon
Off
Summary

Deploy Alternative Insulation Materials is defined as using alternative building insulation materials in place of conventional ones. In particular, we highlight the impact of using cellulose instead of glass, mineral, or plastic insulation in new and retrofit buildings. Cellulose insulation manufacture and installation emits fewer GHGs to reach the same operational insulating performance than does manufacture and installation of conventional materials.

Description for Social and Search
Deploy Alternative Insulation Materials is a Highly Recommended climate solution. Changing the materials we use to insulate buildings to alternatives like cellulose can reduce GHG emissions from energy-intensive insulation manufacturing and GHG-releasing installation procedures.
Overview

Thermal insulation materials are used in the walls, roofs, and floors of buildings to help maintain comfortable indoor temperatures. However, manufacture and installation of insulation materials produces GHG emissions. These are called embodied emissions because they occur before the insulation is used in buildings. Insulation embodied emissions offset a portion of the positive climate impacts from using insulation to reduce heating and cooling demand. A Canadian study found that over 25% of residential embodied emissions from manufacturing building materials can be due to insulation (Magwood et al., 2022). Using cellulose insulation made primarily from recycled paper avoids some embodied emissions associated with conventional insulation.

Insulation is manufactured in many different forms, including continuous blankets or boards, loose fill, and sprayed foam (Types of Insulation, n.d.). Most conventional insulation materials are nonrenewable inorganic materials such as stone wool and fiberglass. These require high temperatures (>1,300 °C) to melt the raw ingredients, consuming thermal energy and releasing CO₂ from fossil fuel combustion or grid power generation (Schiavoni et al., 2016). Other common insulations are plastics, including expanded polystyrene (EPS), extruded polystyrene (XPS), polyurethane (PUR), and polyisocyanurate (PIR). Producing these plastics requires the extraction of fossil fuels – primarily petroleum – for feedstocks, as well as high amounts of energy for processing (Harvey, 2007). 

F-gases are often used as blowing agents to manufacture rigid foam board insulation or install sprayed foam insulation. F-gases are GHGs with GWPs that can be hundreds or thousands of times higher than CO₂. High-GWP F-gases used in foam production are released into the atmosphere during all subsequent stages of the foam’s life cycle (Biswas et al., 2016; Waldman et al., 2023). The climate benefits of this solution during the installation stage are primarily due to avoiding these blowing agents. 

Alternative insulation is produced from plant or animal biomass (bio-based materials) or waste products (recycled materials). Alternative insulation materials provide climate benefits by consuming less manufacturing energy, using renewable materials in place of fossil fuels, and eliminating high-GWP blowing agents (Sustainable Traditional Buildings Alliance, 2024). 

Figure 1 compares a variety of conventional and alternative insulation materials. While many bio-based and recycled materials could be used as alternatives to these conventional materials, this solution focuses on cellulose due to its effectiveness in avoiding emissions, low cost, and wide availability. Cellulose insulation is made primarily from recycled paper fibers, newsprint, and cardboard. These products are made into fibers and blended with fire retardants to produce loose or batt cellulose insulation (Waldman et al., 2023; Wilson, 2021).

Figure 1. Properties and adoption of conventional and alternative insulation materials. Costs and emissions will vary from the values here depending on the insulation form (board, blanket, loose-fill, etc.).

Category Material High-GWP F-gases used? Median manufacturing and installation emissions* Mean product and installation cost** Estimated market share
(% by mass)
Conventional materials Stone wool No 0.31 623 20
Glass wool (fiberglass) No 0.29 508 34
EPS No 0.38 678 22
XPS Yes, sometimes 9.44 702 7
PUR/PIR Yes, sometimes 6.14 1,000 11
Alternative materials Cellulose No 0.05 441 2–13
Cork No 0.30 1,520 Commercially available, not widely used
Wood fiber No 0.13 814 Commercially available, not widely used
Plant fibers (kenaf, hemp, jute) No 0.18 467 Commercially available, not widely used
Sheep’s wool No 0.14 800 Commercially available, not widely used
Recycled PET plastic No 0.12 2,950 Commercially available, not widely used

*t CO₂‑eq (100-yr) to insulate 100m² to 1m²·K/W

**2023 US$ to insulate 100m² to 1m²·K/W. We use mean values for cost analysis to better capture the limited data and wide range of reported costs.

Although we are estimating the impact of using cellulose insulation in all buildings, the unique circumstances of each building are important when choosing the most appropriate insulation material. In this solution, we do not distinguish between residential and commercial buildings, retrofit or new construction, different building codes, or different climates, but these would be important areas of future study.

In this solution, the effectiveness, cost, and adoption are calculated over a specified area (100 m²) and thermal resistance (1 m²·K/W). The chosen adoption unit ensures that all data are for materials with the same insulating performance. Due to limited material information, we assumed that insulation mass scales linearly with thermal resistance.

To better understand the adoption unit, a one-story residential building of 130 m² floor area would require approximately 370 m² of insulation area (RSMeans from The Gordian Group, 2023). For a cold climate like Helsinki, Finland, code requires insulation thermal resistance of 11 m²·K/W (The World Bank, n.d.). For a warm climate like Jerusalem, Israel, envelope thermal resistance requirements average 1.1 m²·K/W (The World Bank, n.d.). Therefore, depending on the location, anywhere from approximately 4–40 adoption units insulating 100 m² to 1 m²·K/W may be needed to insulate a small single-story home to the appropriate area and insulation level.

Take Action Intro

Would you like to help deploy alternative insulation? Below are some ways you can make a difference, depending on the roles you play in your professional or personal life.

These actions are meant to be starting points for involvement and may or may not be the most important, impactful, or doable actions you can take. We encourage you to explore, get creative, and take a step that is right for you!

Adams, M., Burrows, V., & Richardson, S. (2019). Bringing embodied carbon upfront: Coordinated action for the building and construction sector to tackle embodied carbon. World Green Building Council, Advancing Net Zero, Ramboll, & C40 Cities. Link to source: https://worldgbc.s3.eu-west-2.amazonaws.com/wp-content/uploads/2022/09/22123951/WorldGBC_Bringing_Embodied_Carbon_Upfront.pdf 

Amendment to the Montreal Protocol on substances that deplete the ozone layer. (2016, October 15). Link to source: https://treaties.un.org/doc/Treaties/2016/10/20161015%2003-23%20PM/Ch_XXVII-2.f-English%20and%20French.pdf 

Andersen, B., & Rasmussen, T. V. (2025). Biobased building materials: Moisture characteristics and fungal susceptibility. Building and Environment, 112720. Link to source: https://doi.org/10.1016/j.buildenv.2025.112720 

Asdrubali, F., D’Alessandro, F., & Schiavoni, S. (2015). A review of unconventional sustainable building insulation materials. Sustainable Materials and Technologies, 4, 1–17. Link to source: https://doi.org/10.1016/j.susmat.2015.05.002 

Biswas, K., Shrestha, S. S., Bhandari, M. S., & Desjarlais, A. O. (2016). Insulation materials for commercial buildings in North America: An assessment of lifetime energy and environmental impacts. Energy and Buildings, 112, 256–269. Link to source: https://doi.org/10.1016/j.enbuild.2015.12.013 

Cabeza, L. F., Boquera, L., Chàfer, M., & Vérez, D. (2021). Embodied energy and embodied carbon of structural building materials: Worldwide progress and barriers through literature map analysis. Energy and Buildings, 231, 110612. Link to source: https://doi.org/10.1016/j.enbuild.2020.110612 

Carbon Removals Expert Group Technical Assistance. (2023, December). Review of certification methodologies for long-term biogenic carbon storage in buildings. European Commission. Link to source: https://climate.ec.europa.eu/system/files/2023-12/policy_carbon_expert_biogenic_carbon_storage_in_buildings_en.pdf 

Deer et al. (2007). Alaska Residential Building Manual. Alaska Housing Finance Corporation. Link to source: https://www.ahfc.us/application/files/2813/5716/1325/building_manual.pdf 

Esau et al. (2021). Reducing Embodied Carbon in Buildings: Low-Cost, High-Value Opportunities. RMI. Link to source: http://www.rmi.org/insight/reducing-embodied-carbon-in-buildings 

The Freedonia Group. (2024). Global insulation report. Link to source: https://www.freedoniagroup.com/industry-study/global-insulation 

Fabbri, M., Rapf, O., Kockat, J., Fernández Álvarez, X., Jankovic, I., & Sibileau, H. (2022). Putting a stop to energy waste: How building insulation can reduce fossil fuel imports and boost EU energy security. Buildings Performance Institute Europe. Link to source: https://www.bpie.eu/wp-content/uploads/2022/05/Putting-a-stop-to-energy-waste_Final.pdf 

Forestry production and trade. (2023). [Dataset]. FAOSTAT. Link to source: https://www.fao.org/faostat/en/#data/FO 

Füchsl, S., Rheude, F., & Röder, H. (2022). Life cycle assessment (LCA) of thermal insulation materials: A critical review. Cleaner Materials, 5, 100119. Link to source: https://doi.org/10.1016/j.clema.2022.100119 

Gelowitz, M. D. C., & McArthur, J. J. (2017). Comparison of type III environmental product declarations for construction products: Material sourcing and harmonization evaluation. Journal of Cleaner Production, 157, 125–133. Link to source: https://doi.org/10.1016/j.jclepro.2017.04.133 

Global Alliance for Buildings and Construction, International Energy Agency, and the United Nations Environment Programme. (2020). GlobalABC roadmap for buildings and construction: Towards a zero-emission, efficient and resilient buildings and construction sector. International Energy Agency. Link to source: https://www.iea.org/reports/globalabc-roadmap-for-buildings-and-construction-2020-2050 

Grazieschi, G., Asdrubali, F., & Thomas, G. (2021). Embodied energy and carbon of building insulating materials: A critical review. Cleaner Environmental Systems, 2, 100032. Link to source: https://doi.org/10.1016/j.cesys.2021.100032 

Harvey, L. D. D. (2007). Net climatic impact of solid foam insulation produced with halocarbon and non-halocarbon blowing agents. Building and Environment, 42(8), 2860–2879. Link to source: https://doi.org/10.1016/j.buildenv.2006.10.028 

Installed cost of residential siding comparative study. (2023). RSMeans / The Gordian Group. Link to source: https://www.gobrick.com/content/userfiles/files/RSMeans%20Residential%20Siding%20Comparative%20Cost%20Wall%20System%20Study%20Final%202023-09-15.pdf 

Insulation choices revealed in new study. (2019, June 19). Home Innovation Research Labs. Link to source: https://www.homeinnovation.com/trends_and_reports/trends/insulation_choices_revealed_in_new_study 

International Energy Agency. (2023). Building envelopes. Link to source: https://www.iea.org/energy-system/buildings/building-envelopes 

International Energy Agency, International Renewable Energy Agency, & United Nations Climate Change High-Level Champions. (2023). Breakthrough agenda report 2023. Link to source: https://www.iea.org/reports/breakthrough-agenda-report-2023 

Jelle, B. P. (2011). Traditional, state-of-the-art and future thermal building insulation materials and solutions – Properties, requirements and possibilities. Energy and Buildings, 43(10), 2549–2563. Link to source: https://doi.org/10.1016/j.enbuild.2011.05.015 

Kumar, D., Alam, M., Zou, P. X. W., Sanjayan, J. G., & Memon, R. A. (2020). Comparative analysis of building insulation material properties and performance. Renewable and Sustainable Energy Reviews, 131, 110038. Link to source: https://doi.org/10.1016/j.rser.2020.110038 

Magwood et al. (2022). Emissions of Materials Benchmark Assessment for Residential Construction Report. Passive Buildings Canada and Builders for Climate Action.

Malhotra, A., & Schmidt, T. S. (2020). Accelerating Low-Carbon Innovation. Joule, 4(11), 2259–2267. Link to source: https://doi.org/10.1016/j.joule.2020.09.004 

Mályusz, L., & Pém, A. (2013). Prediction of the learning curve in roof insulation. Automation in Construction, 36, 191–195. Link to source: https://doi.org/10.1016/j.autcon.2013.04.004 

Mapping energy efficiency: A global dataset on building code effectiveness and compliance: Country profiles. (n.d.). [Dataset]. The World Bank. Link to source: https://www.worldbank.org/content/dam/sites/buildinggreen/doc/building_green_country_profile.pdf 

Maskell, D., Da Silva, C., Mower, K., Rana, C., Dengel, A., Ball, R., Ansell, M., Walker, P., & Shea, A. (2015, June 22). Properties of bio-based insulation materials and their potential impact on indoor air quality. First International Conference on Bio-based Building Materials, Clermont-Ferrand, France.

McGrath et al. (2023). Embodied Carbon and Material Health in Insulation. Healthy Building Network, Perkins&Will. Link to source: https://habitablefuture.org/wp-content/uploads/2024/03/96-Carbon-Health-Insulation.pdf 

Naldzhiev, D., Mumovic, D., & Strlic, M. (2020). Polyurethane insulation and household products – A systematic review of their impact on indoor environmental quality. Building and Environment, 169, 106559. Link to source: https://doi.org/10.1016/j.buildenv.2019.106559 

Northeast Bio-based Materials Collective 2023 summit proceedings. (2023). Link to source: https://massdesigngroup.org/sites/default/files/file/2024/Northeast%20Bio-Based%20Materials%20Collective%202023%20Summit%20Proceedings.pdf 

Petcu et al. (2023). Research on Thermal Insulation Performance and Impact on Indoor Air Quality of Cellulose-Based Thermal Insulation Materials. Materials, 16(15), Article 15. Link to source: https://doi.org/10.3390/ma16155458 

Rabbat, C., Awad, S., Villot, A., Rollet, D., & Andrès, Y. (2022). Sustainability of biomass-based insulation materials in buildings: Current status in France, end-of-life projections and energy recovery potentials. Renewable and Sustainable Energy Reviews, 156, 111962. Link to source: https://doi.org/10.1016/j.rser.2021.111962 

Riverse. (2024, August). Methodology: Biobased construction materials. Link to source: https://www.riverse.io/methodologies/biobased-construction-materials 

RSMeans from The Gordian Group. (2023). Installed Cost of Residential Siding Comparative Study. Link to source: https://www.gobrick.com/content/userfiles/files/RSMeans%20Residential%20Siding%20Comparative%20Cost%20Wall%20System%20Study%20Final%202023-09-15.pdf 

SaravanaPrabhu et al. (2021). Comparative Analysis of Learning Curve Models on Construction Productivity of Diaphragm Wall and Pile. IOP Conference Series: Materials Science and Engineering, 1197(1), 012004. Link to source: https://doi.org/10.1088/1757-899X/1197/1/012004 

Schiavoni, S., D׳Alessandro, F., Bianchi, F., & Asdrubali, F. (2016). Insulation materials for the building sector: A review and comparative analysis. Renewable and Sustainable Energy Reviews, 62, 988–1011. Link to source: https://doi.org/10.1016/j.rser.2016.05.045 

Schulte, M., Lewandowski, I., Pude, R., & Wagner, M. (2021). Comparative life cycle assessment of bio-based insulation materials: Environmental and economic performances. GCB Bioenergy, 13(6), 979–998. Link to source: https://doi.org/10.1111/gcbb.12825 

Stamm et al. (2022). Chemical and Environmental Justice Impacts in the Life Cycle of Building Insulation. Energy Efficiency for All, Healthy Building Network. Link to source: https://informed.habitablefuture.org/resources/research/20-chemical-and-environmental-justice-impacts-in-the-life-cycle-of-building-insulation-report-brief 

Sustainable Traditional Buildings Alliance. (2024, March). The use of natural insulation materials in retrofit. Link to source: https://stbauk.org/wp-content/uploads/2024/03/The-use-of-natural-insulation-materials-in-retrofit.pdf 

The World Bank. (n.d.). Mapping Energy Efficiency: A Global Dataset on Building Code Effectiveness and Compliance. Link to source: https://www.worldbank.org/content/dam/sites/buildinggreen/doc/building_green_main_findings.pdf 

Types of insulation. (n.d.). U.S. Department of Energy. Link to source: https://www.energy.gov/energysaver/types-insulation 

Waldman et al. (2023). 2023 Carbon Leadership Forum North American Material Baselines. Carbon Leadership Forum, University of Washington. Link to source: https://carbonleadershipforum.org/clf-material-baselines-2023/ 

Wang et al. (2023). Can Paper Waste Be Utilised as an Insulation Material in Response to the Current Crisis. Sustainability, 15(22), Article 22. Link to source: https://doi.org/10.3390/su152215939 

Wi, S., Kang, Y., Yang, S., Kim, Y. U., & Kim, S. (2021). Hazard evaluation of indoor environment based on long-term pollutant emission characteristics of building insulation materials: An empirical study. Environmental Pollution, 285, 117223. Link to source: https://doi.org/10.1016/j.envpol.2021.117223 

Wilson. (2021). The BuildingGreen Guide to Thermal Insulation: What You Need to Know About Performance, Health, and Environmental Considerations. BuildingGreen, Inc.

Zabalza Bribián, I., Valero Capilla, A., & Aranda Usón, A. (2011). Life cycle assessment of building materials: Comparative analysis of energy and environmental impacts and evaluation of the eco-efficiency improvement potential. Building and Environment, 46(5), 1133–1140. Link to source: https://doi.org/10.1016/j.buildenv.2010.12.002 

Credits

Lead Fellow

  • Sarah Gleeson, Ph.D.

Contributors

  • Ruthie Burrows, Ph.D.

  • James Gerber, Ph.D.

  • Yusuf Jameel, Ph.D. 

  • Daniel Jasper

  • Alex Sweeney

Internal Reviewers

  • Aiyana Bodi

  • Hannah Henkin

  • Ted Otte

  • Amanda D. Smith, Ph.D.

  • Christina Swanson, Ph.D.

Effectiveness

To insulate 100 m² to a thermal resistance of 1 m²·K/W using entirely cellulose insulation in place of the current baseline mix of insulation materials is expected to avoid 1.59 t CO₂‑eq on a 100-yr basis (Table 1). Since many of the avoided emissions are F-gases, the 20-yr effectiveness is higher, avoiding 4.07 t CO₂‑eq per unit of insulation. Effectiveness for this solution measures the one-time reduced emissions from manufacturing and installing insulation. Insulation also reduces the energy used while a building is operating, but those emissions are addressed separately in the Improve Building Envelopes solution. 

Conventional insulation effectiveness was considered to be a weighted average effectiveness of the current baseline insulation mix, including a small amount of cellulose insulation currently in use.

The largest contributor to conventional insulation embodied emissions is using high-GWP blowing agents to manufacture or install XPS, PUR, or PIR foam. We assumed the use of F-gas blowing agents for all foams, although these are already being regulated out of use globally (Amendment to the Montreal Protocol on Substances That Deplete the Ozone Layer, 2016) and an unknown amount of low-GWP blowing agents are currently used (such as hydrocarbons or CO₂). Therefore, we anticipate the effectiveness of this solution will decrease as F-gases are used less in the future. We assumed that 100% of blowing agents are emitted over the product lifetime.

Cellulose has the greatest avoided emissions of all of the alternative materials we evaluated (Figure 1). The next most effective materials were recycled PET, wood fibers, and sheep’s wool. Conventional materials like XPS, PUR, and PIR that are foamed with F-gases had the highest GHG emissions. For bio-based materials, we did not consider biogenic carbon as a source of carbon sequestration due to quantification and permanence concerns. 

left_text_column_width

Table 1. Effectiveness at reducing emissions.

Unit: t CO₂‑eq /insulation required to insulate 100 m² to a thermal resistance of 1 m²·K/W, 100-yr basis

25th percentile 0.98
mean 1.34
median (50th percentile) 1.59
75th percentile 1.81
Left Text Column Width
Cost

Available cost data are variable for all materials, particularly those in early-stage commercialization. The mean cost of purchasing and installing cellulose insulation is less than that of any other conventional or alternative insulation material (Figure 1). Compared with the average cost of conventional insulation, the mean cost savings for cellulose insulation is US$193/100 m² insulated to a thermal resistance of 1 m²·K/W. Since most buildings are insulated over greater areas to higher thermal resistances, these savings would quickly add up. When considering the mean cost per median climate impact, cellulose insulation saves US$121/t CO₂‑eq (100-yr basis), making it an economically and environmentally beneficial alternative (Table 2).

We considered conventional insulation cost to be a weighted average cost of the current baseline insulation mix, including a small amount of cellulose insulation currently in use.

For conventional insulation, material costs of purchasing the insulation are higher than costs for installation (US$540 and US$97, respectively, to insulate 100 m2 to a thermal resistance of 1 m²·K/W). Cellulose has a lower product cost and comparable installation costs to conventional materials. We considered all costs to be up-front and not spread over the lifetime of the material or building. For each material type, cost will vary based on the form of the insulation (board, loose, etc.) and this should be accounted for when comparing insulation options for a particular building. 

We determined net costs of insulation materials by adding the mean cost to purchase the product and the best estimation of installation costs based on available information. Installation costs were challenging to find data on and therefore represent broad assumptions of installation type and labor. Cost savings were determined by subtracting the weighted average net cost of conventional materials to the net cost of an alternative material. Although we used median values for other sections of this assessment, the spread of data was large for product cost estimates and the mean value was more appropriate in the expert judgment of our reviewers. 

left_text_column_width

Table 2. Cost per unit of climate impact.

Unit: 2023 US$/t CO₂‑eq, 100-yr basis

estimate -121
Left Text Column Width
Learning Curve

Little information is available about the learning rate for new insulation materials. Mályusz and Pém (2013) evaluated how labor time decreased with repetitive cycles for installing roof insulation. They found a learning rate of ~90%, but only for this specific insulation scenario, location, and material. Additionally, this study does not include any product or manufacturing costs that may decrease with scale.

In general, labor time for construction projects decreases with repetitive installation, including improved equipment and techniques and increased construction crew familiarity with the process (SaravanaPrabhu & Vidjeapriya, 2021). However, Malhotra and Schmidt (2020) classify building envelope retrofits as technologies that are highly customized based on user requirements, regulations, physical conditions, and building designs, likely leading to learning rates that are slow globally but where local expertise could reduce installation costs.

left_text_column_width
Speed of Action

Speed of action refers to how quickly a climate solution physically affects the atmosphere after it is deployed. This is different from speed of deployment, which is the pace at which solutions are adopted.

At Project Drawdown, we define the speed of action for each climate solution as emergency brake, gradual, or delayed.

Deploy Alternative Insulation Materials is an EMERGENCY BRAKE climate solution. It has the potential to deliver a more rapid impact than gradual and delayed solutions. Because emergency brake solutions can deliver their climate benefits quickly, they can help accelerate our efforts to address dangerous levels of climate change. For this reason, they are a high priority.

left_text_column_width
Caveats

Manufacturing and installation emissions reductions due to the use of alternative building thermal insulation materials are both permanent and additional. 

Permanence: There is a low risk of the emissions reductions for this solution being reversed. By using cellulose insulation instead of inorganic or plastic-based insulation, a portion of the manufacturing and installation emissions are never generated in the first place, making this a permanent reduction. Emissions from high-temperature manufacturing, petroleum extraction, and blowing agent use are all reduced through this approach.

Additionality: The GHG emissions reductions from alternative insulation materials are additional because they are calculated here relative to a baseline insulation case. This includes a small amount of cellulose materials included in baseline building insulation. Therefore, avoided emissions represent an improvement of the current emissions baseline that would have occurred in the absence of this solution. 

left_text_column_width
Current Adoption

Adoption data are extremely limited for alternative insulation materials. All adoption data and estimates are assumed to apply to both residential and commercial buildings, although in reality the uptake of alternative insulation materials will vary by building type due to differences in structures, climate, use type, and regulations. We assume that future uptake of alternative insulation is used only during retrofit or new construction, or when existing insulation is at the end of its functional lifetime.

European sources report that 2–13% of the insulation market is alternative materials. Depending on the source, this could include renewable materials, bio-based insulation, or recycled materials. In 2018 in the United States, 5% of total insulation area in new single-family homes was insulated with cellulose (Insulation Choices Revealed in New Study, 2019).

To convert estimated cellulose adoption percentage into annual insulation use, we estimated 26 Mt of all installed global insulation materials in 2023 based on a report from The Freedonia Group (2024). We calculated an annual use of approximately 1.7 billion insulation units of 100 m² at a thermal resistance of 1 m²·K/W. Therefore, the median cellulose adoption is 14 million units/yr at 100 m² at 1 m²·K/W, calculated from the median of the 2–13% adoption range. 

Since this calculation is based on more alternative materials than just cellulose and is heavily reliant on European data where we assume adoption is higher, this estimate of current adoption (Table 3) is most likely an overestimate.

The little adoption data that were considered in this section are mostly for Europe, and some for the United States. We recognize this limited geographic scope creates bias, and hope this work inspires research and data sharing on this topic in underrepresented regions.

left_text_column_width

Table 3. Current (2017–2022) adoption level.

Unit: units of insulation/yr installed to insulate 100 m² to a thermal resistance of 1 m²·K/W

25th percentile 9000000
mean 13000000
median (50th percentile) 14000000
75th percentile 17000000
Left Text Column Width
Adoption Trend

Very few data are available that quantify adoption trends. In a regional study of several bio-based insulation materials, Rabbat et al. (2022) estimated French market annual growth rates of 4–10%, with cellulose estimated at 10%. Petcu et al. (2023) estimated the European adoption of recycled plastic and textile insulation, biomass fiber insulation, and waste-based insulation to have increased from 6% to 10% between 2012 and 2020.

When accounting for the calculated current adoption, these growth rates mean a median estimated annual increase of 500,000 insulation units/yr required to insulate 100 m² to a thermal resistance of 1 m²·K/W. The increasing adoption of bio-based insulation decreases the use of conventional insulation materials in those regions.

This adoption trend (Table 4) is likely an overestimate, as it is biased by high European market numbers and based on the likely high estimate we made for current adoption. 

left_text_column_width

Table 4. 2012–2020 adoption trend.

Unit: annual change in units of insulation/yr installed to insulate 100 m² to a thermal resistance of 1 m²·K/W

25th percentile 500000
mean 800000
median (50th percentile) 500000
75th percentile 1300000
Left Text Column Width
Adoption Ceiling

No estimates have been found for the adoption ceiling of this solution, although we expect it to be high given low rates of current adoption and projected increases in building construction in the coming decades [International Energy Agency (IEA), International Renewable Energy Agency, & United Nations Climate Change High-Level Champions, 2023]. Two physical factors that could influence adoption are availability of alternative materials and thickness of insulation.

For cellulose insulation, availability does not seem to limit adoption. The Food and Agriculture Organization of the United Nations (2023) reports that there is a much higher annual production of cellulose-based materials (>300 Mt annually of cartonboard, newsprint, and recycled paper) than the overall demand for insulation globally (>25 Mt annual demand; Global Insulation Report, 2024). However, other uses for cellulose products may create competition for this supply.

Increased thickness of insulation could also be a limiting factor since this would reduce adoption by decreasing building square footage, in particular making retrofits more challenging and expensive. Deer et al. (2007) reported that the average cellulose thermal resistance is similar to mineral and glass wool, and lower than plastic insulations made of polystyrene and other foams. If we assume that 50% of plastic insulation cannot be replaced with cellulose due to thickness limitations, this would represent ~20% of current insulation that could not be replaced without structural changes to the building. Therefore, we calculate the adoption ceiling to be 80% of the current insulation that would be reasonably replaceable or 140 million units/yr required to insulate 100 m² to a thermal resistance of 1 m²·K/W (Table 5).

Uptake of cellulose insulation could also be limited by its susceptibility to absorbing moisture, limiting its use in wet climates or structures that retain moisture, such as flat roofs. Commercialization of alternative insulation materials beyond cellulose and in many different forms (e.g., board, loose-fill) will increase the adoption ceiling across more building types.

left_text_column_width

Table 5. Adoption ceiling.

Unit: units of insulation/yr installed to insulate 100 m² to a thermal resistance of 1 m²·K/W

25th percentile N/A
mean N/A
estimate 140000000
75th percentile N/A
Left Text Column Width
Achievable Adoption

No estimates have been found for feasible global adoption of this solution. Rabbat et al. (2022) estimated the adoption levels of several bio-based insulation materials in France in 2050. For cellulose wadding, this was estimated to be 2.1 times the commercialized volume in France in 2020. Although we do not expect France to be representative of the rest of the world, if the predicted adoption trend holds across the world then we expect low adoption in 2050 to be 2.1 times greater than 2023 adoption. This is 29 million units/yr to insulate 100 m² to a thermal resistance of 1 m²·K/W (Table 6).

The IEA (2023) claims that building envelopes need to have their retrofit rate increase by 2.5 times over the current rate in order to meet net zero targets (2023). This is a reasonable high-adoption scenario. Assuming that more retrofits of buildings occur and greater amounts of alternative insulation are installed in new buildings, we estimate that high future adoption of new insulation could occur at 2.5 times the rate of the low-adoption scenario. This is 73 million units/yr to insulate 100 m² to a thermal resistance of 1 m²·K/W (Table 6).

Adoption will be facilitated or limited by local regulations around the world. Building codes will determine the location and extent of use of cellulose or other bio-based insulation. We expect uptake to be different between residential and commercial buildings, but due to insufficient data, we have grouped them in our adoption estimates.

left_text_column_width

Table 6. Range of achievable adoption levels.

Unit: units of insulation/yr installed to insulate 100 m² to a thermal resistance of 1 m²·K/W

Current Adoption 14000000
Achievable – Low 29000000
Achievable – High 73000000
Adoption Ceiling 140000000
Left Text Column Width

The climate impacts for this solution are modest compared to current global GHG emissions. Not all conventional insulations have a high environmental impact due to the use of a wide range of materials, forms, and installation methods as well as the recent adoption of lower-GWP blowing agents. Therefore, the potential for further emissions savings is limited.

We quantified the effectiveness and adoption of cellulose insulation, which has the lowest emissions and, therefore, the highest climate impacts of the insulation materials we evaluated. With high adoption, 1.2 Gt CO₂‑eq on a 100-yr basis could be avoided over the next decade (Table 7).

While we only considered the adoption of cellulose insulation in this analysis, a realistic future for lowering the climate impact of insulation may include other bio-based materials, too. Utilizing a greater range of materials should increase adoption and climate impact due to more available forms, sources, and thermal resistance values of bio-based insulation.

Note that the current climate impact is calculated using a current materials baseline that includes a small fraction of cellulose. This means that the reported current adoption impact is a slight underestimate compared with the impacts for replacing entirely conventional insulation with the current amount of cellulose insulation in use.

left_text_column_width

Table 7. Climate impact at different levels of adoption.

Unit: Gt CO₂‑eq/yr, 100-yr basis

Current Adoption 0.022
Achievable – High 0.046
Achievable – Low 0.12
Achievable Ceiling 0.22
Left Text Column Width
Additional Benefits

Income and Work

Some alternative insulations can be cheaper than conventional materials. Although there is large variation in evaluation methods and reported costs, our analysis found that cellulose and plant fibers are cheaper than conventional insulation materials such as stone wool, glass wool, and EPS (Figure 1). Depending on the applicable climate conditions and insulation form, switching to alternative insulation materials can result in cost savings for consumers, including homeowners and business owners.

Health

Conventional insulation materials may contribute to poor indoor air quality, especially during installation, and contribute to eye, skin, and lung irritation (Naldzhiev et al., 2020; Stamm et al., 2022; Wi et al., 2021). Additionally, off-gassing of flame retardants and other volatile organic compounds and by-products of conventional insulation can occur shortly after installation (Naldzhiev et al., 2020). Using bio-based alternative insulation products can minimize the health risks during and after installation (McGrath et al., 2023).

Water Resources

Although there is not a scientifically consistent approach to compare the environmental impacts of conventional and alternative insulation materials, a review analysis of 47 studies on insulation concluded that bio-based insulation materials generally have lower impacts as measured through acidificationeutrophication, and photochemical ozone creation potentials than do conventional materials (Füchsl et al., 2022). Other alternative materials such as wood fiber and miscanthus also tend to have a lower environmental footprint (Schulte et al., 2021). The water demand for wood and cellulose is significantly lower than that for EPS (about 2.8 and 20.8 l/kg respectively compared with 192.7 l/kg for EPS) (Zabalza Bribián et al., 2011). While the limited evidence suggests that the alternative material tends to be better environmentally, there is an urgent need to conduct life cycle assessments using a consistent approach to estimate the impact of these materials.

left_text_column_width
Risks

Cellulose insulation is susceptible to water absorption, which can lead to mold growth in wet or humid environments (Andersen & Rasmussen, 2025; Petcu et al., 2023). Reducing this risk either requires an antifungal treatment for the material or limits adoption to particular climates. The thermal performance of cellulose insulation can decrease over time due to water absorption, settling, or temperature changes, but installing it as dense-packed or damp-spray can alleviate this problem (Wang & Wang, 2023; Wilson, 2021).

Bio-based insulation materials tend to be combustible, meaning they contribute more to the spread of a fire than non-combustible stone or glass insulation. Some bio-based materials are classified as having minimal contribution to a fire, such as some cellulose forms, rice husk, and flax (Kumar et al., 2020). These materials are less likely to contribute to a fire than very combustible plastic insulation such as EPS, XPS, and PUR. Fire codes – as well as other building and energy codes – could limit adoption, risking a lack of solution uptake due to regulatory setbacks (Northeast Bio-Based Materials Collective 2023 Summit Proceedings, 2023). 

Additives such as fire retardants and anti-fungal agents are added to bio-based insulation along with synthetic binders, which can lead to indoor air pollution from organic compounds, although likely in low concentrations (Maskell et al., 2015; Rabbat et al., 2022).

left_text_column_width
Interactions with Other Solutions

Reinforcing

Upgrading insulation to lower-cost and lower-emitting alternative materials should increase the adoption of other building envelope solutions as they can be installed simultaneously to optimize cost and performance. 

left_text_column_width

Increasing the manufacturing of cellulose insulation, which contains large amounts of recycled paper, could increase the revenues for paper recycling.

left_text_column_width

Competing

The use of biomass as raw material for insulation will reduce the availability and increase the cost of using it for other applications. For cellulose, global production of cellulose materials (>300 Mt annually of cartonboard, newsprint, and recycled paper (Forestry Production and Trade, 2023)) is an order of magnitude higher than the demand for insulation materials (>25 Mt annual demand (The Freedonia Group, 2024)), so the overall impact should be small.

left_text_column_width

Reducing the demand for conventional insulation products and instead making insulation that produces fewer GHGs during manufacturing would slightly reduce the global climate impact of other industrial manufacturing solutions. This is because less energy overall would be used for manufacturing, and therefore other technologies for emissions reductions would be less impactful for insulation production.

left_text_column_width
Dashboard

Solution Basics

insulation units of 100 m² and 1 m²·K/W

t CO₂-eq (100-yr)/unit
00.981.59
units/yr
Current 1.4×10⁷ 02.9×10⁷7.3×10⁷
Achievable (Low to High)

Climate Impact

Gt CO₂-eq (100-yr)/yr
Current 0.022 0.0460.12
US$ per t CO₂-eq
-121
Emergency Brake

CO₂, F-gas

Trade-offs

Bio-based insulation materials including cellulose often have lower thermal resistance than some conventional insulation materials. In particular, bio-based materials may require a thicker layer than plastic insulation to reach the same insulating performance (Esau et al., 2021; Rabbat et al., 2022). Usable floor area within a building would need to be sacrificed to accommodate thicker insulation, which would potentially depreciate the structure or impact the aesthetic value (Jelle, 2011). This would be a more significant trade-off for retrofit construction and buildings in densely developed urban areas.

Sourcing bio-based materials has environmental trade-offs that come from cultivating biomass, such as increased land use, fertilizer production, and pesticide application (Schulte et al., 2021). Using waste or recycled materials could minimize these impacts. Binders and flame-retardants may also be required in the final product, leading to more processing and material use (Sustainable Traditional Buildings Alliance, 2024).

left_text_column_width
Maps Introduction

The effectiveness of deploying alternative insulation is not inherently dependent on geographic factors since it addresses emissions embodied in the manufacture and deployment of insulation materials. However, due to a lack of related data, we assumed a consistent global breakdown of currently used insulation materials when in reality, the exact mix of insulation currently used in different geographic locations will affect the emissions impact of switching to alternative materials.

Building insulation is used in higher quantities in cold or hot climates, so deploying alternative insulation is more likely to be relevant and adopted in such climates. Other geographic factors also impact adoption: Areas with higher rates of new construction will be better able to design for cellulose or other alternative insulation materials, and drier climates will face a lower risk of mold growth on these materials. Local building codes, including fire codes, can also affect the adoption of alternative materials.

There are no maps for the Deploy Alternative Insulation solution. It is intended to address emissions embodied in the manufacture and deployment of insulation materials and has no intrinsic dependence on geographic factors.

Action Word
Deploy
Solution Title
Alternative Insulation Materials
Classification
Highly Recommended
Lawmakers and Policymakers
  • Enact comprehensive policy plans that utilize all levers, including financial incentives, improved building and fire code regulations, and educational programs to advance the transition to alternative insulation.
  • Create government procurement policies that become stricter over time and mandate the use of alternative insulation or implement GWP limits in government buildings.
  • Update insulation installation regulations to encourage more sustainable practices and materials.
  • Offer financial incentives such as subsidies, tax credits, and grants for manufacturers, start-ups, and alternative insulation installers.
  • Remove financial and regulatory incentives for conventional insulation.
  • Create and enforce embodied carbon disclosure requirements for new commercial construction.
  • Create energy efficiency standards that periodically increase for insulation materials and buildings.
  • Regulate demolition of old buildings to require proper disposal of conventional insulation to ensure emissions are avoided and gases are destroyed.
  • Create reference standards for the performance and properties of alternative insulation materials.
  • Invest in R&D to improve alternative insulation materials’ manufacturing, adoption, supply chain access, and circularity.
  • Create green building certification schemes and/or public-private partnerships that offer information, training, and general support for alternative insulation.
  • Offer educational resources, one-stop shops for retrofitting and weatherization, installation demonstrations, and tours of model builds for commercial and private developers, highlighting the cost savings, environmental benefits, and health benefits of alternative insulation.

Further information:

Practitioners
  • Finance or develop only new construction and retrofits that utilize alternative insulation and other low-carbon practices.
  • Take advantage of financial incentives such as subsidies, tax credits, and grants for installing alternative insulation.
  • Seek or negotiate preferential loan agreements for developers utilizing alternative insulation and other climate-friendly practices.
  • Whenever possible, install insulation that does not use F-gas blowing agents.
  • During demolition, ensure proper disposal of conventional insulation to avoid emissions and destroy residual F-gases.
  • Integrate alternative insulation materials into construction databases, listing prices, and environmental benefits.
  • Enact company policies that disclose embodied carbon of commercial construction.
  • Create new contractual terms that require embodied emissions data from materials and methods from suppliers.
  • Advocate for financial incentives, improved building and fire codes, and educational programs for alternative insulation.
  • Utilize educational resources, one-stop shops for retrofitting and weatherization, installation demonstrations, and tours of model builds.
  • Conduct research to improve alternative insulation materials’ manufacturing, adoption, supply chain access, and circularity.
  • Create or join green building certification schemes, green building councils, and/or public-private partnerships that offer information, training, and general support for alternative insulation.

Further information:

Business Leaders
  • Finance only new construction and retrofits that utilize alternative insulation and other low-carbon practices.
  • Expand product lines to include alternative insulation materials.
  • Integrate alternative insulation materials into construction databases, listing prices and environmental benefits.
  • Create new contractual terms that require embodied emissions data from materials and methods.
  • Invest in R&D to improve alternative insulation materials’ manufacturing, adoption, supply chain access, and circularity.
  • Advocate for financial incentives, improved building and fire codes, and educational programs for alternative insulation.
  • Join green building certification schemes and/or public-private partnerships that offer information, training, and general support for alternative insulation.
  • Create long-term purchasing agreements with alternative insulation manufacturers to support stable demand and improve economies of scale.

Further information:

Nonprofit Leaders
  • Advocate for financial incentives, improved building and fire codes, and educational programs for alternative insulation.
  • Conduct research to improve alternative insulation materials’ manufacturing, adoption, supply chain access, and circularity.
  • Offer educational resources, one-stop shops for retrofitting and weatherization, installation demonstrations, and tours of model builds for commercial and private developers, highlighting the cost savings and environmental benefits of alternative insulation.
  • Create, join, or administer green building certification schemes and/or public-private partnerships that offer information, training, and general support for alternative insulation.

Further information:

Investors
  • Finance only new construction and retrofits that utilize alternative insulation and other low-carbon practices.
  • Invest in R&D and start-ups to improve alternative insulation materials’ manufacturing, adoption, supply chain access, and circularity.
  • Issue green bonds to invest in projects that use alternative insulation.
  • Offer preferential loan agreements for developers utilizing alternative insulation and other climate-friendly practices.
  • Create new contractual terms that require embodied emissions data from materials and methods.
  • Join green building certification schemes and/or public-private partnerships that offer information, training, and general support for alternative insulation.

Further information:

Philanthropists and International Aid Agencies
  • Finance only new construction and retrofits that utilize alternative insulation and other low-carbon practices.
  • Offer grants for developers utilizing alternative insulation and other climate-friendly practices.
  • Create financing programs for private construction in low-income or under-resourced communities.
  • Create new contractual terms that require embodied emissions data from materials and methods.
  • Advocate for financial incentives, improved building and fire codes, and educational programs for alternative insulation.
  • Fund research to improve alternative insulation materials’ manufacturing, adoption, supply chain access, and circularity.
  • Offer educational resources, one-stop shops for retrofitting and weatherization, installation demonstrations, and tours of model builds for commercial and private developers, highlighting the cost savings and environmental benefits of alternative insulation.
  • Create or join green building certification schemes and/or public-private partnerships that offer information, training, and general support for alternative insulation.

Further information:

Thought Leaders
  • Advocate for financial incentives, improved building and fire codes, and educational programs for alternative insulation.
  • Conduct research to improve alternative insulation materials’ manufacturing, adoption, supply chain access, and circularity.
  • Offer or amplify educational resources, one-stop shops for retrofitting and weatherization, installation demonstrations, and tours of model builds for commercial and private developers, highlighting the cost savings and environmental benefits of alternative insulation.
  • Create, join, or administer green building certification schemes and/or public-private partnerships that offer information, training, and general support for alternative insulation.

Further information:

Technologists and Researchers
  • Develop and improve existing alternative insulation materials or innovate new materials with enhanced insulation performance.
  • Investigate ways to increase the durability of alternative insulation, such as resistance to moisture, pests, and fire.
  • Find uses for recycled materials in alternative insulation and ways to improve the circular economy.
  • Innovate new manufacturing methods that reduce electricity use and emissions.
  • Design new application systems for alternative insulation that can be done without much additional training or licensing/certification.
  • Create new methods of disposal for conventional insulation during demolitions.
  • Research adoption rates of alternative insulation materials across regions and environments.

Further information:

Communities, Households, and Individuals
  • Finance or develop only new construction and retrofits that utilize alternative insulation and other low-carbon practices.
  • Take advantage of financial incentives such as subsidies, tax credits, and grants for installing alternative insulation.
  • Whenever possible, install insulation that does not use F-gas blowing agents.
  • Advocate for financial incentives, improved building and fire codes, and educational programs for alternative insulation.
  • Conduct local research to improve alternative insulation materials’ manufacturing, adoption, supply chain access, and circularity.
  • Organize local “green home tours” and open houses to showcase climate-friendly builds and foster demand by highlighting cost savings and environmental benefits of alternative insulation.
  • Create or join green building certification schemes, green building councils, and/or public-private partnerships that offer information, training, and general support for alternative insulation.
  • Capture community feedback and share it with local policymakers to address barriers such as permitting logistics or upfront costs, helping to share policies that drive adoption.

Further information:

Sources
Evidence Base

Consensus of effectiveness in reducing building sector emissions: Mixed

There is scientific consensus that using building insulation with lower embodied emissions will reduce GHG emissions, but expert opinions about the magnitude of possible emissions reductions as well as the accuracy of determining these reductions are mixed. 

Biswas et al. (2016) determined that, for insulation, avoided emissions from reduced heating and cooling energy tend to outweigh the embodied emissions. However, others emphasize that as buildings become more energy-efficient, material embodied emissions become a larger factor in their carbon footprint (Cabeza et al., 2021; Grazieschi et al., 2021). Embodied emissions from insulation can be substantial: Esau et al. (2021) analyzed a mixed-use multifamily building and found that selecting low-embodied-carbon insulation could reduce building embodied emissions by 16% at no cost premium.

Multiple studies have found that some sustainable insulation materials have lower manufacturing emissions than traditional insulation materials (Asdrubali et al., 2015; Füchsl et al., 2022; Kumar et al., 2020; Schiavoni et al., 2016). However, researchers have highlighted the difficulty in evaluating environmental performance of different insulation materials (Cabeza et al., 2021; Grazieschi et al., 2021). Gelowitz and McArthur (2017) found that construction product Environmental Product Declarations contain many errors and discrepancies due to self-contradictory or missing data. Füschl et al. (2022) conducted a meta-analysis and cautioned that “it does not appear that a definitive ranking [of insulation materials] can be drawn from the literature.” In our analysis, we attempt to compare climate impact between materials but acknowledge that this can come from flawed and inconsistent data.

Despite the difficulties in comparing materials, there is high consensus that cellulose is a strong low-emissions insulation option due to its low embodied carbon, high recycled content, and good thermal insulating performance (Wilson, 2021).

The results presented in this document summarize findings from four reviews and meta-analyses, 14 original studies, three reports, 27 Environmental Product Declarations, and two commercial websites reflecting current evidence from eight countries as well as data representing global, North American, or European insulation materials. We recognize this limited geographic scope creates bias, and hope this work inspires research and data sharing on this topic in underrepresented regions.

left_text_column_width
Updated Date
Subscribe to Highly Recommended