Abnormal, prolonged periods of below-average precipitation affecting water supply that impact communities, livelihoods, ecosystems, and infrastructure.

Icon

Restore Forests

Image
Image
Boreal forest
Coming Soon
On
Summary

Forest restoration is the process of returning previously forested land to a forested state. As forests regrow, they remove carbon from the atmosphere and sequester it in biomass.

Description for Social and Search
Restore Forests is a Highly Recommended climate solution. Diverse, healthy forests sequester carbon as biomass.
Overview

We define forest restoration as planting new trees or allowing trees to naturally regrow on previously forested land that has been cleared. Through photosynthesis, forests take carbon from the atmosphere and store it in biomass. On net, forests currently take up an estimated 11.4–14.7 Gt CO₂‑eq/yr  (Friedlingstein et al., 2023; Gibbs et al., 2025; Pan et al., 2024), equal to approximately 19–25% of total global anthropogenic GHG emissions (Dhakal et al., 2022). Restoring forests increases the size of the forest carbon sink, sequestering additional CO₂.  

As commonly defined, restoration ranges from improving management of existing ecosystems, to re-establishing cleared ecosystems, to maintaining the health of functional ecosystems. Forest restoration includes activities such as exclusion of non-native grazing animals from a regenerating site, weed management, assisted seed dispersal, controlled burning, stand thinning, direct seeding, soil amendment, tree planting, and modification of topography or hydrology and other activities (Chazdon et al., 2024; Gann et al., 2022; Kübler & Günter 2024). While acknowledging that all restoration occurs along a spectrum of intervention intensity, we report effectiveness, cost, and adoption data for “low intensity” and “high intensity” restoration separately, with “low intensity” restoration including all interventions up to, but not including, tree planting, and “high intensity” restoration referring to direct seeding or seedling planting. To account for variability in carbon sequestration rates and area available for forest restoration, this analysis also evaluates forest restoration in boreal, temperate, subtropical, and tropical regions separately where possible.

Our definition of forest restoration is more limited than that used by many other sources. First, we only include reforestation of previously forested land with an element of direct human intervention, and therefore exclude entirely passive tree regrowth on abandoned land (i.e., unassisted natural regeneration) and afforestation of native grasslands and savannas. To avoid double counting, we also do not include activities covered in other Project Drawdown solutions, including increasing carbon stocks in existing forests and establishing timber plantations, agroforestry, or silvopasture (see Improve Forest ManagementDeploy Biomass Crops on Degraded LandDeploy Agroforestry, and Deploy Silvopasture, respectively). Restoration of mangroves and forests on peat soils is also excluded, as this is covered in the Restore Coastal Wetlands and Restore Peatlands solutions. Because the scope of this solution is narrower than that of many other studies, the estimated impacts are correspondingly lower as well. 

Intact and regenerating forests take up carbon, but human clearing of forests for logging, agriculture, and other activities emits carbon. Humans clear an estimated 15.5 Mha of forests annually, emitting ~7.4 Gt CO₂‑eq/yr (2001–2024; Harris et al., 2021; Gibbs et al., 2025; Sims et al., 2025). Protecting existing forests reduces emissions from deforestation (see Protect Forests) and is an essential complement to forest restoration. 

Adams, C., Rodrigues, S. T., Calmon, M., & Kumar, C. (2016). Impacts of large-scale forest restoration on socioeconomic status and local livelihoods: What we know and do not know. Biotropica48(6), 731–744. Link to source: https://doi.org/10.1111/btp.12385

Ager, A. A., Vogler, K. C., Day, M. A., & Bailey, J. D. (2017). Economic opportunities and trade-offs in collaborative forest landscape restoration. Ecological Economics136, 226–239. Link to source: https://doi.org/10.1016/j.ecolecon.2017.01.001

Andres, S. E., Standish, R. J., Lieurance, P. E., Mills, C. H., Harper, R. J., Butler, D. W., Adams, V. M., Lehmann, C., Tetu, S. G., Cuneo, P., Offord, C. A., & Gallagher, R. V. (2023). Defining biodiverse reforestation: Why it matters for climate change mitigation and biodiversity. Plants, People, Planet5(1), 27–38. Link to source: https://doi.org/10.1002/ppp3.10329

Austin, K. G., Baker, J. S., Sohngen, B. L., Wade, C. M., Daigneault, A., Ohrel, S. B., Ragnauth, S., & Bean, A. (2020). The economic costs of planting, preserving, and managing the world’s forests to mitigate climate change. Nature Communications11(1), Article 5946. Link to source: https://doi.org/10.1038/s41467-020-19578-z

Bastin, J.-F., Finegold, Y., Garcia, C., Mollicone, D., Rezende, M., Routh, D., Zohner, C. M., & Crowther, T. W. (2019). The global tree restoration potential. Science365(6448), 76–79. Link to source: https://doi.org/10.1126/science.aax0848

Begliomini, F. N., & Brancalion, P. H. S. (2024). Are state-of-the-art LULC maps able to track ecological restoration efforts in Brazilian Atlantic forest? IGARSS 2024 - 2024 IEEE International Geoscience and Remote Sensing Symposium, 4748–4752. Link to source: https://doi.org/10.1109/IGARSS53475.2024.10641177

Beltrão, M. G., Gonçalves, C. F., Brancalion, P. H. S., Carmignotto, A. P., Silveira, L. F., Galetti, P. M., & Galetti, M. (2024). Priority areas and implementation of ecological corridor through forest restoration to safeguard biodiversity. Scientific Reports14(1), Article 30837. Link to source: https://doi.org/10.1038/s41598-024-81483-y

Bernal, B., Murray, L. T., & Pearson, T. R. H. (2018). Global carbon dioxide removal rates from forest landscape restoration activities. Carbon Balance and Management13(1), Article 22. Link to source: https://doi.org/10.1186/s13021-018-0110-8

Betts, R. A. (2000). Offset of the potential carbon sink from boreal forestation by decreases in surface albedo. Nature408(6809), 187–190. Link to source: https://doi.org/10.1038/35041545

Bialic-Murphy, L., McElderry, R. M., Esquivel-Muelbert, A., van den Hoogen, J., Zuidema, P. A., Phillips, O. L., de Oliveira, E. A., Loayza, P. A., Alvarez-Davila, E., Alves, L. F., Maia, V. A., Vieira, S. A., Arantes da Silva, L. C., Araujo-Murakami, A., Arets, E., Astigarraga, J., Baccaro, F., Baker, T., Banki, O., … Crowther, T. W. (2024). The pace of life for forest trees. Science386(6717), 92–98. Link to source: https://doi.org/10.1126/science.adk9616

Bliege Bird, R., & Nimmo, D. (2018). Restore the lost ecological functions of people. Nature Ecology & Evolution2(7), 1050–1052. Link to source: https://doi.org/10.1038/s41559-018-0576-5

Brancalion, P. H. S., de Siqueira, L. P., Amazonas, N. T., Rizek, M. B., Mendes, A. F., Santiami, E. L., Rodrigues, R. R., Calmon, M., Benini, R., Tymus, J. R. C., Holl, K. D., & Chaves, R. B. (2022). Ecosystem restoration job creation potential in Brazil. People and Nature4(6), 1426–1434. Link to source: https://doi.org/10.1002/pan3.10370

Brancalion, P. H. S., Hua, F., Joyce, F. H., Antonelli, A., & Holl, K. D. (2025). Moving biodiversity from an afterthought to a key outcome of forest restoration. Nature Reviews Biodiversity1(4), 248–261.  https://doi.org/10.1038/s44358-025-00032-1

Brumberg, H., Margaret Hegwood, Eichhorst, W., LoPresti, A., Erbaugh, J. T., & Kroeger, T. (2025). Global analysis of constraints to natural climate solution implementation. PNAS Nexus4(6), Article pgaf173. Link to source: https://doi.org/10.1093/pnasnexus/pgaf173

Bukoski, J. J., Cook-Patton, S. C., Melikov, C., Ban, H., Chen, J. L., Goldman, E. D., Harris, N. L., & Potts, M. D. (2022). Rates and drivers of aboveground carbon accumulation in global monoculture plantation forests. Nature Communications13(1), Article 4206. Link to source: https://doi.org/10.1038/s41467-022-31380-7

Busch, J., Bukoski, J. J., Cook-Patton, S. C., Griscom, B., Kaczan, D., Potts, M. D., Yi, Y., & Vincent, J. R. (2024). Cost-effectiveness of natural forest regeneration and plantations for climate mitigation. Nature Climate Change14(9), 996–1002. Link to source: https://doi.org/10.1038/s41558-024-02068-1

Chaplin-Kramer, R., Ramler, I., Sharp, R., Haddad, N. M., Gerber, J. S., West, P. C., Mandle, L., Engstrom, P., Baccini, A., Sim, S., Mueller, C., & King, H. (2015). Degradation in carbon stocks near tropical forest edges. Nature Communications6(1), Article 10158. Link to source: https://doi.org/10.1038/ncomms10158

Chazdon, R. L., Falk, D. A., Banin, L. F., Wagner, M., J. Wilson, S., Grabowski, R. C., & Suding, K. N. (2024). The intervention continuum in restoration ecology: Rethinking the active–passive dichotomy. Restoration Ecology32(8), Article e13535. Link to source: https://doi.org/10.1111/rec.13535

Chazdon, R. L., & Guariguata, M. R. (2016). Natural regeneration as a tool for large-scale forest restoration in the tropics: Prospects and challenges. Biotropica48(6), 716–730. Link to source: https://doi.org/10.1111/btp.12381

Chazdon, R. L., Wilson, S. J., Brondizio, E., Guariguata, M. R., & Herbohn, J. (2021). Key challenges for governing forest and landscape restoration across different contexts. Land Use Policy104, Article 104854. Link to source: https://doi.org/10.1016/j.landusepol.2020.104854

Cook-Patton, S. C., Leavitt, S. M., Gibbs, D., Harris, N. L., Lister, K., Anderson-Teixeira, K. J., Briggs, R. D., Chazdon, R. L., Crowther, T. W., Ellis, P. W., Griscom, H. P., Herrmann, V., Holl, K. D., Houghton, R. A., Larrosa, C., Lomax, G., Lucas, R., Madsen, P., Malhi, Y., … Griscom, B. W. (2020). Mapping carbon accumulation potential from global natural forest regrowth. Nature585(7826), 545–550. Link to source: https://doi.org/10.1038/s41586-020-2686-x

Crouzeilles, R., Barros, F. S. M., Molin, P. G., Ferreira, M. S., Junqueira, A. B., Chazdon, R. L., Lindenmayer, D. B., Tymus, J. R. C., Strassburg, B. B. N., & Brancalion, P. H. S. (2019). A new approach to map landscape variation in forest restoration success in tropical and temperate forest biomes. Journal of Applied Ecology56(12), 2675–2686. Link to source: https://doi.org/10.1111/1365-2664.13501

Crouzeilles, R., Curran, M., Ferreira, M. S., Lindenmayer, D. B., Grelle, C. E. V., & Rey Benayas, J. M. (2016). A global meta-analysis on the ecological drivers of forest restoration success. Nature Communications7(1), Article 11666. Link to source: https://doi.org/10.1038/ncomms11666

Curtis, P. G., Slay, C. M., Harris, N. L., Tyukavina, A., & Hansen, M. C. (2018). Classifying drivers of global forest loss. Science361(6407), 1108–1111. Link to source: https://doi.org/10.1126/science.aau3445

Dhakal, S., J.C. Minx, F.L. Toth, A. Abdel-Aziz, M.J. Figueroa Meza, K. Hubacek, I.G.C. Jonckheere, Yong-Gun Kim, G.F. Nemet, S. Pachauri, X.C. Tan, T. Wiedmann, 2022: Emissions Trends and Drivers. In IPCC, 2022: Climate Change 2022: Mitigation of Climate Change. Contribution of Working Group III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [P.R. Shukla, J. Skea, R. Slade, A. Al Khourdajie, R. van Diemen, D. McCollum, M. Pathak, S. Some, P. Vyas, R. Fradera, M. Belkacemi, A. Hasija, G. Lisboa, S. Luz, J. Malley, (eds.)]. Cambridge University Press, Cambridge, UK and New York, NY, USA. Link to source: https://doi.org/10.1017/9781009157926.004

De Groot, R. S., Blignaut, J., Van Der Ploeg, S., Aronson, J., Elmqvist, T., & Farley, J. (2013). Benefits of investing in ecosystem restoration. Conservation Biology27(6), 1286–1293. Link to source: https://doi.org/10.1111/cobi.12158

de Souza, S. E. X. F., Vidal, E., Chagas, G. de F., Elgar, A. T., & Brancalion, P. H. S. (2016). Ecological outcomes and livelihood benefits of community-managed agroforests and second growth forests in Southeast Brazil. Biotropica48(6), 868–881. Link to source: https://doi.org/10.1111/btp.12388

Di Sacco, A., Hardwick, K. A., Blakesley, D., Brancalion, P. H. S., Breman, E., Cecilio Rebola, L., Chomba, S., Dixon, K., Elliott, S., Ruyonga, G., Shaw, K., Smith, P., Smith, R. J., & Antonelli, A. (2021). Ten golden rules for reforestation to optimize carbon sequestration, biodiversity recovery and livelihood benefits. Global Change Biology27(7), 1328–1348. Link to source: https://doi.org/10.1111/gcb.15498

Dib, V., Brancalion, P. H. S., Chan Chou, S., Cooper, M., Ellison, D., Farjalla, V. F., Filoso, S., Meli, P., Pires, A. P. F., Rodriguez, D. A., Iribarrem, A., Latawiec, A. E., Scarano, F. R., Vogl, A. L., de Viveiros Grelle, C. E., & Strassburg, B. (2023). Shedding light on the complex relationship between forest restoration and water services. Restoration Ecology31(5), Article e13890. Link to source: https://doi.org/10.1111/rec.13890

dos Reis Oliveira, P. C., Gualda, G. A. F., Rossi, G. F., Camargo, A. F. M., Filoso, S., Brancalion, P. H., & Ferraz, S. F. de B. (2025). Forest restoration improves habitat and water quality in tropical streams: A multiscale landscape assessment. Science of The Total Environment963, Article 178256. Link to source: https://doi.org/10.1016/j.scitotenv.2024.178256

Fargione, J., Haase, D. L., Burney, O. T., Kildisheva, O. A., Edge, G., Cook-Patton, S. C., Chapman, T., Rempel, A., Hurteau, M. D., Davis, K. T., Dobrowski, S., Enebak, S., De La Torre, R., Bhuta, A. A. R., Cubbage, F., Kittler, B., Zhang, D., & Guldin, R. W. (2021). Challenges to the reforestation pipeline in the United States. Frontiers in Forests and Global Change4, Article 629198. https://doi.org/10.3389/ffgc.2021.629198

Fesenmyer, K. A., Poor, E. E., Terasaki Hart, D. E., Veldman, J. W., Fleischman, F., Choksi, P., Archibald, S., Armani, M., Fagan, M. E., Fricke, E. C., Terrer, C., Hasler, N., Williams, C. A., Ellis, P. W., & Cook-Patton, S. C. (2025). Addressing critiques refines global estimates of reforestation potential for climate change mitigation. Nature Communications16(1), Article 4572. Link to source: https://doi.org/10.1038/s41467-025-59799-8

Fletcher, M.-S., Hamilton, R., Dressler, W., & Palmer, L. (2021). Indigenous knowledge and the shackles of wilderness. Proceedings of the National Academy of Sciences118(40), Article e2022218118. Link to source: https://doi.org/10.1073/pnas.2022218118

Friedlingstein, P., O’Sullivan, M., Jones, M. W., Andrew, R. M., Bakker, D. C. E., Hauck, J., Landschützer, P., Le Quéré, C., Luijkx, I. T., Peters, G. P., Peters, W., Pongratz, J., Schwingshackl, C., Sitch, S., Canadell, J. G., Ciais, P., Jackson, R. B., Alin, S. R., Anthoni, P., … Zheng, B. (2023). Global carbon budget 2023. Earth System Science Data15(12), 5301–5369. Link to source: https://doi.org/10.5194/essd-15-5301-2023

Gann, G. D., Walder, B., Gladstone, J., Manirajah, S. M., & Roe, S. (2022). Restoration project information sharing framework. Climate Focus and The Society for Ecological Restoration. Link to source: https://globalrestorationobservatory.com/restoration-project-information-sharing-framework/

Gardon, F. R., Toledo, R. M. de, Brentan, B. M., & Santos, R. F. dos. (2020). Rainfall interception and plant community in young forest restorations. Ecological Indicators109, Article 105779. Link to source: https://doi.org/10.1016/j.ecolind.2019.105779

Garnett, S. T., Burgess, N. D., Fa, J. E., Fernández-Llamazares, Á., Molnár, Z., Robinson, C. J., Watson, J. E. M., Zander, K. K., Austin, B., Brondizio, E. S., Collier, N. F., Duncan, T., Ellis, E., Geyle, H., Jackson, M. V., Jonas, H., Malmer, P., McGowan, B., Sivongxay, A., & Leiper, I. (2018). A spatial overview of the global importance of Indigenous lands for conservation. Nature Sustainability1(7), 369–374. Link to source: https://doi.org/10.1038/s41893-018-0100-6

Gibbs, D. A., Rose, M., Grassi, G., Melo, J., Rossi, S., Heinrich, V., & Harris, N. L. (2024). Revised and updated geospatial monitoring of twenty-first century forest carbon fluxes. Earth System Science Data Discussions17(3), 1217-1243. Link to source: https://doi.org/10.5194/essd-2024-397

Griscom, B. W., Adams, J., Ellis, P. W., Houghton, R. A., Lomax, G., Miteva, D. A., Schlesinger, W. H., Shoch, D., Siikamäki, J. V., Smith, P., Woodbury, P., Zganjar, C., Blackman, A., Campari, J., Conant, R. T., Delgado, C., Elias, P., Gopalakrishna, T., Hamsik, M. R., … Fargione, J. (2017). Natural climate solutions. Proceedings of the National Academy of Sciences114(44), 11645–11650. Link to source: https://doi.org/10.1073/pnas.1710465114

Hansen, M. C., Potapov, P. V., Moore, R., Hancher, M., Turubanova, S. A., Tyukavina, A., Thau, D., Stehman, S. V., Goetz, S. J., Loveland, T. R., Kommareddy, A., Egorov, A., Chini, L., Justice, C. O., & Townshend, J. R. G. (2013). High-resolution global maps of 21st-century forest cover change. Science342(6160), 850–853. Link to source: https://doi.org/10.1126/science.1244693

Harris, N. L., Gibbs, D. A., Baccini, A., Birdsey, R. A., de Bruin, S., Farina, M., Fatoyinbo, L., Hansen, M. C., Herold, M., Houghton, R. A., Potapov, P. V., Suarez, D. R., Roman-Cuesta, R. M., Saatchi, S. S., Slay, C. M., Turubanova, S. A., & Tyukavina, A. (2021). Global maps of twenty-first century forest carbon fluxes. Nature Climate Change11(3), 234–240. Link to source: https://doi.org/10.1038/s41558-020-00976-6

Hasler, N., Williams, C. A., Denney, V. C., Ellis, P. W., Shrestha, S., Terasaki Hart, D. E., Wolff, N. H., Yeo, S., Crowther, T. W., Werden, L. K., & Cook-Patton, S. C. (2024). Accounting for albedo change to identify climate-positive tree cover restoration. Nature Communications15(1), Article 2275. Link to source: https://doi.org/10.1038/s41467-024-46577-1

Herrera, D., Ellis, A., Fisher, B., Golden, C. D., Johnson, K., Mulligan, M., Pfaff, A., Treuer, T., & Ricketts, T. H. (2017). Upstream watershed condition predicts rural children’s health across 35 developing countries. Nature Communications8(1), Article 811. Link to source: https://doi.org/10.1038/s41467-017-00775-2

Hua, F., Bruijnzeel, L. A., Meli, P., Martin, P. A., Zhang, J., Nakagawa, S., Miao, X., Wang, W., McEvoy, C., Peña-Arancibia, J. L., Brancalion, P. H. S., Smith, P., Edwards, D. P., & Balmford, A. (2022). The biodiversity and ecosystem service contributions and trade-offs of forest restoration approaches. Science376(6595), 839–844. Link to source: https://doi.org/10.1126/science.abl4649

Kabeja, C., Li, R., Guo, J., Rwatangabo, D. E. R., Manyifika, M., Gao, Z., Wang, Y., & Zhang, Y. (2020). The impact of reforestation induced land cover change (1990–2017) on flood peak discharge using HEC-HMS hydrological model and satellite observations: A study in two mountain basins, China. Water12(5), Article 1347. Link to source: https://doi.org/10.3390/w12051347

Keesing, F., & Ostfeld, R. S. (2021). Impacts of biodiversity and biodiversity loss on zoonotic diseases. Proceedings of the National Academy of Sciences118(17), Article e2023540118. Link to source: https://doi.org/10.1073/pnas.2023540118

Kroeger, T., Erbaugh, J., Luo, Z., Brumberg, H., Eichhorst, W., Hegwood, M., LoPresti, A., Shyamsundar, P., Ellis, P., Oakes, L., Martin, D., Brancalion, P., Bourne, M., Jagadish, A., Austin, K., Kinzer, A., Sanjuán, M., McCullough, L., & Echavarria, M. (2025). Implementation constraints on natural climate solutions: A global literature review and survey. Research Square. Link to source: https://doi.org/10.21203/rs.3.rs-6890465/v1

Kübler, D., & Günter, S. (2024). Forest restoration for climate change mitigation and adaptation. In P. Katila, C. J. Pierce Colfer, W. de Jong, G. Galloway, P. Pacheco, & G. Winkel (Eds.), Restoring Forests and Trees for Sustainable Development: Policies, Practices, Impacts, and Ways Forward (p. 135-159). Oxford University Press. Link to source: https://doi.org/10.1093/9780197683958.003.0006

Kumar, C., Calmon, M., & Saint-Laurent, C. (Eds.) (with Begeladze, S.). (2015). Enhancing food security through forest landscape restoration: Lessons from Burkina Faso, Brazil, Guatemala, Viet Nam, Ghana, Ethiopia and Philippines. IUCN International Union for Conservation of Nature. Link to source: https://doi.org/10.2305/IUCN.CH.2015.FR.2.en

Lawrence, D., Coe, M., Walker, W., Verchot, L., & Vandecar, K. (2022). The unseen effects of deforestation: Biophysical effects on climate. Frontiers in Forests and Global Change5, Article 756115. Link to source: https://doi.org/10.3389/ffgc.2022.756115

Löfqvist, S., Kleinschroth, F., Bey, A., de Bremond, A., DeFries, R., Dong, J., Fleischman, F., Lele, S., Martin, D. A., Messerli, P., Meyfroidt, P., Pfeifer, M., Rakotonarivo, S. O., Ramankutty, N., Ramprasad, V., Rana, P., Rhemtulla, J. M., Ryan, C. M., Vieira, I. C. G., … Garrett, R. D. (2023). How social considerations improve the equity and effectiveness of ecosystem restoration. BioScience73(2), 134–148. Link to source: https://doi.org/10.1093/biosci/biac099

Mariappan, M., & Zumbado, A. R. (2024). Global Restoration Commitments and Pledges: 2024 Report. International Union for the Conservation of Nature.

Melo, F. P. L., Parry, L., Brancalion, P. H. S., Pinto, S. R. R., Freitas, J., Manhães, A. P., Meli, P., Ganade, G., & Chazdon, R. L. (2021). Adding forests to the water–energy–food nexus. Nature Sustainability4(2), 85–92. Link to source: https://doi.org/10.1038/s41893-020-00608-z

Nabuurs, G.-J., Mrabet, R., Hatab, A. A., Bustamante, M., Clark, H., Havlík, P., House, J. I., Mbow, C., Ninan, K. N., Popp, A., Roe, S., Sohngen, B., & Towprayoon, S. (2022). Agriculture, forestry and other land uses (AFOLU). In P. R. Shukla, J. Skea, R. Slade, A. Al Khourdajie, R. van Diemen, D. McCollum, M. Pathak, S. Some, P. Vyas, R. Fradera, M. Belkacemi, A. Hasija, G. Lisboa, S. Luz, & J. Malley (Eds.), Climate change 2022: Mitigation of climate change. Contribution of working group III to the sixth assessment report of the intergovernmental panel on climate change (pp. 747–860). Cambridge University Press. Link to source: https://doi.org/10.1017/9781009157926.009 

Naidoo, R., Gerkey, D., Hole, D., Pfaff, A., Ellis, A. M., Golden, C. D., Herrera, D., Johnson, K., Mulligan, M., Ricketts, T. H., & Fisher, B. (2019). Evaluating the impacts of protected areas on human well-being across the developing world. Science Advances5(4), Article eaav3006. Link to source: https://doi.org/10.1126/sciadv.aav3006

North, M. P., Stevens, J. T., Greene, D. F., Coppoletta, M., Knapp, E. E., Latimer, A. M., Restaino, C. M., Tompkins, R. E., Welch, K. R., York, R. A., Young, D. J. N., Axelson, J. N., Buckley, T. N., Estes, B. L., Hager, R. N., Long, J. W., Meyer, M. D., Ostoja, S. M., Safford, H. D., … Wyrsch, P. (2019). Tamm review: Reforestation for resilience in dry western U.S. forests. Forest Ecology and Management432, 209–224. Link to source: https://doi.org/10.1016/j.foreco.2018.09.007

Pan, Y., Birdsey, R. A., Phillips, O. L., Houghton, R. A., Fang, J., Kauppi, P. E., Keith, H., Kurz, W. A., Ito, A., Lewis, S. L., Nabuurs, G.-J., Shvidenko, A., Hashimoto, S., Lerink, B., Schepaschenko, D., Castanho, A., & Murdiyarso, D. (2024). The enduring world forest carbon sink. Nature631(8021), 563–569. Link to source: https://doi.org/10.1038/s41586-024-07602-x

Piffer, P. R., Rosa, M. R., Tambosi, L. R., Metzger, J. P., & Uriarte, M. (2022). Turnover rates of regenerated forests challenge restoration efforts in the Brazilian Atlantic forest. Environmental Research Letters17(4), Article 045009. Link to source: https://doi.org/10.1088/1748-9326/ac5ae1

Poorter, L., van der Sande, M. T., Thompson, J., Arets, E. J. M. M., Alarcón, A., Álvarez-Sánchez, J., Ascarrunz, N., Balvanera, P., Barajas-Guzmán, G., Boit, A., Bongers, F., Carvalho, F. A., Casanoves, F., Cornejo-Tenorio, G., Costa, F. R. C., de Castilho, C. V., Duivenvoorden, J. F., Dutrieux, L. P., Enquist, B. J., … Peña-Claros, M. (2015). Diversity enhances carbon storage in tropical forests. Global Ecology and Biogeography24(11), 1314–1328. Link to source: https://doi.org/10.1111/geb.12364

Reddington, C. L., Butt, E. W., Ridley, D. A., Artaxo, P., Morgan, W. T., Coe, H., & Spracklen, D. V. (2015). Air quality and human health improvements from reductions in deforestation-related fire in Brazil. Nature Geoscience8(10), 768–771. Link to source: https://doi.org/10.1038/ngeo2535

Reddington, C. L., Smith, C., Butt, E. W., Baker, J. C. A., Oliveira, B. F. A., Yamba, E. I., & Spracklen, D. V. (2025). Tropical deforestation is associated with considerable heat-related mortality. Nature Climate Change15(9), 992–999. Link to source: https://doi.org/10.1038/s41558-025-02411-0

Reytar, K., Ferreira-Ferreira, J., Alves, L., Oliveira Cordeiro, C. L. de, & Calmon, M. (2024, December 19). What can tree cover gain data tell us about restoration? Brazil case studies. Global Forest Watch. Link to source: https://www.globalforestwatch.org/blog/forest-insights/tree-cover-gain-restoration-brazil

Robinson, N., Drever, C. R., Gibbs, D. A., Lister, K., Esquivel-Muelbert, A., Heinrich, V., Ciais, P., Silva-Junior, C. H. L., Liu, Z., Pugh, T. A. M., Saatchi, S., Xu, Y., & Cook-Patton, S. C. (2025). Protect young secondary forests for optimum carbon removal. Nature Climate Change15, 793–800. Link to source: https://doi.org/10.1038/s41558-025-02355-5

Roe, S., Streck, C., Beach, R., Busch, J., Chapman, M., Daioglou, V., Deppermann, A., Doelman, J., Emmet-Booth, J., Engelmann, J., Fricko, O., Frischmann, C., Funk, J., Grassi, G., Griscom, B., Havlik, P., Hanssen, S., Humpenöder, F., Landholm, D., … Lawrence, D. (2021). Land-based measures to mitigate climate change: Potential and feasibility by country. Global Change Biology27(23), 6025–6058. Link to source: https://doi.org/10.1111/gcb.15873

Sankey, T., Belmonte, A., Massey, R., & Leonard, J. (2021). Regional-scale forest restoration effects on ecosystem resiliency to drought: A synthesis of vegetation and moisture trends on Google Earth Engine. Remote Sensing in Ecology and Conservation7(2), 259–274. Link to source: https://doi.org/10.1002/rse2.186

Schimetka, L. R., Ruggiero, P. G. C., Carvalho, R. L., Behagel, J., Metzger, J. P., Nascimento, N., Chaves, R. B., Brancalion, P. H. S., Rodrigues, R. R., & Krainovic, P. M. (2024). Costs and benefits of restoration are still poorly quantified: Evidence from a systematic literature review on the Brazilian Atlantic Forest. Restoration Ecology32(5), Article e14161. Link to source: https://doi.org/10.1111/rec.14161

Seymour, F., Wolosin, M., & Gray, E. (2022, October 23). Policies underestimate forests’ full effect on the climate. World Resources Institute. Link to source: https://www.wri.org/insights/how-forests-affect-climate

Sims, M. J., Stanimirova, R., Raichuk, A., Neumann, M., Richter, J., Follett, F., MacCarthy, J., Lister, K., Randle, C., Sloat, L., Esipova, E., Jupiter, J., Stanton, C., Morris, D., Melhart Slay, C., Purves, D., & Harris, N. (2025). Global drivers of forest loss at 1 km resolution. Environmental Research Letters20(7), Article 074027. Link to source: https://doi.org/10.1088/1748-9326/add606

Stanturf, J. A., Kleine, M., Mansourian, S., Parrotta, J., Madsen, P., Kant, P., Burns, J., & Bolte, A. (2019). Implementing forest landscape restoration under the Bonn Challenge: A systematic approach. Annals of Forest Science76(2), 1–21. Link to source: https://doi.org/10.1007/s13595-019-0833-z

Teo, H. C., Raghavan, S. V., He, X., Zeng, Z., Cheng, Y., Luo, X., Lechner, A. M., Ashfold, M. J., Lamba, A., Sreekar, R., Zheng, Q., Chen, A., & Koh, L. P. (2022). Large-scale reforestation can increase water yield and reduce drought risk for water-insecure regions in the Asia-Pacific. Global Change Biology28(21), 6385–6403. Link to source: https://doi.org/10.1111/gcb.16404

van der Sande, M. T., Poorter, L., Kooistra, L., Balvanera, P., Thonicke, K., Thompson, J., Arets, E. J. M. M., Garcia Alaniz, N., Jones, L., Mora, F., Mwampamba, T. H., Parr, T., & Peña-Claros, M. (2017). Biodiversity in species, traits, and structure determines carbon stocks and uptake in tropical forests. Biotropica49(5), 593–603. Link to source: https://doi.org/10.1111/btp.12453

Veldman, J. W., Overbeck, G. E., Negreiros, D., Mahy, G., Le Stradic, S., Fernandes, G. W., Durigan, G., Buisson, E., Putz, F. E., & Bond, W. J. (2015a). Tyranny of trees in grassy biomes. Science347(6221), 484–485. Link to source: https://doi.org/10.1126/science.347.6221.484-c

Veldman, J. W., Overbeck, G. E., Negreiros, D., Mahy, G., Le Stradic, S., Fernandes, G. W., Durigan, G., Buisson, E., Putz, F. E., & Bond, W. J. (2015b). Where Tree Planting and Forest Expansion are Bad for Biodiversity and Ecosystem Services. BioScience65(10), 1011–1018. Link to source: https://doi.org/10.1093/biosci/biv118

Verhoeven, D., Berkhout, E., Sewell, A., & van der Esch, S. (2024). The global cost of international commitments on land restoration. Land Degradation & Development35(16), 4864–4874. Link to source: https://doi.org/10.1002/ldr.5263

Walker, W. S., Gorelik, S. R., Cook-Patton, S. C., Baccini, A., Farina, M. K., Solvik, K. K., Ellis, P. W., Sanderman, J., Houghton, R. A., Leavitt, S. M., Schwalm, C. R., & Griscom, B. W. (2022). The global potential for increased storage of carbon on land. Proceedings of the National Academy of Sciences119(23), Article e2111312119. Link to source: https://doi.org/10.1073/pnas.2111312119

Wang, Y., Zhu, Y., Cook-Patton, S. C., Sun, W., Zhang, W., Ciais, P., Li, T., Smith, P., Yuan, W., Zhu, X., Canadell, J. G., Deng, X., Xu, Y., Xu, H., Yue, C., & Qin, Z. (2025). Land availability and policy commitments limit global climate mitigation from forestation. Science389(6763), 931–934. Link to source: https://doi.org/10.1126/science.adj6841

Williams, B. A., Beyer, H. L., Fagan, M. E., Chazdon, R. L., Schmoeller, M., Sprenkle-Hyppolite, S., Griscom, B. W., Watson, J. E. M., Tedesco, A. M., Gonzalez-Roglich, M., Daldegan, G. A., Bodin, B., Celentano, D., Wilson, S. J., Rhodes, J. R., Alexandre, N. S., Kim, D.-H., Bastos, D., & Crouzeilles, R. (2024). Global potential for natural regeneration in deforested tropical regions. Nature636(8041), 131–137. Link to source: https://doi.org/10.1038/s41586-024-08106-4

Zhang, Q., Barnes, M., Benson, M., Burakowski, E., Oishi, A. C., Ouimette, A., Sanders-DeMott, R., Stoy, P. C., Wenzel, M., Xiong, L., Yi, K., & Novick, K. A. (2020). Reforestation and surface cooling in temperate zones: Mechanisms and implications. Global Change Biology26(6), 3384–3401. Link to source: https://doi.org/10.1111/gcb.15069

Credits

Lead Fellow

  • Avery Driscoll, Ph.D.

Contributors

  • Ruthie Burrows, Ph.D.

  • James Gerber, Ph.D.

  • Daniel Jasper

  • Alex Sweeney

Internal Reviewers

  • James Gerber, Ph.D.

  • Megan Matthews, Ph.D.

  • Paul C. West, Ph.D.

Effectiveness

We estimated that forest restoration can sequester 5.86–18.19 t CO₂‑eq /ha/yr (Table 1a–e), depending on the climate zone and type of intervention, as growing trees take up carbon through photosynthesis and store it in above- and below-ground biomass. Sequestration rates are highly variable globally; much of this variability is driven by climate, soil properties, forest type, and the type of restoration. 

For this solution, we used modeled carbon sequestration rates from natural regeneration to represent low-intensity restoration (Robinson et al., 2025) and modeled carbon sequestration rates from plantation forests to represent high-intensity carbon restoration, which we define as initiatives that include tree planting (Bukoski et al., 2022; Busch et al., 2024). We calculated carbon sequestration rates at the climate zone level (boreal, temperate, subtropical, and tropical) across the potential extent for each reforestation type.

Generally, high-intensity restoration has higher sequestration rates (median values 12.02–18.19 t CO₂‑eq /ha/yr) than low-intensity restoration (median values 5.86–17.06 t CO₂‑eq /ha/yr). Median effectiveness is also higher in tropical areas, where forest growth often continues year-round, than it is in other climate zones. These estimates reflect average sequestration rates over the first 30 years of forest growth. Carbon sequestration rates are also influenced by non-climatic factors. For example, higher tree species diversity is often associated with higher forest carbon storage and uptake (Bialic-Murphy et al., 2024; Poorter et al., 2015; van der Sande et al., 2017).

left_text_column_width

Table 1. Effectiveness of forest restoration at sequestering carbon.

Unit: t CO₂‑eq /ha/yr, 100-yr basis

Boreal 5.86
Temperate 11.49
Subtropical 11.53
Tropical 17.06

Unit: t CO₂‑eq /ha/yr, 100-yr basis

Boreal 14.57
Temperate 12.74
Subtropical 12.02
Tropical 18.19
Left Text Column Width
Cost

We estimated the median cost of low-intensity forest restoration at US$23/t CO₂‑eq (2023 US$) and the median cost of high-intensity forest restoration at US$83/t CO₂‑eq (Table 2). On a per-hectare basis, the estimated cost of low-intensity restoration ranges from US$213/ha (25th percentile) to US$739/ha (75th percentile), with a median cost of US$304/ha. The estimated cost of high-intensity restoration ranges from US$811/ha (25th percentile) to US$1,914/ha (75th percentile), with a median of US$1,348/ha. We derived these estimates from compilations of global restoration project cost data by Verhoeven et al. (2024) and Busch et al. (2024), supplemented with estimates from five additional publications, representing a total of 50 unique projects.

Estimates of restoration costs remain very uncertain, as data are scarce, costs and revenues are highly variable across geographies and projects, and costs are nonlinear, tending to increase under higher adoption scenarios (Austin et al., 2020; Schimetka et al., 2024). Moreover, the success of a project at establishing new forests drives the cost per metric ton of CO₂‑eq , but such success rates are rarely reported alongside costs. Because of data limitations, we did not separate cost estimates into climate zones. 

Our estimates do not account for any new revenues associated with forest restoration, such provisioning of timber and non-timber forest products (Adams et al. 2016; Ager et al., 2017; Busch et al., 2024). They also do not account for the economic value of ecosystem services, such as increased biodiversity, improved water quality, local cooling, and reduced soil erosion, which have been estimated to outweigh the costs of forest restoration (De Groot et al., 2013).

left_text_column_width

Table 2. Cost per unit of climate impact.

Unit: 2023 US$/t CO₂‑eq , 100-yr basis

Median 23

Unit: 2023 US$/t CO₂‑eq , 100-yr basis

Median 83
Left Text Column Width
Learning Curve

We define a learning curve as falling costs with increased adoption. Reforestation has been practiced for many decades, and there is no evidence of a decrease in costs associated with increasing adoption. Therefore, there is no learning curve for this solution.

left_text_column_width
Speed of Action

Speed of action refers to how quickly a climate solution physically affects the atmosphere after it is deployed. This is different from speed of deployment, which is the pace at which solutions are adopted.

At Project Drawdown, we define the speed of action for each climate solution as emergency brake, gradual, or delayed.

Restore Forests is a DELAYED climate solution. It works more slowly than gradual or emergency brake solutions. Delayed solutions can be robust climate solutions, but it’s important to recognize that they may not realize their full potential for some time.

left_text_column_width
Caveats

Barriers to effective forest restoration include challenges around governance, financing, technical capacity (including seed and seedling supply), labor availability, and site-specific knowledge for initial restoration and long-term management (Brumberg et al., 2024; Chazdon et al., 2016; Chazdon et al., 2021; Fargione et al., 2021; Kroeger et al., 2025). Additional research and monitoring are needed to identify locally relevant restoration strategies, reduce barriers, and evaluate the success of restoration projects (Crouzeilles et al., 2019).

Forest restoration also faces challenges around permanence and additionality. Carbon stored in vegetation and soils through forest restoration can be lost to climatic and environmental stressors like wildfire, drought, heat waves, pests, or disease. Young, regenerating forests can be particularly susceptible to these types of stressors. Restored forests are also at risk of clearing (e.g., Piffer et al., 2022), so forest restoration must be coupled with long-term, effective protections against clearing. Additionality refers to the degree to which carbon uptake associated with forest restoration would have occurred in the absence of a project, policy, or incentive. Evaluating additionality is challenging in the context of natural forest regeneration, some of which simply arises from land abandonment without any intervention.

left_text_column_width
Current Adoption

Data on current adoption of forest restoration are very limited. While there are extensive compilations of restoration pledges, estimates of the actual area being restored are noncentralized, typically rely on self-reporting without validation, do not have global coverage, use inconsistent definitions, often include establishment of plantations and agroforestry, and rarely separate estimates by ecosystem. Satellite-based data on tree cover gain are occasionally used as a proxy for restoration, but these do not differentiate among restoration, establishment of industrial plantations, regeneration in the absence of human intervention, and plantation regrowth after timber harvest (Reytar et al., 2024). Moreover, they can fail to capture actual restoration areas (Begliomini & Brancalion, 2024).

Due to these limitations, we do not provide an estimate of the global area currently under forest restoration. However, we did compile current restoration estimates from three databases: The Mongabay Reforestation CatalogThe Restoration Initiative, and The Restoration Barometer. These databases are subject to the limitations discussed above. Assuming that there is no overlap in projects reported across these databases, including projects with an agroforestry component, and including projects across all ecosystems, we found 40.6 Mha currently being restored. Under more conservative assumptions, including removing projects with an agroforestry component, removing projects from countries that are reported across multiple databases, and discounting estimates to account for restoration in other ecosystems, we estimated that 9.2 Mha are currently being restored. These estimates provide context, but should not be interpreted as representative of the global area under forest restoration.

left_text_column_width
Adoption Trend

Despite extensive data on restoration pledges, comprehensive data on the actual implementation of restoration efforts are very limited and not often temporally resolved. The available data are insufficient to calculate an adoption trend for this solution.

left_text_column_width
Adoption Ceiling

We estimated that there are 96.8 Mha available for forest restoration, with 19.4 Mha in boreal regions, 19.0 Mha in temperate regions, 3.5 Mha in the subtropics, and 54.8 Mha in the tropics (Table 3a–e). In this solution, we only included cleared areas that were previously forests in the calculation of the adoption ceiling. To calculate the adoption ceiling, we started with a recent, conservative map of potential forest restoration areas (Fesenmeyer et al., 2025), which we masked to exclude areas classified as other ecosystems in other solutions (peatlands, grasslands and savannahs, and coastal wetlands). We then used a map of the cost-effectiveness of natural regeneration versus plantation establishment (Busch et al., 2024) to remove areas more suitable for plantation establishment from this solution, and assigned them instead to the Deploy Biomass Crops on Degraded Land solution.

Estimates of the area available for forest restoration (outside of existing forests) vary widely due to differing definitions, ranging from 195 Mha (Fesenmeyer et al., 2025) to 900 Mha (Bastin et al., 2019), for example. Using base maps of forest restoration potential from Griscom et al. (2017) and Walker et al. (2022) gave an estimated global adoption ceiling of 426–434 Mha, after applying the same data processing approach to exclude other ecosystems and plantations. 

Because of the constrained scope of this solution, we find a smaller adoption ceiling relative to other studies, which often include plantation establishment, agroforestry, densification of existing forests, afforestation on grasslands, restoration of forests on peat soils, reforestation of croplands, and other activities sometimes classified as forest restoration. We leveraged the map from Fesenmeyer et al. (2025) for the estimates reported in Table 3 because its scope aligns most closely with our relatively narrow definition of forest restoration, this study is also one of the most recent studies, it includes a review of 89 other forest restoration maps, and it incorporates safeguards against conflicts between restoration and biodiversity loss, water scarcity, albedo effects, and land use. However, we note that this estimate is lower than other published estimates of potential forest restoration area and that differences across studies are driven by subjective judgments on land suitability for restoration.

left_text_column_width

Table 3. Adoption ceiling.

Unit: ha available for restoration

Estimate 19,400,000

Unit: ha available for restoration

Estimate 19,000,000

Unit: ha available for restoration

Estimate 3,500,000

Unit: ha available for restoration

Estimate 54,800,000

Unit: ha available for restoration

Estimate 96,800,000
Left Text Column Width
Achievable Adoption

We assigned an arbitrary achievable range of 50–75% of the adoption ceiling, equal to 48.4–72.6 Mha of forest restoration (Table 4a–e). Much of adoption potential is located in the tropics, which we estimated to contain 27.4 Mha under the Achievable – Low scenario and 41.1 Mha under the Achievable – High scenario. We estimated similar achievable ranges of forest restoration area in boreal and temperate regions (9.7–14.6 Mha and 9.5– 14.3 Mha, respectively), and an additional 1.7–2.6 Mha in subtropical regions.

Additional research is needed to determine more realistic estimates of the achievable adoption range, particularly differentiated across different restoration activities. National commitments to restoration, as with studies on the potential restoration area, include many activities that are beyond the scope of this solution, such as plantation establishment, agroforestry, and densification. Because of the inconsistency in definitions, we were unable to rely on restoration commitments to quantify the adoption achievable range. For context, the Global Restoration Commitments database (Mariappan & Zumbado, 2024) reports that, under the Rio Conventions, countries have committed to increasing forestland by 122 Mha, with an additional 154 Mha of commitments to restoring or improving forestland. Similarly, 210.1 Mha of land have been pledged for restoration across all ecosystems under the Bonn Challenge (Mariappan & Zumbado, 2024).

left_text_column_width

Table 4. Range of achievable adoption levels.

Unit: ha

Current adoption NA
Achievable – low 9,700,000
Achievable – high 14,600,000
Adoption ceiling 19,400,000

Unit: ha

Current adoption NA
Achievable – low 9,500,000
Achievable – high 14,300,000
Adoption ceiling 19,000,000

Unit: ha

Current adoption NA
Achievable – low 1,700,000
Achievable – high 2,600,000
Adoption ceiling 3,500,000

Unit: ha

Current adoption NA
Achievable – low 27,400,000
Achievable – high 41,100,000
Adoption ceiling 54,800,000

Unit: ha

Current adoption NA
Achievable – low 48,400,000
Achievable – high 72,600,000
Adoption ceiling 96,800,000
Left Text Column Width

We estimated that forest restoration could sequester 0.717 Gt CO₂‑eq/yr at the low-achievable adoption scenario, 1.077 Gt CO₂‑eq/yr at the high-achievable adoption scenario, and 1.436 Gt CO₂‑eq/yr at the adoption ceiling (Table 5a–e). Nearly 70% of the total climate impacts under these scenarios occur in tropical regions, where much of the current investment in restoration is focused.

Our climate impact estimates are lower than existing literature estimates due to our more constrained definition of this solution. Existing estimates also vary widely. For example, Cook-Patton et al. (2020) estimated that fully implemented national forest restoration commitments as of 2020 would take up 5.9 Gt CO₂‑eq/yr, while the Intergovernmental Panel on Climate Change (IPCC) reported an economically feasible mitigation potential of 1.6 Gt CO₂‑eq/yr (Nabuurs et al., 2022), and Griscom et al. (2017) reported a technical mitigation potential of 10.1 Gt CO₂‑eq/yr. Recently, Wang et al. (2025) estimated an upper-end mitigation potential of 5.85 Gt CO₂‑eq/yr (including afforestation and plantation establishment), with current commitments across all of these activities projected to take up 1.8 Gt CO₂‑eq/yr. Discrepancies between estimates are driven by the area considered suitable for restoration, types of restoration activities considered and their associated carbon uptake rates, and inclusion of cost constraints. Each of these individual estimates is also associated with substantial uncertainty, and further work is needed to standardize definitions of forest restoration and constrain the range of impact estimates.

left_text_column_width

Table 5. Climate impact at different levels of adoption.

Unit: Gt CO₂‑eq/yr, 100-year basis

Current adoption NA
Achievable – low 0.099
Achievable – high 0.149
Adoption ceiling 0.198

Unit: Gt CO₂‑eq/yr, 100-year basis

Current adoption NA
Achievable – low 0.115
Achievable – high 0.173
Adoption ceiling 0.230

Unit: Gt CO₂‑eq/yr, 100-year basis

Current adoption NA
Achievable – low 0.020
Achievable – high 0.031
Adoption ceiling 0.041

Unit: Gt CO₂‑eq/yr, 100-year basis

Current adoption NA
Achievable – low 0.483
Achievable – high 0.725
Adoption ceiling 0.966

Unit: Gt CO₂‑eq/yr, 100-year basis

Current adoption NA
Achievable – low 0.717
Achievable – high 1.077
Adoption ceiling 1.436
Left Text Column Width
Additional Benefits

Heat Stress

Forests help regulate local climate by reducing temperature extremes (Lawrence et al., 2022; Walton et al., 2016). Zhang et al. (2020) found the land surfaces of restored forests were 1–2 °C cooler than grasslands.

Extreme Weather Events

Forest restoration can improve biodiversity and health of the ecosystem, leading to more ecological resilience (DeGroot et al., 2013; Hua et al., 2022). Restored forests can intercept rainfall and attenuate flood risk during extreme rainfall events (Kabeja et al., 2020; Gardon et al., 2020). In some climates, certain reforestation methods could increase ecosystem resilience to wildfires (North et al., 2019).

Floods

For a description of the flood benefits, please refer to the “Extreme Weather Events” subsection. 

Droughts

Forest restoration may increase or decrease the ecosystem’s resilience to drought, depending on changes in factors such as evapotranspiration, precipitation, and water storage in vegetation (Andres et al., 2022; Sankey et al., 2020; Teo et al., 2022). For example, Teo et al. (2022) found that reforestation of degraded lands reduced the probability of experiencing extremely dry conditions in water-insecure regions of East Asia.

Income and Work

Forest restoration creates both temporary and permanent job opportunities, especially in rural areas (DeGroot et al., 2013). A study in Brazil found that restoration can generate about 0.42 jobs per hectare of forest undergoing restoration (Brancalion et al., 2022). Restoration of forests may also improve livelihoods and income opportunities based on the ecosystem services the forest provides. While these benefits vary substantially with household and community characteristics, in general, they include income diversification and the availability of food and fiber from forests (Adams et al., 2016). For example, in Burkina Faso, smallholders who restored lands through assisted regeneration diversified their income by harvesting resources such as fodder for livestock and small wildlife (Kumar et al., 2015). 

Food Security

Forests provide income and livelihoods for subsistence households and individuals (de Souza et al., 2016; Herrera et al., 2017; Naidoo et al., 2019). Forest restoration may improve food security for some households by improving incomes and livelihoods.

Health

Reforestation may promote the health of nearby communities. Herrera et al. (2017) found that in rural areas of low- and middle-income countries, household members living downstream of higher tree cover had a lower probability of diarrheal disease. Biodiverse forests are linked to a reduced risk of animal-to-human infections because zoonotic hosts tend to be less abundant in less disturbed ecosystems (Keesing & Ostfeld, 2021; Reddington et al., 2015).

Equality

Indigenous peoples have a long history of caring for and shaping landscapes that are rich with biodiversity (Fletcher et al., 2021), and restoring the health and function of forests is essential for protecting indigenous cultural values and practices. Indigenous communities provide vital ecological functions for preserving landscape health, such as seed dispersal and predation (Bliege Bird & Nimmo, 2018). Indigenous peoples also have spiritual and cultural ties to their lands (Garnett et al., 2018). Restoration must be implemented using an equity-centered approach that reduces power imbalances between stakeholders, ensures people are not displaced, and involves local actors (Löfqvist et al., 2023).

Nature Protection

Forests are home to a wide range of species and habitats and are essential for safeguarding biodiversity. Reforestation of native forests increases the biodiversity of an ecosystem relative to its previous cleared state (Brancalion et al., 2025; Hua et al., 2022). While many factors, such as the restoration method, time since restoration, and biophysical conditions, can impact restoration, studies of reforestation report increases in biodiversity and more species abundance after restoration, though the biodiversity typically remains below that of intact forests (Crouzeilles et al., 2016; Hua et al., 2022).

Water Quality

The impacts of reforestation on water quality vary based on factors such as geography and time since undergoing restoration (Dib et al., 2023). In general, forests act as natural water filters, maintaining and improving water quality (Dib et al., 2023; Melo et al., 2021). Restoration of forests is associated with improved water quality in streams compared with their previously degraded state (dos Reis Oliveira et al., 2025).

left_text_column_width
Risks

Forest restoration initiatives that are not responsive to local socioeconomic conditions risk displacing community land access and compromising local livelihoods. Effective forest restoration activities can be highly diverse, but must be targeted towards local environmental, sociopolitical, and economic conditions (Stanturf et al., 2019). 

If forest restoration encroaches on agricultural lands, it can trigger clearing of forests elsewhere to replace lost agricultural production. 

Planting trees in areas where they do not naturally occur, such as in grasslands and savannas, can alter hydrologic cycles and harm biodiversity (Veldman et al., 2015a; Veldman et al., 2015b). The estimates of potential forest restoration area that we use in this analysis are constrained to minimize these risks by including only land that was once forested and not allowing for forest restoration on croplands or in urban areas.

left_text_column_width
Interactions with Other Solutions

Reinforcing

Forest restoration can improve the health and function of adjacent ecosystems that are being protected or restored.

left_text_column_width

Competing

These solutions are all suitable to implement on degraded land, and thus are in competition for the available degraded land.

left_text_column_width
Dashboard

Solution Basics

ha under restoration

t CO₂-eq (100-yr)/unit/yr
05.8610.2
units
Current Not Determined 09.7×10⁶1.46×10⁷
Achievable (Low to High)

Climate Impact

Gt CO₂-eq (100-yr)/yr
Current Not Determined 0.0990.149
US$ per t CO₂-eq
53
Delayed

CO₂

Solution Basics

ha under restoration

t CO₂-eq (100-yr)/unit/yr
011.4912.12
units
Current Not Determined 09.5×10⁶1.43×10⁷
Achievable (Low to High)

Climate Impact

Gt CO₂-eq (100-yr)/yr
Current Not Determined 0.1150.173
US$ per t CO₂-eq
53
Delayed

CO₂

Solution Basics

ha under restoration

t CO₂-eq (100-yr)/unit/yr
011.5311.78
units
Current Not Determined 01.7×10⁶2.6×10⁶
Achievable (Low to High)

Climate Impact

Gt CO₂-eq (100-yr)/yr
Current Not Determined 0.020.031
US$ per t CO₂-eq
53
Delayed

CO₂

Solution Basics

ha under restoration

t CO₂-eq (100-yr)/unit/yr
017.0617.62
units
Current Not Determined 02.74×10⁷4.11×10⁷
Achievable (Low to High)

Climate Impact

Gt CO₂-eq (100-yr)/yr
Current Not Determined 0.4830.725
US$ per t CO₂-eq
53
Delayed

CO₂

Trade-offs

Forest restoration can divert resources from other climate solutions, including protecting intact forests. Humans clear approximately 0.4% of forests annually (Curtis et al., 2018; Hansen et al., 2013; Sims et al., 2025), and halting further deforestation is an urgent priority with huge benefits for the climate, biodiversity, and other ecosystem services (see Protect Forests). While restoration provides carbon sequestration over a period of decades, preventing deforestation reduces emissions immediately and is typically more cost-effective. Restoration should therefore complement, rather than compete with, efforts to reduce deforestation.

Forest restoration can also decrease the albedo, or reflectivity, of Earth’s surface. This can increase temperatures as more of the sun’s energy is absorbed and reradiated as thermal energy. Albedo effects are most pronounced in boreal and dryland regions, where they reduce the net climate benefits of forest restoration (Hasler et al., 2024).

left_text_column_width
Action Word
Restore
Solution Title
Forests
Classification
Highly Recommended
Lawmakers and Policymakers
  • Set achievable targets and pledges for forest restoration with clear effectiveness goals; regularly measure and report on restoration progress, area under restoration, challenges, and related data points.
  • Help develop definitions at the international level for forest restoration and degradation along with frameworks for measurement and monitoring; design indicators to capture long-term impacts, including metrics to capture social and biodiversity impacts.
  • Ensure public procurement uses deforestation-free products and sustainable products from reforested areas.
  • Create strong regulatory frameworks with clear definitions for active and passive restoration and/or related terms such as reforestation, regeneration, improving forest functionality, and increasing forest cover; ensure the framework is gender responsive and seeks to include women throughout the restoration process.
  • Coordinate forest protection and restoration policies horizontally (e.g., across agencies) and vertically (e.g., across subnational, national, and international efforts); seek to align social and environmental safeguards with protection and reforestation policies and goals.
  • Develop regional and transboundary coordination mechanisms for protection and restoring forests, especially, when working across international borders; consider using coordination methods from adjacent issue areas such as water management and/or working closely with existing coordination bodies for relevant watersheds.
  • Prioritize forest protection first and restoring forests second; ensure areas under restoration are classified as protected lands.
  • Create financial incentives for both active and passive restoration techniques, such as direct payments, payment for ecosystem services (PES), property tax breaks, rebates, subsidies, and cash prizes for meeting tree and/or vegetative growth metrics; ensure incentives allow for long timelines; provide similar incentives to reduce fertilizer use; ensure equitable access to incentives for low- and middle-income communities.
  • Provide financial incentives for businesses that support restoration by developing sustainable products.
  • Create disincentives by taxing or fining land clearance, deforestation, poor land management, and agricultural pollution.
  • Remove harmful agriculture and logging subsidies, particularly those that incentivize livestock, biofuels, land encroachment, and overuse of fertilizers.
  • Seek to designate lands for reforestation that are adjacent to or connect with already protected areas, intact lands, and/or watersheds.
  • Delegate the authority to allocate direct payments for fiscal incentives to local governments.
  • Use tax revenues from extractive industries to pay for restoration.
  • Use taxes from beneficiaries of forest services to pay for nearby restoration (e.g., use taxes from downstream users to improve practices upstream); before instituting such a tax regime, consult with stakeholders, clearly define tax arrangements, and put into place strict enforcement measures.
  • Create an ongoing, equity-centered community engagement process; ensure local communities help shape local projects and receive benefits.
  • Strengthen land and tree tenure rights; grant Indigenous communities’ full property rights and autonomy.
  • Ensure projects operating in or with Indigenous communities only do so under free, prior, and informed consent (FPIC); codify FPIC into legal systems.
  • Ensure regulations allow and encourage a variety of legal models for reforestation efforts, such as cooperatives.
  • Prioritize reducing food loss and waste and improving diets.
  • Invest in R&D to identify best practices, where reforestation is viable, and how to improve the local enabling environment(s).
  • When possible, use social science research to determine the best interventions, incentives, and community engagement models before beginning restoration projects.
  • Create programs to monitor for activity and market leakage from reforestation sites; adjust enforcement and policies to reduce leakage, if necessary.
  • Foster national pride for the natural landscape and reforestation efforts through communication campaigns.
  • Work with public universities and other educational institutions to develop degree and certification programs in forest restoration; encourage them to offer subspecialities, such as protected lands governance, management, policy, and finance.
  • Create educational programs that work with schools, universities, NGOs, and the general public to inform communities how to participate in restoration efforts, benefits, and opportunities; expand extension services to develop local capacity in forest restoration, especially in community-led monitoring and evaluation; establish knowledge-sharing initiatives with Indigenous peoples.
  • Join, create, or participate in public-private partnerships dedicated to mobilizing financing, restoration activities, knowledge transfers, general education, and other relevant areas.
  • Join, support, or create certification schemes that verify restoration activity and sustainable use of forest products.

Further information:

Practitioners
  • Set achievable targets and pledges for forest restoration with clear effectiveness goals.
  • Help develop regulatory frameworks with clear definitions for active and passive restoration and/or related terms such as reforestation, regeneration, improving forest functionality, and increasing forest cover; ensure the framework is gender responsive and seeks to include women throughout the restoration process.
  • Help develop definitions at the international level for forest restoration and degradation along with frameworks for measurement and monitoring; design indicators to capture long term impacts, including metrics to capture social and biodiversity impacts.
  • Help develop or advocate for regional and transboundary coordination mechanisms for restoring forests, especially, when working across international borders; consider using coordination methods from adjacent issue areas such as water management and/or working closely with existing coordination bodies for relevant watersheds.
  • Offer or take advantage of financial incentives such as direct payments or PES; if necessary, advocate for public incentives for both active and passive restoration, such as property tax breaks, rebates, subsidies, and cash prizes for meeting tree and/or vegetative growth metrics; help ensure incentives allow for long timelines; help ensure equitable access to incentives for low- and middle-income communities.
  • Seek to designate lands for reforestation that are adjacent to or connect with already protected areas, intact lands, and/or watersheds.
  • Create an ongoing, equity-centered community engagement process; ensure local communities help shape local projects and receive benefits.
  • Advocate for strong land and tree tenure rights; support Indigenous property rights and autonomy.
  • Ensure projects operating in or with Indigenous communities only do so under FPIC; help codify FPICinto legal systems.
  • Help create high-integrity carbon markets with long durations; use dynamic baselines for more accurate additionality assessments.
  • Create programs to monitor for activity and market leakage from reforestation sites; advocate for adjustments to enforcement and policies to reduce leakage, if necessary.
  • Develop markets for native species products and other sustainable uses of reforested lands.
  • Develop or support opportunities for ecotourism industries in locally restored forests.
  • Explore and use alternative legal models for reforestation,such as cooperatives.
  • Invest in R&D to identify best practices, where reforestation is viable, and how to improve the local enabling environment(s).
  • When possible, use social science research to determine the best interventions, incentives, and community engagement models before beginning restoration projects.
  • Help foster pride for natural landscape and reforestation efforts through communication campaigns.
  • Work with educational institutions to develop degree and certification programs in forest restoration; encourage them to offer subspecialities such as protected lands governance, management, policy, and finance.
  • Create educational programs that work with schools, NGOs, and the general public to inform communities how to participate in restoration efforts, benefits, and opportunities; advocate for expanded extension services to develop local capacity in forest restoration, especially in community-led monitoring and evaluation; establish knowledge-sharing initiatives with Indigenous peoples.
  • Join, create, or participate in public-private partnerships dedicated to mobilizing financing, restoration activities, knowledge transfers, general education, and other relevant areas.
  • Join, support, or create certification schemes that verify restoration activity and sustainable use of forest products.

Further information:

Business Leaders
  • Create deforestation-free supply chains, using data, information, and the latest technology to inform product sourcing.
  • Develop markets and supply chains for native species products; innovate other sustainable uses for resources from reforested lands.
  • Integrate deforestation-free business and investment policies and practices into your net-zero strategies.
  • Develop or support opportunities for ecotourism in restored forests.
  • Offer company grants to suppliers or others to improve resource management and support reforestation within your supply chain.
  • Offer incubator services for those restoring forests; offer pro bono business advice or general support for community restoration projects.
  • Enter into outgrower schemes to support smallholder farmers restoring their land; make long-term commitments to help stabilize projects.
  • Contribute to local restoration efforts; use an internal carbon fee or set aside a percentage of revenue to fund reforestation
  • Only purchase carbon credits from high-integrity, verifiable carbon markets, and do not use them as replacements for reducing emissions.
  • Help create high-integrity carbon markets with long durations; use dynamic baselines for additionality assessments.
  • Help shift the public narrative around carbon markets as integrity increases to boost education, dialogue, and awareness.
  • Develop financial instruments to invest in reforestation, focusing on supporting Indigenous communities.
  • Amplify the voices of local communities and civil society to promote robust media coverage.
  • Offer employee professional development funds to be used for certification in reforestation or related fields such as curricular economies.
  • Create company volunteer opportunities such as annual-tree planting days; consider partnering with a relevant local non-profit.
  • Join, create, or participate in public-private partnerships dedicated to mobilizing financing, restoration activities, knowledge transfers, general education, and other relevant areas.
  • Join, support, or create certification schemes that verify restoration activity and sustainable use of forest products.

Further information:

Nonprofit Leaders
  • Use deforestation-free products and sustainable products from reforested areas.
  • Help manage restoration projects; consider using alternatives to corporate business structures such as cooperatives to facilitate management and legal structures.
  • Advocate for achievable public targets and pledges for forest restoration with clear effectiveness goals.
  • Help develop regulatory frameworks with clear definitions for active and passive restoration and/or related terms such as reforestation, regeneration, improving forest functionality, and increasing forest cover; ensure the framework is gender responsive and seeks to include women throughout the restoration process.
  • Help develop definitions at the international level for forest restoration and degradation along with frameworks for measurement and monitoring; design indicators to capture long-term impacts, including social and biodiversity impacts.
  • Help develop or advocate for regional and transboundary coordination mechanisms for restoring forests, especially, when working across international borders; consider using coordination methods from adjacent issue areas such as water management and/or working closely with existing coordination bodies for relevant watersheds.
  • Offer or take advantage of financial incentives such as direct payments or PES; if necessary, advocate for public incentives such as property tax breaks, rebates, subsidies, and cash prizes for meeting tree and/or vegetative growth metrics; help ensure incentives allow for long timelines; help ensure equitable access to incentives.
  • Seek to designate lands for reforestation that are adjacent to or connect with already protected areas, intact lands, and/or watersheds.
  • Advocate to remove harmful agriculture and logging subsidies, particularly those that incentivize livestock, biofuels, land encroachment, and overuse of fertilizers.
  • Call on governments and administrators of reforestation projects to use transparent, inclusive, and ongoing community engagement processes to co-design restoration projects; help solicit community feedback on area designations, finance, monitoring, and distribution of benefits; help ensure projects address relevant sociological, agricultural, and ecological considerations.
  • Advocate for strong land and tree tenure rights; support Indigenous property rights and autonomy.
  • Ensure projects operating in or with Indigenous communities only do so under FIPC; help codify FIPC into legal systems.
  • Help create high-integrity, long-lasting carbon markets; use dynamic baselines for more accurate additionality assessments.
  • Help monitor reforestation projects for success metrics such as vegetative growth, biodiversity, and water quality using high-resolution data and active remote sensing if possible.
  • Help translate reforestation materials into locally relevant languages.
  • Conduct cost-benefit analyses of potential local interventions to identify optimal strategies.
  • Develop markets and supply chains for native species products; innovate other sustainable uses for resources from reforested lands.
  • Develop or support opportunities for ecotourism in restored forests.
  • Facilitate investment in reforestation; create economic models to help maintain long-term financing; identify priorities for financing and help distribute incentives.
  • Help identify local sources of degradation and distribute findings to policymakers and the public; document and share best practices for reforestation.
  • Help establish outgrower schemes and negotiate favorable contracts for smallholder farmers.
  • Create programs to monitor for activity and market leakage from reforestation sites; advocate for adjustments to enforcement and policies to reduce leakage, if necessary.
  • Support high-integrity carbon markets, institutions, rules, and norms to cultivate demand for high-quality carbon credits.
  • Help shift the public narrative around carbon markets as integrity increases to boost education, dialogue, and awareness.
  • Amplify the voices of local communities and civil society to promote robust media coverage.
  • Invest in and support Indigenous and local communities’ capacity for legal protection, administration, and public relations.
  • When possible, use social science research to determine the best interventions, incentives, and community engagement models before beginning restoration projects.
  • Help foster national pride for the natural landscape and reforestation efforts through communication campaigns.
  • Work with educational institutions to develop degree and certification programs in forest restoration; encourage them to offer subspecialities such as protected lands governance, management, policy, and finance.
  • Create educational programs that work with schools, NGOs, and the general public to inform communities how to participate in restoration efforts, benefits, and opportunities; advocate for expanded extension services to develop local capacity in forest restoration, especially in community-led monitoring and evaluation; establish knowledge-sharing initiatives with Indigenous peoples.
  • Join, create, or participate in public-private partnerships dedicated to mobilizing financing, restoration activities, knowledge transfers, general education, and other relevant areas.
  • Join, support, or create certification schemes that verify restoration activity and sustainable use of forest products.

Further information:

Investors
  • Create deforestation-free investment portfolios.
  • Apply environmental and social standards to existing investments; divest from destructive industries and/or work with portfolio companies to improve practices.
  • Offer specific credit lines for reforestation projects with long-term timelines; offer low-interest loans, microfinancing, and specific financial products for medium-sized projects.
  • Own equity in sustainable projects that manage or support reforestation, especially during the early and middle phases.
  • Offer incubator services for those working on forest restoration projects; offer pro bono business advice or general support for community restoration projects.
  • Offer insurance and risk mitigation products for reforestation projects, especially, to farmers transitioning their lands.
  • Provide catalytic financing for businesses developing sustainable products made from native species, ecotourism, or other sustainable uses of reforested lands.
  • Invest in green bonds or high-integrity carbon credits for reforestation.
  • Support reforestation, other investors, and NGOs by sharing data, information, and investment frameworks that successfully avoid investments that drive deforestation.
  • Join, create, or participate in public-private partnerships dedicated to mobilizing financing, restoration activities, knowledge transfers, general education, and other relevant areas.

Further information:

Philanthropists and International Aid Agencies
  • Use deforestation-free products and sustainable products from reforested areas.
  • Offer grants or credit lines for reforestation projects with long-term timelines; offer low-interest loans, microfinancing options, and favorable financial products for medium-sized projects.
  • Own equity in sustainable projects that manage or support reforestation, especially during the early and middle phases.
  • Offer incubator services for those working on forest restoration; offer pro bono business advice or general support for community restoration projects.
  • Offer insurance and risk mitigation products for reforestation projects, especially, to farmers transitioning their lands.
  • Provide catalytic financing for businesses developing sustainable products made from native species, local ecotourism, or other sustainable uses of reforested lands.
  • Advocate for achievable public targets and pledges for forest restoration with clear effectiveness goals.
  • Help develop regulatory frameworks with clear definitions for active and passive restoration and/or related terms such as reforestation, regeneration, improving forest functionality, and increasing forest cover; ensure the framework is gender responsive and seeks to include women throughout the restoration process.
  • Help develop definitions at the international level for forest restoration and degradation along with frameworks for measurement and monitoring; design indicators to capture long-term impacts, including metrics to capture social and biodiversity impacts.
  • Help develop or advocate for regional and transboundary coordination mechanisms for restoring forests, especially, when working across international borders; consider using coordination methods from adjacent issue areas such as water management and/or working closely with existing coordination bodies for relevant watersheds.
  • Offer or take advantage of financial incentives such as PES; if necessary, advocate for public incentives for both active and passive restoration techniques such as property tax breaks, rebates, subsidies, and cash prizes for meeting tree and/or vegetative growth metrics; help ensure incentives allow for long timelines; help ensure equitable access to incentives.
  • Seek to designate lands for reforestation that are adjacent to or connect with already protected areas, intact lands, and/or watersheds.
  • Advocate to remove harmful agriculture and logging subsidies, particularly those that incentivize livestock, biofuels, land encroachment, and overuse of fertilizers.
  • Call on governments and administrators to use transparent, inclusive, and ongoing community engagement to co-design restoration projects; help solicit community feedback on area designations, finance, monitoring, and distribution of benefits; help ensure projects address relevant sociological, agricultural, and ecological considerations.
  • Advocate for strong land and tree tenure rights; support Indigenous property rights and autonomy.
  • Ensure projects operating in or with Indigenous communities only do so under FPICt; help codify FPIC into legal systems.
  • Help create high-integrity carbon markets with long durations; use dynamic baselines for more accurate additionality assessments.
  • Help monitor reforestation projects using high-resolution data and active remote sensing if possible.
  • Help translate reforestation materials into local relevant languages.
  • Conduct cost-benefit analysis of potential local interventions to identify optimal reforestation strategies.
  • Develop markets and supply chains for native species products; innovate other sustainable uses for resources from reforested lands.
  • Develop or support opportunities for ecotourism industries in locally restored forests.
  • Facilitate investment strategies among stakeholders; create economic models to help maintain long-term financing; identify priorities for financing and help to distribute both financial and nonfinancial incentives to stakeholders.
  • Help identify local sources of degradation and distribute findings to policymakers and the public; document and share best practices for reforestation.
  • Help establish outgrower schemes and negotiate contracts for smallholder farmers to ensure they receive the most favorable terms possible.
  • Create programs to monitor for activity and market leakage from reforestation sites; advocate for adjustments to enforcement and policies to reduce leakage if necessary.
  • Support high-integrity carbon markets, institutions, rules, and norms to cultivate the demand for high-quality carbon credits.
  • Help shift the public narrative around carbon markets as integrity increases to boost education, dialogue, and awareness.
  • Amplify the voices of local communities and civil society to promote robust media coverage.
  • Invest in and support Indigenous and local communities' capacity for legal protection, administration, and public relations.
  • When possible, use social science research to determine the best interventions, incentives, and community engagement models before beginning restoration projects.
  • Work with educational institutions to develop degree and certification programs in forest restoration; encourage them to offer subspecialities such as protected lands governance, management, policy, and finance.
  • Create educational programs that work with schools, NGOs, and the general public to inform communities of how to participate in restoration efforts, benefits, and opportunities; advocate for expanded extension services to develop local capacity in forest restoration, especially in community-led monitoring and evaluation; establish knowledge-sharing initiatives with Indigenous peoples.
  • Join, create, or participate in public-private partnerships dedicated to mobilizing financing, restoration activities, knowledge transfers, general education, and other relevant areas.
  • Join, support, or create certification schemes that verify restoration activity and sustainable use of forest products.

Further information:

Thought Leaders
  • If possible, conduct restoration projects on your property; work with local experts, share your experience, and document your progress.
  • Advocate for achievable public targets and pledges for forest restoration with clear effectiveness goals.
  • Help develop regulatory frameworks with clear definitions for active and passive restoration and/or related terms such as reforestation, regeneration, improving forest functionality, and increasing forest cover; ensure the framework is gender responsive and seeks to include women throughout the restoration process.
  • Help develop definitions at the international level for forest restoration and degradation along with frameworks for measurement and monitoring; design indicators to capture long-term impacts, including metrics to capture social and biodiversity impacts.
  • Help develop or advocate for regional and transboundary coordination mechanisms for restoring forests, especially, when working across international borders; consider using coordination methods from adjacent issue areas such as water management and/or working closely with existing coordination bodies for relevant watersheds.
  • Take advantage of and/or advocate for public incentives for both active and passive restoration techniques such as direct payments, PES, property tax breaks, rebates, subsidies, and cash prizes for meeting tree and/or vegetative growth metrics; help ensure incentives allow for long timelines; help ensure equitable access to incentives.
  • Seek to designate lands for reforestation that are adjacent to or connect with already protected areas, intact lands, and/or watersheds.
  • Advocate to remove harmful agriculture and logging subsidies, particularly those that incentivize livestock, biofuels, land encroachment, and overuse of fertilizers.
  • Call on governments and administrators to use transparent, inclusive, and ongoing community engagement processes to co-design restoration projects; help solicit community feedback on area designations, finance, monitoring, and distribution of benefits; help ensure projects address relevant sociological, agricultural, and ecological considerations.
  • Advocate for strong land and tree tenure rights; support Indigenous property rights and autonomy.
  • Ensure projects operating in or with Indigenous communities only do so under FPIC; help codify FPIC into legal systems.
  • Help create high-integrity carbon markets with long durations; use dynamic baselines for more accurate additionality assessments.
  • Help identify local sources of degradation and distribute findings to policymakers and the public; document and share best practices for reforestation.
  • Support high-integrity carbon markets, institutions, rules, and norms to cultivate the demand for high-quality carbon credits.
  • Help shift the public narrative around carbon markets as integrity increases to boost education, dialogue, and awareness.
  • Amplify the voices of local communities and civil society to promote robust media coverage.
  • Work with educational institutions to develop degree and certification programs in forest restoration; encourage them to offer subspecialities such as protected lands governance, management, policy, and finance.
  • Create educational programs that work with schools, NGOs, and the general public to inform communities of how to participate in restoration efforts, benefits, and opportunities; advocate for expanded extension services to develop local capacity in forest restoration, especially in community-led monitoring and evaluation; establish knowledge-sharing initiatives with Indigenous peoples.
  • Join, create, or participate in public-private partnerships dedicated to mobilizing financing, restoration activities, knowledge transfers, general education, and other relevant areas
  • Join, support, or create certification schemes that verify restoration activity and sustainable use of forest products.

Further information:

Technologists and Researchers
  • Examine and compare a wide range of interventions, ideally in local sites, to inform reforestation.
  • Help document and examine local knowledge as it relates to reforestation; help integrate Indigenous and local knowledge into restoration science and technology.
  • Help develop local spatial models to identify sites suitable for restoration with low risk of being recleared.
  • Use or improve Artificial Intelligence models and satellite imagery to help develop early warning systems and predictive models for degraded forests and illegal deforestation.
  • Use AI and satellite data to monitor and evaluate restoration activities; map practices and identify locally relevant interventions.
  • Develop web-based platforms and applications to support large-scale forest restoration; include peer-reviewed studies that map risks and amounts of buffer pools available for each disturbance.
  • Research locally viable risk management strategies in restoration; study and identify social risks and related mitigation strategies.
  • Create a database to measure reforestation progress against global commitments.
  • Develop or improve techniques to monitor for activity and market leakage from reforestation sites.
  • Examine and compare a wide range of local incentive structures to identify optimal policies.
  • Conduct long-term documentation of socioeconomic and biodiversity outcomes for restoration projects; identify challenges and opportunities; distill best practices for a global audience.
  • Conduct social ground truthing for local restoration projects to gather data, test models, and develop potential interventions.
  • Conduct research on native species found in restored forests and potential uses for sustainable commercial development.
  • Evaluate the relationships among large-scale forest restoration, food security, and wood demand; develop recommendations for land and resource allocation among these activities.
  • Improve understanding of forest dynamics, including how they relate to cloud feedbacks, volatile organic compounds, aerosol effects, and black carbon.

Further information:

Communities, Households, and Individuals
  • If possible, restore forests on your property; work with local experts, share your experience, and document your progress.
  • Help establish and participate in local restoration efforts; volunteer with a local nonprofit or establish one if none exists.
  • If degraded forests are in your area and no action is being taken, speak to local officials, hand out fliers, or otherwise advocate for restoration.
  • Reduce and/or eliminate use of chemicals on your lawn and/or property; set up a sign that indicates your lawn is chemical-free.
  • Prioritizing reducing your household’s food waste and improving your diet to incorporate more plant-rich meals.
  • Have community conversations about local forests, agriculture, and lawn maintenance practices; seek to reduce harmful practices such as overuse of fertilizers and pesticides and to initiate restoration efforts; educate friends and neighbors about local degraded forests and potential solutions.
  • Contribute to local restoration efforts.
  • When traveling, look for opportunities to support reforestation projects and ecotourism.
  • Help document and develop knowledge-sharing opportunities for Indigenous and local knowledge.
  • Help identify local sources of degradation and distribute findings to policymakers and the public; document and share best practices for reforestation.
  • Try to purchase sustainable forest products that support local reforestation.
  • Take advantage of and/or advocate for public incentives for restoration techniques such as direct payments, PES, property tax breaks, rebates, subsidies, and cash prizes for meeting tree and/or vegetative growth metrics; help ensure incentives allow for long timelines; help ensure equitable access to incentives.
  • Seek to designate lands for reforestation that are adjacent to or connect with already protected areas, intact lands, and/or watersheds.
  • Advocate to remove harmful agriculture and logging subsidies, particularly those that incentivize livestock, biofuels, land encroachment, and overuse of fertilizers.
  • Call on governments and administrators to use transparent, inclusive, and ongoing community engagement processes to co-design restoration projects; help solicit community feedback on area designations, finance, monitoring, and distribution of benefits; help ensure projects address relevant sociological, agricultural, and ecological considerations.
  • Advocate for strong land and tree tenure rights; support Indigenous property rights and autonomy.
  • Ensure projects operating in or with Indigenous communities only do so under FPIC; help codify FPIC into legal systems.
  • Create educational programs that work with schools, NGOs, and the general public to inform communities how to participate in restoration efforts, benefits, and opportunities; advocate for expanded extension services to develop local capacity in forest restoration, especially in community-led monitoring and evaluation; establish knowledge-sharing initiatives with Indigenous peoples.
  • Join, create, or participate in public-private partnerships dedicated to mobilizing financing, restoration activities, knowledge transfers, general education, and other relevant areas.
  • Join, support, or create certification schemes that verify restoration activity and sustainable use of forest products.

Further information:

Sources
Evidence Base

Consensus of effectiveness in enhancing carbon removal: High

Many scientific studies have evaluated the potential for forest restoration, consistently reporting that forest restoration has potential to provide substantial carbon removal. The effectiveness of forest restoration in terms of carbon uptake per hectare is highly spatially variable, with over 100-fold variability in uptake rates globally (Cook-Patton et al., 2020). These uptake rates have been extensively modeled, though estimates vary with respect to restoration activity (e.g., natural regeneration or plantation establishment) and carbon pools included (e.g., above-ground biomass only, above- and below-ground biomass, or total biomass and soil carbon). For forests undergoing natural regeneration, estimates of effectiveness ranged from 1.0 t CO₂‑eq /ha/yr for biomass in boreal forests (Cook-Patton et al., 2020) to 18.8 t CO₂‑eq /ha/yr for biomass and soils in humid tropical forests in South America (Bernal et al., 2018).

Estimates of the potential climate impacts of forest restoration vary widely, with differences driven largely by variability in the estimates of land area available for forest restoration. The IPCC reported a global technical mitigation potential of 3.9 Gt CO₂‑eq/yr with an uncertainty range of 0.5–10.1 Gt CO₂‑eq/yr, and an economically feasible mitigation potential of 1.6 Gt CO₂‑eq/yr with an uncertainty range of 0.5–3.0 Gt CO₂‑eq/yr (Nabuurs et al., 2022). Cook-Patton et al. (2020) estimated a maximum mitigation potential of 8.91 Gt CO₂‑eq/yr and a mitigation potential of 5.87 Gt CO₂‑eq/yr under existing national commitments. Roe et al. (2021) estimated a technical mitigation potential of 8.47 Gt CO₂‑eq/yr and a cost-effective mitigation potential of 1.53 Gt CO₂‑eq/yr. Griscom et al. (2017) reported a technical mitigation potential of 10.1 Gt CO₂‑eq/yr, though the uncertainty estimates spanned 2.7–17.9 Gt CO₂‑eq/yr. Using a more conservative estimate of the area available for forest restoration than previous studies, Fesenmeyer et al. (2025) estimated that sequestration of 2.2 Gt CO₂‑eq/yr is feasible.

The quantitative results presented in this assessment synthesize findings from 16 global datasets supplemented by four national-scale studies. We recognize that geographic bias in the information underlying global data products creates bias and hope this work inspires research and data sharing on this topic in underrepresented regions.

left_text_column_width
Updated Date

Improve Annual Cropping

Image
Coming Soon
Off
Summary

Farmers on much of the world’s 1.4 billion ha of cropland grow and harvest annual crops – crops like wheat, rice, and soybeans that live for one year or less. After harvest, croplands are often left bare for the rest of the year and sometimes tilled, exposing the soil to wind and rain. This keeps soil carbon levels low and can lead to soil erosion. There are many ways to improve annual cropping to protect or enhance the health of the soil and increase soil organic matter. Project Drawdown’s Improve Annual Cropping solution is a set of practices that protects soils by minimizing plowing (no-till/reduced tillage) and maintaining continuous soil cover (by retaining crop residues or growing cover crops). This increases soil carbon sequestration and reduces nitrous oxide emissions. These techniques are commonly used in conservation agriculture, regenerative, and agro-ecological cropping systems. Other annual cropping practices with desirable climate impacts – including compost application and crop rotations – are omitted here due to lack of data and much smaller scale of adoption. New adoption is estimated from the 2025 level as a baseline which is therefore set to zero.

Description for Social and Search
Improve Annual Cropping is a highly recommended climate solution. It enhances soil’s ability to store carbon and reduces emissions of nitrous oxide, a potent greenhouse gas.
Overview

The Improve Annual Cropping solution incorporates several practices that minimize soil disturbance and introduce a physical barrier meant to prevent erosion to fragile topsoils. Our definition includes two of the three pillars of conservation agriculture: minimal soil disturbance and permanent soil cover (Kassam et al., 2022).

Minimal Soil Disturbance

Soil organic carbon (SOC) – which originates from decomposed plants – helps soils hold moisture and provides the kinds of chemical bonding that allow nutrients to be stored and exchanged easily with plants. Soil health and productivity depend on microbial decomposition of plant biomass residues, which mobilizes critical nutrients in soil organic matter (SOM) and builds SOC. Conventional tillage inverts soil, buries residues, and breaks down compacted soil aggregates. This process facilitates microbial activity, weed removal, and water infiltration for planting. However, tillage can accelerate CO₂ fluxes as SOC is lost to oxidation and runoff. Mechanical disturbance further exposes deeper soils to the atmosphere, leading to radiative absorption, higher soil temperatures, and catalyzed biological processes – all of which increase oxidation of SOC (Francaviglia et al., 2023).

Reduced tillage limits soil disturbance to support increased microbial activity, moisture retention, and stable temperature at the soil surface. This practice can increase carbon sequestration, at least when combined with cover cropping. These effects are highly contextual, depending on tillage intensity and soil depth as well as the practice type, duration, and timing. Reduced tillage further reduces fossil fuel emissions from on-farm machinery. However, this practice often leads to increased reliance on herbicides for weed control (Francaviglia et al., 2023).

Permanent Soil Cover

Residue retention and cover cropping practices aim to provide permanent plant cover to protect and improve soils. This can improve aggregate stability, water retention, and nutrient cycling. Farmers practicing residue retention leave crop biomass residues on the soil surface to suppress weed growth, improve water infiltration, and reduce evapotranspiration from soils (Francaviglia et al., 2023).

Cover cropping includes growth of spontaneous or seeded plant cover, either during or between established cropping cycles. In addition to SOC, cover cropping can help decrease nitrous oxide emissions and bind nitrogen typically lost via oxidation and leaching. Leguminous cover crops can also fix atmospheric nitrogen, reducing the need for fertilizer. Cover cropping can further be combined with reduced tillage for additive SOC and SOM gains (Blanco-Canqui et al., 2015; Francaviglia et al., 2023).

Improved annual cropping practices can simultaneously reduce GHG emissions and improve SOC stocks. However, there are biological limits to SOC stocks – particularly in mineral soils. Environmental benefits are impermanent and only remain if practices continue long term (Francaviglia et al., 2023).

Abdalla, M., Hastings, A., Cheng, K., Yue, Q., Chadwick, D., Espenberg, M., Truu, J., Rees, R. M., & Smith, P. (2019). A critical review of the impacts of cover crops on nitrogen leaching, net greenhouse gas balance and crop productivity. Global Change Biology, 25(8), 2530–2543. Link to source: https://doi.org/10.1111/gcb.14644 

Arslan, A., McCarthy, N., Lipper, L., Asfaw, S., Cattaneo, A., & Kokwe, M. (2015). Climate smart agriculture? Assessing the adaptation implications in Zambia. Journal of Agricultural Economics66(3), 753-780. Link to source: https://doi.org/10.1111/1477-9552.12107

Bai, X., Huang, Y., Ren, W., Coyne, M., Jacinthe, P.-A., Tao, B., Hui, D., Yang, J., & Matocha, C. (2019). Responses of soil carbon sequestration to climate-smart agriculture practices: A meta-analysis. Global Change Biology25(8), 2591–2606. https://doi.org/10.1111/gcb.14658

Blanco‐Canqui, H., Shaver, T. M., Lindquist, J. L., Shapiro, C. A., Elmore, R. W., Francis, C. A., & Hergert, G. W. (2015). Cover crops and ecosystem services: Insights from studies in temperate soils. Agronomy journal107(6), 2449-2474. Link to source: https://doi.org/10.2134/agronj15.0086

Blanco-Canqui, H., & Francis, C. A. (2016). Building resilient soils through agroecosystem redesign under fluctuating climatic regimes. Journal of Soil and Water Conservation, 71(6), 127A-133A. Link to source: https://doi.org/10.2489/jswc.71.6.127A 

Cai, A., Han, T., Ren, T., Sanderman, J., Rui, Y., Wang, B., Smith, P., Xu, M., & Li, Y. (2022). Declines in soil carbon storage under no tillage can be alleviated in the long run. Geoderma, 425, 116028. Link to source: https://doi.org/10.1016/j.geoderma.2022.116028 

Clapp, J. (2021). Explaining growing glyphosate use: The political economy of herbicide-dependent agriculture. Global Environmental Change67, 102239. Link to source: https://doi.org/10.1016/j.gloenvcha.2021.102239

Cui, Y., Zhang, W., Zhang, Y., Liu, X., Zhang, Y., Zheng, X., Luo, J., & Zou, J. (2024). Effects of no-till on upland crop yield and soil organic carbon: A global meta-analysis. Plant and Soil499(1), 363–377. https://doi.org/10.1007/s11104-022-05854-y

Damania, R., Polasky, S., Ruckelshaus, M., Russ, J., Amann, M., Chaplin-Kramer, R., Gerber, J., Hawthorne, P., Heger, M. P., Mamun, S., Ruta, G., Schmitt, R., Smith, J., Vogl, A., Wagner, F., & Zaveri, E. (2023). Nature's Frontiers: Achieving Sustainability, Efficiency, and Prosperity with Natural Capital. World Bank Publications. Link to source: https://doi.org/10.1596/978-1-4648-1923-0

Francaviglia, R., Almagro, M., & Vicente-Vicente, J. L. (2023). Conservation agriculture and soil organic carbon: Principles, processes, practices and policy options. Soil Systems, 7(1), 17. Link to source: https://doi.org/10.3390/soilsystems7010017 

Griscom, B. W., Adams, J., Ellis, P. W., Houghton, R. A., Lomax, G., Miteva, D. A., Schlesinger, W. H., Shoch, D., Siikamäki, J. V., Smith, P., Woodbury, P., Zganjar, C., Blackman, A., Campari, J., Conant, R. T., Delgado, C., Elias, P., Gopalakrishna, T., Hamsik, M. R., Herrero, M., & Fargione, J. (2017). Natural climate solutions. Proceedings of the National Academy of Sciences114(44), 11645-11650. Link to source: https://doi.org/10.1073/pnas.1710465114

Hassan, M. U., Aamer, M., Mahmood, A., Awan, M. I., Barbanti, L., Seleiman, M. F., Bakhsh, G., Alkharabsheh, H. M., Babur, E., Shao, J., Rasheed, A., & Huang, G. (2022). Management strategies to mitigate N2O emissions in agriculture. Life12(3), 439. Link to source: https://doi.org/10.3390/life12030439

Hu, Q., Thomas, B. W., Powlson, D., Hu, Y., Zhang, Y., Jun, X., Shi, X., & Zhang, Y. (2023). Soil organic carbon fractions in response to soil, environmental and agronomic factors under cover cropping systems: A global meta-analysis. Agriculture, Ecosystems & Environment355, 108591. https://doi.org/10.1016/j.agee.2023.108591

Jat, H. S., Choudhary, K. M., Nandal, D. P., Yadav, A. K., Poonia, T., Singh, Y., Sharma, P. C., & Jat, M. L. (2020). Conservation agriculture-based sustainable intensification of cereal systems leads to energy conservation, higher productivity and farm profitability. Environmental Management, 65(6), 774–786. Link to source: https://doi.org/10.1007/s00267-020-01273-w

Jayaraman, S., Dang, Y. P., Naorem, A., Page, K. L., & Dalal, R. C. (2021). Conservation agriculture as a system to enhance ecosystem services. Agriculture, 11(8), 718. Link to source: https://doi.org/10.3390/agriculture11080718

Kan, Z.-R., Liu, W.-X., Liu, W.-S., Lal, R., Dang, Y. P., Zhao, X., & Zhang, H.-L. (2022). Mechanisms of soil organic carbon stability and its response to no-till: A global synthesis and perspective. Global Change Biology28(3), 693–710. https://doi.org/10.1111/gcb.15968

Kassam, A., Friedrich, T., & Derpsch, R. (2022). Successful experiences and lessons from conservation agriculture worldwide. Agronomy12(4), 769. https://doi.org/10.3390/agronomy12040769

Lal, R., Smith, P., Jungkunst, H. F., Mitsch, W. J., Lehmann, J., Nair, P. K. R., McBratney, A. B., Sá, J. C. D. M., Schneider, J., Zinn, Y. L., Skorupa, A. L. A., Zhang, H.-L., Minasny, B., Srinivasrao, C., & Ravindranath, N. H. (2018). The carbon sequestration potential of terrestrial ecosystems. Journal of Soil and Water Conservation73(6), 145A-152A. Link to source: https://doi.org/10.2489/jswc.73.6.145A

Lessmann, M., Ros, G. H., Young, M. D., & de Vries, W. (2022). Global variation in soil carbon sequestration potential through improved cropland management. Global Change Biology28(3), 1162–1177. https://doi.org/10.1111/gcb.15954

Luo, Z., Wang, E., & Sun, O. J. (2010). Can no-tillage stimulate carbon sequestration in agricultural soils? A meta-analysis of paired experiments. Agriculture, Ecosystems & Environment139(1), 224–231. https://doi.org/10.1016/j.agee.2010.08.006

Martínez-Mena, M., Carrillo-López, E., Boix-Fayos, C., Almagro, M., García Franco, N., Díaz-Pereira, E., Montoya, I., & De Vente, J. (2020). Long-term effectiveness of sustainable land management practices to control runoff, soil erosion, and nutrient loss and the role of rainfall intensity in Mediterranean rainfed agroecosystems. CATENA, 187, 104352. Link to source: https://doi.org/10.1016/j.catena.2019.104352

Moukanni, N., Brewer, K. M., Gaudin, A. C. M., & O’Geen, A. T. (2022). Optimizing carbon sequestration through cover cropping in Mediterranean agroecosystems: Synthesis of mechanisms and implications for management. Frontiers in Agronomy, 4, 844166. Link to source: https://doi.org/10.3389/fagro.2022.844166 

Mrabet, R., Singh, A., Sharma, T., Kassam, A., Friedrich, T., Basch, G., Moussadek, R., & Gonzalez-Sanchez, E. (2023). Conservation Agriculture: Climate Proof and Nature Positive Approach. In G. Ondrasek & L. Zhang (Eds.), Resource management in agroecosystems. IntechOpen. Link to source: https://doi.org/10.5772/intechopen.108890

Nyagumbo, I., Mupangwa, W., Chipindu, L., Rusinamhodzi, L., & Craufurd, P. (2020). A regional synthesis of seven-year maize yield responses to conservation agriculture technologies in Eastern and Southern Africa. Agriculture, Ecosystems & Environment, 295, 106898. Link to source: https://doi.org/10.1016/j.agee.2020.106898

Ogle, S. M., Alsaker, C., Baldock, J., Bernoux, M., Breidt, F. J., McConkey, B., Regina, K., & Vazquez-Amabile, G. G. (2019). Climate and Soil Characteristics Determine Where No-Till Management Can Store Carbon in Soils and Mitigate Greenhouse Gas Emissions. Scientific Reports9(1), 11665. https://doi.org/10.1038/s41598-019-47861-7

Paustian, K., Larson, E., Kent, J., Marx, E., & Swan, A. (2019). Soil C Sequestration as a Biological Negative Emission Strategy. Frontiers in Climate, 1, 8. Link to source: https://doi.org/10.3389/fclim.2019.00008 

Pittelkow, C. M., Liang, X., Linquist, B. A., van Groenigen, K. J., Lee, J., Lundy, M. E., van Gestel, N., Six, J., Venterea, R. T., & van Kessel, C. (2015). Productivity limits and potentials of the principles of conservation agriculture. Nature, 51, 365–368. https://doi.org/10.1038/nature13809

Poeplau, C., & Don, A. (2015). Carbon sequestration in agricultural soils via cultivation of cover crops–A meta-analysis. Agriculture, Ecosystems & Environment200, 33–41. Link to source: https://doi.org/10.1016/j.agee.2014.10.024

Powlson, D. S., Stirling, C. M., Jat, M. L., Gerard, B. G., Palm, C. A., Sanchez, P. A., & Cassman, K. G. (2014). Limited potential of no-till agriculture for climate change mitigation. Nature Climate Change4(8), 678–683. https://doi.org/10.1038/nclimate2292

Prestele, R., Hirsch, A. L., Davin, E. L., Seneviratne, S. I., & Verburg, P. H. (2018). A spatially explicit representation of conservation agriculture for application in global change studies. Global Change Biology24(9), 4038–4053. https://doi.org/10.1111/gcb.14307

Project Drawdown (2020) Farming Our Way Out of the Climate Crisis. Project Drawdown. https://drawdown.org/publications/farming-our-way-out-of-the-climate-crisis

Quintarelli, V., Radicetti, E., Allevato, E., Stazi, S. R., Haider, G., Abideen, Z., Bibi, S., Jamal, A., & Mancinelli, R. (2022). Cover crops for sustainable cropping systems: A review. Agriculture12(12), 2076. Link to source: https://doi.org/10.3390/agriculture12122076

Searchinger, T., R. Waite, C. Hanson, and J. Ranganathan. (2019). World Resources Report: Creating a Sustainable Food Future. Washington, DC: World Resources Institute. Link to source: https://research.wri.org/sites/default/files/2019-07/WRR_Food_Full_Report_0.pdf

Stavi, I., Bel, G., & Zaady, E. (2016). Soil functions and ecosystem services in conventional, conservation, and integrated agricultural systems. A review. Agronomy for Sustainable Development, 36(2), 32. Link to source: https://doi.org/10.1007/s13593-016-0368-8

Su, Y., Gabrielle, B., Beillouin, D., & Makowski, D. (2021). High probability of yield gain through conservation agriculture in dry regions for major staple crops. Scientific Reports, 11(1), 3344. Link to source: https://doi.org/10.1038/s41598-021-82375-1

Sun, W., Canadell, J. G., Yu, L., Yu, L., Zhang, W., Smith, P., Fischer, T., & Huang, Y. (2020). Climate drives global soil carbon sequestration and crop yield changes under conservation agriculture. Global Change Biology, 26(6), 3325–3335. Link to source: https://doi.org/10.1111/gcb.15001 

Tambo, J. A., & Mockshell, J. (2018). Differential impacts of conservation agriculture technology options on household income in sub-Saharan Africa. Ecological Economics, 151, 95–105. Link to source: https://doi.org/10.1016/j.ecolecon.2018.05.005

Tiefenbacher, A., Sandén, T., Haslmayr, H.-P., Miloczki, J., Wenzel, W., & Spiegel, H. (2021). Optimizing carbon sequestration in croplands: A synthesis. Agronomy, 11(5), 882. Link to source: https://doi.org/10.3390/agronomy11050882

Toensmeier, E. (2016). The Carbon Farming Solution: A Global Toolkit of Perennial Crops and Regenerative Agriculture Practices for Climate Change Mitigation and Food Security. Green Publishing. Link to source: https://www.chelseagreen.com/product/the-carbon-farming-solution/?srsltid=AfmBOoqsMoY569HfsXOdBsRguOzsDLlRZKOnyM4nyKwZoIALvPoohZlq 

Vendig, I., Guzman, A., De La Cerda, G., Esquivel, K., Mayer, A. C., Ponisio, L., & Bowles, T. M. (2023). Quantifying direct yield benefits of soil carbon increases from cover cropping. Nature Sustainability6(9), 1125–1134. https://doi.org/10.1038/s41893-023-01131-7

WCCA (2021). The future of farming: Profitable and sustainable farming with conservation agriculture. 8th World Congress on Conservation Agriculture, Vern Switzerland. Link to source: https://ecaf.org/8wcca

Wooliver, R., & Jagadamma, S. (2023). Response of soil organic carbon fractions to cover cropping: A meta-analysis of agroecosystems. Agriculture, Ecosystems & Environment351, 108497. https://doi.org/10.1016/j.agee.2023.108497

Xing, Y., & Wang, X. (2024). Impact of agricultural activities on climate change: a review of greenhouse gas emission patterns in field crop systems. Plants13(16), 2285. Link to source: https://doi.org/10.3390/plants13162285

Credits

Lead Fellows

  • Avery Driscoll

  • Erika Luna

  • Megan Matthews, Ph.D.

  • Eric Toensmeier

  • Aishwarya Venkat, Ph.D.

Contributors

  • Ruthie Burrows, Ph.D.

  • James Gerber, Ph.D.

  • Yusuf Jameel, Ph.D.

  • Daniel Jasper

  • Alex Sweeney

Internal Reviewers

  • Aiyana Bodi

  • Emily Cassidy, Ph.D.

  • James Gerber, Ph.D.

  • Hannah Henkin

  • Zoltan Nagy, Ph.D.

  • Ted Otte

  • Paul C. West, Ph.D.

Effectiveness

Based on seven reviews and meta-analyses, which collectively analyzed over 500 studies, we estimate that this solution’s SOC sequestration potential is 1.28 t CO₂‑eq/ha/yr. This is limited to the topsoil (>30 cm), with minimal effects at deeper levels (Sun et al., 2020; Tiefenbacher et al., 2021). Moreover, carbon sequestration potential is not constant over time. The first two decades show the highest increase, followed by an equilibrium or SOC saturation (Cai, 2022; Sun et al., 2020).

The effectiveness of the Improve Annual Cropping solution heavily depends on local geographic conditions (e.g., soil properties, climate), crop management practices, cover crop biomass, cover crop types, and the duration of annual cropping production – with effects typically better assessed in the long term (Abdalla et al., 2019; Francaviglia et al., 2023; Moukanni et al., 2022; Paustian et al., 2019).

Based on reviewed literature (three papers, 18 studies), we estimated that improved annual cropping can potentially reduce nitrous oxide emissions by 0.51 t CO₂‑eq/ha/yr (Table 1). Cover crops can increase direct nitrous oxide emissions by stimulating microbial activity, but – compared with conventional cropping – lower indirect emissions allow for reduced net nitrous oxide emissions from cropland (Abdalla et al., 2019). 

Nitrogen fertilizers drive direct nitrous oxide emissions, so genetic optimization of cover crops to increase nitrogen-use efficiencies and decrease nitrogen leaching could further improve mitigation of direct nitrous oxide emissions (Abdalla et al., 2019). 

left_text_column_width

Table 1. Effectiveness at reducing emissions and removing carbon.

Unit: t CO₂‑eq/ha/yr, 100-yr basis

25th percentile 0.29
Median (50th percentile) 0.51
75th percentile 0.80

Unit: t CO₂‑eq/ha/yr, 100-yr basis

25th percentile 0.58
Median (50th percentile) 1.28
75th percentile 1.72

Unit: t CO₂‑eq/ha/yr, 100-yr basis

25th percentile 0.87
Median (50th percentile) 1.79
75th percentile 2.52
Left Text Column Width
Cost

Because baseline (conventional) annual cropping systems are already extensive and well established, we assume there is no cost to establish new baseline cropland. In the absence of global datasets on costs and revenues of cropping systems, we used data on the global average profit per ha of cropland from Damania et al. (2023) to create a weighted average profit of US$76.86/ha/yr.

Based on 13 data points (of which seven were from the United States), the median establishment cost of the Improve Annual Cropping solution is $329.78/ha. Nine data points (three from the United States) provided a median increase in profitability of US$86.01/ha/yr. 

The net net cost of the Improve Annual Cropping solution is US$86.01. The cost per t CO₂‑eq is US$47.80 (Table 2).

left_text_column_width

Table 2. Cost per unit climate impact.

Unit: 2023 US$/t CO₂‑eq, 100-yr basis

Median 47.80
Left Text Column Width
Learning Curve

We found limited information on this solution’s learning curve. A survey of farmers in Zambia found a reluctance to avoid tilling soils because of the increased need for weeding or herbicides and because crop residues may need to be used for livestock feed (Arslan et al., 2015; Searchinger et al., 2019).

left_text_column_width
Speed of Action

Speed of action refers to how quickly a climate solution physically affects the atmosphere after it is deployed. This is different from speed of deployment, which is the pace at which solutions are adopted.

At Project Drawdown, we define the speed of action for each climate solution as emergency brake, gradual, or delayed.

Improve Annual Cropping is a DELAYED climate solution. It works more slowly than gradual or emergency brake solutions. Delayed solutions can be robust climate solutions, but it’s important to recognize that they may not realize their full potential for some time.

left_text_column_width
Caveats

As with other biosequestration solutions, carbon stored in soils via improved annual cropping is not permanent. It can be lost quickly through a return to conventional agriculture practices like plowing, and/or through a regional shift to a drier climate or other human- or climate change–driven disturbances. Carbon sequestration also only continues for a limited time, estimated at 20–50 years (Lal et al., 2018)).

left_text_column_width
Current Adoption

Kassam et al. (2022) provided regional adoption from 2008–2019. We used a linear forecast to project 2025 adoption. This provided a figure of 267.4 Mha in 2025 (Table 3). Note that in Solution Basics in the dashboard we set current adoption at zero. This is a conservative assumption to avoid counting carbon sequestration from land that has already ceased to sequester net carbon due to saturation, which takes place after 20–50 years (Lal et al., 2018).

left_text_column_width

Table 3. Current (2025) adoption level.

Unit: Mha of improved annual cropping

Estimate 267.4
Left Text Column Width
Adoption Trend

Between 2008–2009 and 2018–2019 (the most recent data available), the cropland area under improved annual cropping practices nearly doubled globally, increasing from 10.6 Mha to 20.5 Mha at an average rate of 1.0 Mha/yr (Kassam et al., 2022), equivalent to a 9.2% annual increase in area relative to 2008–2009 levels. Adoption slowed slightly in the latter half of the decade, with an average increase of 0.8 Mha/yr between 2015–2016 and 2018–2019, equivalent to 4.6% annual increase in area relative to 2015–2016 levels, as shown in Table 4.

left_text_column_width

Table 4. 2008–2009 to 2018–2019 adoption trend.

Unit: Mha adopted/yr

Mean 9.99
Left Text Column Width
Adoption Ceiling

Griscom et al. (2017) estimate that 800 Mha of global cropland are suitable – but not yet used for – cover cropping, in addition to 168 Mha already in cover crops (Popelau and Don, 2015). We update the 168 Mha in cover crops to 267 Mha based on Kassam (2022). Griscom et al.’s estimate is based on their analysis that much cropland is unsuitable because it already is used to produce crops during seasons in which cover crops would be grown. Their estimate thus provides a maximum technical potential of 1,067 Mha  by adding 800 Mha of remaining potential to the 267.4 Mha of current adoption (Table 5). 

left_text_column_width

Table 5. Adoption ceiling.

Unit: Mha

Adoption ceiling 1,067
Left Text Column Width
Achievable Adoption

The 8th World Congress on Conservation Agriculture (8WCCA) set a goal to achieve adoption of improved annual cropping on 50% of available cropland by 2050 (WCCA 2021). That provides an Achievable – High of 700 Mha – though this is not a biophysical limit. 

We used the 2008–2019 data from Kassam (2022) to calculate average annual regional growth rates. From these we selected the 25th percentile as our low achievable level (Table 6).

left_text_column_width

Table 6. Range of achievable adoption levels.

Unit: Mha

Current adoption 267.4
Achievable – low 331.7
Achievable – high 700.0
Adoption ceiling 1,067

Unit: Mha installed

Current adoption 0.00
Achievable – low 64.2
Achievable – high 432.6
Adoption ceiling 868.6
Left Text Column Width

Carbon sequestration continues only for a period of decades; because adoption of improved annual cropping was already underway in the 1970s (Kassam et al., 2022), we could not assume that previously adopted hectares continue to sequester carbon indefinitely. Much of the current adoption of improved annual cropping has been in place for decades and sequestration in some of this land has presumably already slowed down to almost zero. We apply an adoption adjustment factor of 0.5 to current adoption (see methodology) to reflect that an estimated half of current adoption is no longer sequestering significant carbon, yet there is substantial new adoption within the last 20-50 years.

For new adoption, the calculation is effectiveness * new adoption = climate impact.

For calculating impact of current adoption, the calculation is the sum of and where:

a:  for carbon sequestration, the calculation is effectiveness * 0.5 * current adoption = climate impact, and

b: for nitrous oxide reduction, the calculation is effectiveness * current adoption = climate impact.

Climate impacts shown in Table 6 are the sum of current and new adoption impacts. Combined effect is 0.31 Gt CO2-eq/yr for current adoption, 0.43 for Achievable – Low, 1.09 for Achievable – High, and 1.87 for our Adoption Ceiling.

left_text_column_width

Table 8. Climate impact at different levels of adoption.

Unit: Gt CO₂ ‑eq/yr, 100-yr basis

Current adoption 0.14
Achievable – low 0.17
Achievable – high 0.36
Adoption ceiling 0.58

(from nitrous oxide)

Unit: Gt CO₂ ‑eq/yr, 100-yr basis

Current adoption 0.17
Achievable – low 0.25
Achievable – high 0.73
Adoption ceiling 1.29

(from SOC)

Unit: Gt CO₂ ‑eq/yr, 100-yr basis

Current adoption 0.31
Achievable – low 0.43
Achievable – high 1.09
Adoption ceiling 1.87
Left Text Column Width
Additional Benefits

Extreme Weather Events

The soil and water benefits of this solution can lead to agricultural systems that are more resilient to extreme weather events (Mrabet et al., 2023). These agricultural systems have improved uptake, conservation, and use of water, so they are more likely to successfully cope and adapt to drought, dry conditions, and other adverse weather events (Su et al., 2021). Additionally, more sustained year-round plant cover can increase the capacity of cropping systems to adapt to high temperatures and extreme rainfall (Blanco-Canqui & Francis, 2016; Martínez-Mena et al., 2020).

Droughts

Increased organic matter due to improved annual cropping increases soil water holding capacity. This increases drought resilience (Su et al., 2021). 

Income and Work

Conservation agriculture practices can reduce costs on fuel, fertilizer, and pesticides (Stavi et al., 2016). The highest revenues from improved annual cropping are often found in drier climates. Tambo et al. (2018) found when smallholder farmers in sub-Saharan Africa jointly employed the three aspects of conservation agriculture – reduced tillage, cover crops, and crop rotation – households and individuals saw the largest income gains. Nyagumbo et al. (2020) found that smallholder farms in sub-Saharan Africa using conservation agriculture had the highest returns on crop yields when rainfall was low. 

Food Security

Improved annual cropping can improve food security by increasing the amount and the stability of crop yields. A meta-analysis of studies of South Asian cropping systems found that those following conservation agriculture methods had 5.8% higher mean yield than cropping systems with more conventional agriculture practices (Jat et al., 2020). Evidence supports that conservation agriculture practices especially improve yields in water scarce areas (Su et al., 2021). Nyagumbo et al. (2020) found that smallholder farmers in sub-Saharan Africa experienced reduced yield variability when using conservation agriculture practices.

Nature Protection

Improved annual cropping can increase biodiversity below and above soils (Mrabet et al., 2023). Increased vegetation cover improves habitats for arthropods, which help with pest and pathogen management (Stavi et al., 2016).

Land Resources

Improved annual cropping methods can lead to improved soil health through increased stability of soil structure, increased soil nutrients, and improved soil water storage (Francaviglia et al., 2023). This can reduce soil degradation and erosion (Mrabet et al., 2023). Additionally, more soil organic matter can lead to additional microbial growth and nutrient availability for crops (Blanco-Canqui & Francis, 2016). 

Water Quality

Runoff of soil and other agrochemicals can be minimized through conservation agricultural practices, reducing the amount of nitrate and phosphorus that leach into waterways and contribute to algal blooms and eutrophication (Jayaraman et al., 2021). Abdalla et al. (2019) found that cover crops reduced nitrogen leaching.

left_text_column_width
Risks

Herbicides – in place of tillage – are used in many but not all no-till cropping systems to kill (terminate) the cover crop. The large-scale use of herbicides in improved annual cropping systems can produce a range of environmental and human health consequences. Agricultural impacts can include development of herbicide-resistant weeds (Clapp, 2021). 

If cover crops are not fully terminated before establishing the main crop, there is a risk that cover crops can compete with the main crop (Quintarelli et al., 2022). 

left_text_column_width
Interactions with Other Solutions

Improved annual cropping has competing interactions with several other solutions related to shifting annual practices. For each of these other solutions, the Improve Annual Cropping solution can reduce the area on which the solution can be applied or the nutrient excess available for improved management. 

left_text_column_width

COMPETING

In no-till systems, cover crops are typically terminated with herbicides, often preventing incorporation of trees depending on the type of herbicide used.

left_text_column_width

Land managed under the Improve Annual Cropping solution is not available for perennial crops.

left_text_column_width

Improved annual cropping typically reduces fertilizer demand, reducing the scale of climate impact under improved nutrient management. 

left_text_column_width

Our definition of improved annual cropping requires residue retention, limiting the additional area available for deployment of reduced burning.

left_text_column_width
Dashboard

Solution Basics

ha cropland

t CO₂-eq (100-yr)/unit/yr
00.881.8
units
Current 2.674×10⁸ 03.317×10⁸7.0×10⁸
Achievable (Low to High)

Climate Impact

Gt CO₂-eq (100-yr)/yr
Current 0.31 0.431.09
US$ per t CO₂-eq
48
Delayed

CO₂, N₂O

Trade-offs

Some studies have found that conservation tillage without cover crops can reduce soil carbon stocks in deeper soil layers. They caution against overreliance on no-till as a sequestration solution in the absence of cover cropping. Reduced tillage should be combined with cover crops to ensure carbon sequestration (Luo et al., 2010; Ogle et al., 2019; Powlson et al., 2014).

left_text_column_width
t CO2-eq/ha
0≥ 400

Thousands of years of agricultural land use have removed nearly 500 Gt CO2-eq from soils

Agriculture has altered the soil carbon balance around the world, resulting in changes (mostly losses) of soil carbon. Much of the nearly 500 Gt CO2-eq lost in the last 12,000 years is now in the atmosphere in the form of CO2.

Sanderman, J. et al. (2017). The soil carbon debt of 12,000 years of human land use [Data set]. PNAS 114(36): 9575–9580. Link to source: https://doi.org/10.1073/pnas.1706103114

t CO2-eq/ha
0≥ 400

Thousands of years of agricultural land use have removed nearly 500 Gt CO2-eq from soils

Agriculture has altered the soil carbon balance around the world, resulting in changes (mostly losses) of soil carbon. Much of the nearly 500 Gt CO2-eq lost in the last 12,000 years is now in the atmosphere in the form of CO2.

Sanderman, J. et al. (2017). The soil carbon debt of 12,000 years of human land use [Data set]. PNAS 114(36): 9575–9580. Link to source: https://doi.org/10.1073/pnas.1706103114

Maps Introduction

Adoption of this solution varies substantially across the globe. Currently, improved annual cropping practices are widely implemented in Australia and New Zealand (74% of annual cropland) and Central and South America (69%), with intermediate adoption in North America (34%) and low adoption in Asia, Europe, and Africa (1–5%) (Kassam et al., 2022), though estimates vary (see also Prestele et al., 2018). Future expansion of this solution is most promising in Asia, Africa, and Europe, where adoption has increased in recent years. Large areas of croplands are still available for implementation in these regions, whereas Australia, New Zealand, and Central and South America may be reaching a saturation point, and these practices may be less suitable for the relatively small area of remaining croplands.

The carbon sequestration effectiveness of this solution also varies across space. Drivers of soil carbon sequestration rates are complex and interactive, with climate, initial soil carbon content, soil texture, soil chemical properties (such as pH), and other land management practices all influencing the effectiveness of adopting this solution. Very broadly, the carbon sequestration potential of improved annual cropping tends to be two to three times higher in warm areas than cool areas (Bai et al., 2019; Cui et al., 2024; Lessmann et al., 2022). Warm and humid conditions enable vigorous cover crop growth, providing additional carbon inputs into soils. Complicating patterns of effectiveness, however, arid regions often experience increased crop yields following adoption of this solution whereas humid regions are more likely to experience yield losses (Pittelkow et al., 2015). Yield losses may reduce adoption in humid areas and can lead to cropland expansion to compensate for lower production. 

Uptake of this solution may be constrained by spatial variation in places where cover cropping is suitable. In areas with double or triple cropping, there may not be an adequate interval for growth of a cover crop between harvests. In areas with an extended dry season, there may be inadequate moisture to grow a cover crop.

Action Word
Improve
Solution Title
Annual Cropping
Classification
Highly Recommended
Lawmakers and Policymakers
  • Provide local and regional institutional guidance for improving annual cropping that adapts to the socio-environmental context.
  • Integrate soil protection into national climate mitigation and adaptation plans.
  • Remove financial incentives, such as subsidies, for unsustainable practices and replace them with financial incentives for carbon sequestration practices.
  • Place taxes or fines on emissions and related farm inputs (such as nitrogen fertilizers).
  • Reform international agricultural trade, remove subsidies for emissions-intensive agriculture, and support climate-friendly practices.
  • Strengthen and support land tenure for smallholder farmers.
  • Mandate insurance schemes that allow farmers to use cover crops and reduce tillage.
  • Support, protect, and promote traditional and Indigenous knowledge of land management practices.
  • Set standards for measuring, monitoring, and verifying impacts on SOC accounting for varying socio-environmental conditions.
  • Develop economic budgets for farmers to adopt these practices.
  • Invest in or expand extension services to educate farmers and other stakeholders on the economic and environmental benefits of improved annual cropping.
  • Create, support, or join education campaigns and/or public-private partnerships that facilitate stakeholder discussions.
Practitioners
  • Implement no-till practices and use cover crops.
  • Utilize or advocate for financial assistance and tax breaks for farmers to use improved annual cropping techniques.
  • Adjust the timing and dates of the planting and termination of the cover crops in order to avoid competition for resources with the primary crop.
  • Find opportunities to reduce initial operation costs of no-tillage and cover crops, such as selling cover crops as forage or grazing.
  • Take advantage of education programs, support groups, and extension services focused on improved annual cropping methods.
  • Create, support, or join stakeholder discussions, especially around standardized monitoring frameworks, ROI, and climate benefits.
Business Leaders
  • Source from producers implementing improved annual cropping practices, create programs that directly engage and educate farmers, and promote inspiring case studies with the industry and wider public.
  • Create sustainability goals and supplier requirements that incorporate this solution and offer pricing incentives for compliant suppliers.
  • Invest in companies that utilize improved annual cropping techniques or produce the necessary inputs.
  • Promote and develop markets for products that employ improved annual cropping techniques and educate consumers about the importance of the practice.
  • Stay abreast of recent scientific findings and use third-party verification to monitor sourcing practices.
  • Offer financial services – including low-interest loans, micro-financing, and grants – to support low-carbon agriculture (e.g., sustainable land management systems).
  • Support high-integrity carbon markets, institutions, rules, and norms to cultivate the demand for high-quality carbon credits.
  • Create, support, or join education campaigns and/or public-private partnerships that facilitate stakeholder discussions, especially around standardized monitoring frameworks, ROI, and climate benefits.
Nonprofit Leaders
  • Start model farms to demonstrate techniques, conduct experiments, and educate local farmers.
  • Conduct and share research on improving annual cropping techniques and local policy options.
  • Advocate to policymakers for improving annual cropping techniques, incentives, and regulations.
  • Educate farmers on sustainable means of agriculture and support implementation.
  • Help integrate improved annual cropping practices as part of the broader climate agenda.
  • Engage with businesses to encourage corporate responsibility and/or monitor soil health.
  • Offer resources and training in financial planning and yield risk management to farmers adopting improved annual cropping approaches.
  • Partner with research institutions and businesses to co-develop and distribute region-specific best practices.
  • Create, support, or join stakeholder discussions, especially around standardized monitoring frameworks, ROI, and climate benefits.
Investors
  • Integrate science-based due diligence on improved annual cropping techniques and soil health measures into all farming and agritech investments.
  • Encourage companies in your investment portfolio to adopt improved annual cropping practices.
  • Offer access to capital, such as low-interest loans, micro-financing, and grants to improve annual cropping.
  • Invest in companies developing technologies that improve annual cropping, such as soil management equipment and related software.
  • Create, support, or join stakeholder discussions, especially around standardized monitoring frameworks, ROI, and climate benefits.
Philanthropists and International Aid Agencies
  • Start model farms to demonstrate techniques, conduct experiments, and educate local farmers.
  • Offer access to capital, such as low-interest loans, micro-financing, and grants to support improving annual cropping, (e.g., traditional land management).
  • Conduct and share research on improved annual cropping techniques and local policy options.
  • Advocate to policymakers for improved annual cropping techniques, incentives, and regulations.
  • Educate farmers on traditional means of agriculture and support implementation.
  • Help integrate improved annual cropping practices as part of the broader climate agenda.
  • Engage with businesses to encourage corporate responsibility and/or monitor soil health.
  • Offer resources and training in financial planning and yield risk management to farmers adopting improved annual cropping approaches.
  • Partner with research institutions and businesses to co-develop and distribute region-specific best practices.
  • Create, support, or join stakeholder discussions, especially around standardized monitoring frameworks, ROI, and climate benefits.
  • Invest in companies developing technologies that improve annual cropping, such as soil management equipment and related software.
Thought Leaders
  • Start model farms to demonstrate techniques, conduct experiments, and educate local farmers.
  • Conduct and share research on improved annual cropping techniques and local policy options.
  • Advocate to policymakers for improved annual cropping techniques, incentives, and regulations.
  • Educate farmers on traditional means of agriculture and support implementation.
  • Engage with businesses to encourage corporate responsibility and/or monitor soil health.
  • Research the regional impacts of cover crops on SOC and SOM and publish the data.
  • Partner with research institutions and businesses to co-develop and distribute region-specific best practices.
  • Create, support, or join stakeholder discussions, especially around standardized monitoring frameworks, ROI, and climate benefits.
  • Work with farmers and other private organizations to improve data collection on uptake of improved annual cropping techniques, effectiveness, and regional best practices.
Technologists and Researchers
  • Help develop standards for measuring, monitoring, and verifying impacts on SOC accounting for varying socio-environmental conditions.
  • Research the regional impacts of cover crops (particularly outside the United States) on SOC and SOM, and publish the data.
  • Create tracking and monitoring software to support farmers' decision-making.
  • Research the application of AI and robotics for crop rotation.
  • Improve data and analytics to monitor soil and water quality, assist farmers, support policymaking, and assess the impacts of policies.
  • Develop education and training applications to improve annual cropping techniques and provide real-time feedback.
Communities, Households, and Individuals
  • Participate in urban agriculture or community gardening programs that implement these practices.
  • Engage with businesses to encourage corporate responsibility and/or monitor soil health.
  • Work with farmers and other private organizations to improve data collection on uptake of improved annual cropping techniques, effectiveness, and regional best practices.
  • Advocate to policymakers for improved annual cropping techniques, incentives, and regulations.
  • Start model farms to demonstrate techniques, conduct experiments, and educate local farmers.
  • Educate farmers on traditional means of agriculture and support implementation.
  • Create, support, or join stakeholder discussions, especially around standardized monitoring frameworks, ROI, and climate benefits.
Evidence Base

Consensus of effectiveness of cover cropping for sequestering carbon: 

The impacts of improved annual cropping practices on soil carbon sequestration have been extensively studied, and there is high consensus that adoption of cover crops can increase carbon sequestration in soils. However, estimates of how much carbon can be sequestered vary substantially, and sequestration rates are strongly influenced by factors such as climate, soil properties, time since adoption, and how the practices are implemented.

The carbon sequestration benefits of cover cropping are well established. They have been documented in reviews and meta-analyses including Hu et al. (2023) and Vendig et al. (2023). 

Consensus of effectiveness of reduced tillage for sequestering carbon: Mixed

Relative to conventional tillage, estimates of soil carbon gains in shallow soils under no-till management include average increases of 5–20% (Bai et al., 2019; Cui et al., 2024; Kan et al., 2022). Lessmann et al. (2022) estimated that use of no-till is associated with an average annual increase in carbon sequestration of 0.88 t CO₂‑eq /ha/yr relative to high-intensity tillage. 

Nitrous oxide reduction: Mixed

Consensus on nitrous oxide reductions from improved annual cropping is mixed. Several reviews have demonstrated a modest reduction in nitrous oxide from cover cropping (Abdalla et al., 2019; Xing & Wang, 2024). Reduced tillage can result in either increased or decreased nitrous oxide emissions (Hassan et al., 2022). 

The results presented in this document summarize findings from 10 reviews and meta-analyses reflecting current evidence at the global scale. Nonetheless, not all countries are represented. We recognize this limited geographic scope creates bias, and hope this work inspires research and data sharing on this topic in underrepresented regions.

left_text_column_width
Updated Date

Improve Nutrient Management

Image
Image
Farm equipment applying fertilizer selectively
Coming Soon
Off
Summary

We define the Improve Nutrient Management solution as reducing excessive nitrogen use on croplands. Nitrogen is critical for crop production and is added to croplands as synthetic or organic fertilizers and through microbial activity. However, farmers often add more nitrogen to croplands than crops can use. Some of that excess nitrogen is emitted to the atmosphere as nitrous oxide, a potent GHG. 

Description for Social and Search
Improve Nutrient Management is a Highly Recommended climate solution. Wise use of fertilizers reduces GHG emissions while ensuring crops get nutrients they need.
Overview

Agriculture is the dominant source of human-caused emissions of nitrous oxide (Tian et al., 2020). Nitrogen is critical for plant growth and is added to croplands in synthetic forms, such as urea, ammonium nitrate, or anhydrous ammonia; in organic forms, such as manure or compost; and by growing legume crops, which host microbes that capture nitrogen from the air and add it to the soil (Adalibieke et al., 2023; Ludemann et al., 2024). If more nitrogen is added than crops can use, the excess can be converted to other forms, including nitrous oxide, through microbial processes called denitrification and nitrification (Figure 1; Reay et al., 2012).

Figure 1. The agricultural nitrogen cycle represents the key pathways by which nitrogen is added to croplands and lost to the environment, including as nitrous oxide. The “4R” nutrient management principles – right source, right rate, right time, right place – increase the proportion of nitrogen taken up by the plant, therefore reducing nitrogen losses to the environment.

Image
Diagram of agricultural nitrogen cycle.

Illustrations: BioRender CC-BY 4.0

Farmers can reduce nitrous oxide emissions from croplands by using the right amount and the right type of fertilizer at the right time and in the right place (Fixen, 2020; Gao & Cabrera Serrenho, 2023). Together, these four “rights” increase nitrogen use efficiency – the proportion of applied nitrogen that the crop uses (Congreves et al., 2021). Improved nutrient management is often a win-win for the farmer and the environment, reducing fertilizer costs while also lowering nitrous oxide emissions (Gu et al., 2023).

Improving nutrient management involves reducing the amount of nitrogen applied to match the crop’s requirements in areas where nitrogen is currently overapplied. A farmer can implement the other three principles – type, time, and place – in a number of ways. For example, fertilizing just before planting instead of after the previous season’s harvest better matches the timing of nitrogen addition to that of plant uptake, reducing nitrous oxide emissions before the crop is planted. Certain types of fertilizers are better suited for maximizing plant uptake, such as extended-release fertilizers, which allow the crop to steadily absorb nutrients over time. Techniques such as banding, in which farmers apply fertilizers in concentrated bands close to the plant roots instead of spreading them evenly across the soil surface, also reduce nitrous oxide emissions. Each of these practices can increase nitrogen use efficiency and decrease the amount of excess nitrogen lost as nitrous oxide (Gao & Cabrera Serrenho, 2023; Gu et al., 2023; Wang et al., 2024; You et al., 2023).

For this solution, we estimated a target rate of nitrogen application for major crops as the 20th percentile of the current rate of nitrogen application (in t N/t crop) in areas where yields are near a realistic ceiling. Excess nitrogen was defined as the amount of nitrogen applied beyond the target rate (see Adoption and Appendix for more details). Our emissions estimates include nitrous oxide from croplands, fertilizer runoff, and fertilizer volatilization. They do not include emissions from fertilizer manufacturing, which are addressed in the Deploy Low-Emission Industrial Feedstocks and Boost Industrial Efficiency solutions. We excluded nutrient management on pastures from this solution due to data limitations and address nutrient management in paddy rice systems in the Improve Rice Production solution instead. 

Adalibieke, W., Cui, X., Cai, H., You, L., & Zhou, F. (2023). Global crop-specific nitrogen fertilization dataset in 1961–2020. Scientific Data10(1), 617. Link to source: https://doi.org/10.1038/s41597-023-02526-z

Almaraz, M., Bai, E., Wang, C., Trousdell, J., Conley, S., Faloona, I., & Houlton, B. Z. (2018). Agriculture is a major source of NOx pollution in California. Science Advances4(1), eaao3477. Link to source: https://doi.org/10.1126/sciadv.aao3477

Antil, R. S., & Raj, D. (2020). Integrated nutrient management for sustainable crop production and improving soil health. In R. S. Meena (Ed.), Nutrient Dynamics for Sustainable Crop Production (pp. 67–101). Springer. Link to source: https://doi.org/10.1007/978-981-13-8660-2_3

Bijay-Singh, & Craswell, E. (2021). Fertilizers and nitrate pollution of surface and ground water: An increasingly pervasive global problem. SN Applied Sciences3(4), 518. Link to source: https://doi.org/10.1007/s42452-021-04521-8

Chivenge, P., Saito, K., Bunquin, M. A., Sharma, S., & Dobermann, A. (2021). Co-benefits of nutrient management tailored to smallholder agriculture. Global Food Security30, 100570. Link to source: https://doi.org/10.1016/j.gfs.2021.100570

Deng, J., Guo, L., Salas, W., Ingraham, P., Charrier-Klobas, J. G., Frolking, S., & Li, C. (2018). Changes in irrigation practices likely mitigate nitrous oxide emissions from California cropland. Global Biogeochemical Cycles32(10), 1514–1527. Link to source: https://doi.org/10.1029/2018GB005961

Domingo, N. G. G., Balasubramanian, S., Thakrar, S. K., Clark, M. A., Adams, P. J., Marshall, J. D., Muller, N. Z., Pandis, S. N., Polasky, S., Robinson, A. L., Tessum, C. W., Tilman, D., Tschofen, P., & Hill, J. D. (2021). Air quality–related health damages of food. Proceedings of the National Academy of Sciences118(20), e2013637118. Link to source: https://doi.org/10.1073/pnas.2013637118

Elberling, B. B., Kovács, G. M., Hansen, H. F. E., Fensholt, R., Ambus, P., Tong, X., Gominski, D., Mueller, C. W., Poultney, D. M. N., & Oehmcke, S. (2023). High nitrous oxide emissions from temporary flooded depressions within croplands. Communications Earth & Environment4(1), 1–9. Link to source: https://doi.org/10.1038/s43247-023-01095-8

Fixen, P. E. (2020). A brief account of the genesis of 4R nutrient stewardship. Agronomy Journal112(5), 4511–4518. Link to source: https://doi.org/10.1002/agj2.20315

Foley, J. A., Ramankutty, N., Brauman, K. A., Cassidy, E. S., Gerber, J. S., Johnston, M., Mueller, N. D., O’Connell, C., Ray, D. K., West, P. C., Balzer, C., Bennett, E. M., Carpenter, S. R., Hill, J., Monfreda, C., Polasky, S., Rockström, J., Sheehan, J., Siebert, S., … Zaks, D. P. M. (2011). Solutions for a cultivated planet. Nature478(7369), 337–342. Link to source: https://doi.org/10.1038/nature10452

Gao, Y., & Cabrera Serrenho, A. (2023). Greenhouse gas emissions from nitrogen fertilizers could be reduced by up to one-fifth of current levels by 2050 with combined interventions. Nature Food4(2), 170–178. Link to source: https://doi.org/10.1038/s43016-023-00698-w

Gerber, J. S., Carlson, K. M., Makowski, D., Mueller, N. D., Garcia de Cortazar-Atauri, I., Havlík, P., Herrero, M., Launay, M., O’Connell, C. S., Smith, P., & West, P. C. (2016). Spatially explicit estimates of nitrous oxide emissions from croplands suggest climate mitigation opportunities from improved fertilizer management. Global Change Biology22(10), 3383–3394. Link to source: https://doi.org/10.1111/gcb.13341

Gerber, J. S., Ray, D. K., Makowski, D., Butler, E. E., Mueller, N. D., West, P. C., Johnson, J. A., Polasky, S., Samberg, L. H., & Siebert, S. (2024). Global spatially explicit yield gap time trends reveal regions at risk of future crop yield stagnation. Nature Food5(2), 125–135. Link to source: https://doi.org/10.1038/s43016-023-00913-8 

Gong, C., Tian, H., Liao, H., Pan, N., Pan, S., Ito, A., Jain, A. K., Kou-Giesbrecht, S., Joos, F., Sun, Q., Shi, H., Vuichard, N., Zhu, Q., Peng, C., Maggi, F., Tang, F. H. M., & Zaehle, S. (2024). Global net climate effects of anthropogenic reactive nitrogen. Nature632(8025), 557–563. Link to source: https://doi.org/10.1038/s41586-024-07714-4

Gu, B., Zhang, X., Lam, S. K., Yu, Y., van Grinsven, H. J. M., Zhang, S., Wang, X., Bodirsky, B. L., Wang, S., Duan, J., Ren, C., Bouwman, L., de Vries, W., Xu, J., Sutton, M. A., & Chen, D. (2023). Cost-effective mitigation of nitrogen pollution from global croplands. Nature613(7942), 77–84. Link to source: https://doi.org/10.1038/s41586-022-05481-8

Hergoualc’h, K., Akiyama, H., Bernoux, M., Chirinda, N., del Prado, A., Kasimir, Å., MacDonald, J. D., Ogle, S. M., Regina, K., & van der Weerden, T. J. (2019). Chapter 11: nitrous oxide Emissions from managed soils, and CO2 emissions from lime and urea application (2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories). Intergovernmental Panel on Climate Change. https://www.ipcc-nggip.iges.or.jp/public/2019rf/pdf/4_Volume4/19R_V4_Ch11_Soils_nitrous oxide_CO2.pdf

Hergoualc’h, K., Mueller, N., Bernoux, M., Kasimir, Ä., van der Weerden, T. J., & Ogle, S. M. (2021). Improved accuracy and reduced uncertainty in greenhouse gas inventories by refining the IPCC emission factor for direct nitrous oxide emissions from nitrogen inputs to managed soils. Global Change Biology, 27(24), 6536–6550. Link to source: https://doi.org/10.1111/gcb.15884

IPCC, 2019. Summary for Policymakers. In: Climate Change and Land: an IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems [P.R. Shukla, J. Skea, E. Calvo Buendia, V. Masson-Delmotte, H.-O. Pörtner, D. C. Roberts, P. Zhai, R. Slade, S. Connors, R. van Diemen, M. Ferrat, E. Haughey, S. Luz, S. Neogi, M. Pathak, J. Petzold, J. Portugal Pereira, P. Vyas, E. Huntley, K. Kissick, M. Belkacemi, J. Malley, (eds.)].

Lam, S. K., Suter, H., Mosier, A. R., & Chen, D. (2017). Using nitrification inhibitors to mitigate agricultural nitrous oxide emission: A double-edged sword? Global Change Biology23(2), 485–489. Link to source: https://doi.org/10.1111/gcb.13338

Lawrence, N. C., Tenesaca, C. G., VanLoocke, A., & Hall, S. J. (2021). Nitrous oxide emissions from agricultural soils challenge climate sustainability in the US Corn Belt. Proceedings of the National Academy of Sciences118(46), e2112108118. Link to source: https://doi.org/10.1073/pnas.2112108118

Ludemann, C. I., Wanner, N., Chivenge, P., Dobermann, A., Einarsson, R., Grassini, P., Gruere, A., Jackson, K., Lassaletta, L., Maggi, F., Obli-Laryea, G., van Ittersum, M. K., Vishwakarma, S., Zhang, X., & Tubiello, F. N. (2024). A global FAOSTAT reference database of cropland nutrient budgets and nutrient use efficiency (1961–2020): Nitrogen, phosphorus and potassium. Earth System Science Data16(1), 525–541. Link to source: https://doi.org/10.5194/essd-16-525-2024

Menegat, S., Ledo, A., & Tirado, R. (2022). Greenhouse gas emissions from global production and use of nitrogen synthetic fertilisers in agriculture. Scientific Reports12(1), 14490. Link to source: https://doi.org/10.1038/s41598-022-18773-w

Michaelowa, A., Hermwille, L., Obergassel, W., & Butzengeiger, S. (2019). Additionality revisited: Guarding the integrity of market mechanisms under the Paris Agreement. Climate Policy19(10), 1211–1224. Link to source: https://doi.org/10.1080/14693062.2019.1628695

Mueller, N. D., Gerber, J. S., Johnston, M., Ray, D. K., Ramankutty, N., & Foley, J. A. (2012). Closing yield gaps through nutrient and water management. Nature490(7419), Article 7419. Link to source: https://doi.org/10.1038/nature11420

Patel, N., Srivastav, A. L., Patel, A., Singh, A., Singh, S. K., Chaudhary, V. K., Singh, P. K., & Bhunia, B. (2022). Nitrate contamination in water resources, human health risks and its remediation through adsorption: A focused review. Environmental Science and Pollution Research29(46), 69137–69152. Link to source: https://doi.org/10.1007/s11356-022-22377-2

Pinder, R. W., Davidson, E. A., Goodale, C. L., Greaver, T. L., Herrick, J. D., & Liu, L. (2012). Climate change impacts of US reactive nitrogen. Proceedings of the National Academy of Sciences109(20), 7671–7675. Link to source: https://doi.org/10.1073/pnas.1114243109

Porter, E. M., Bowman, W. D., Clark, C. M., Compton, J. E., Pardo, L. H., & Soong, J. L. (2013). Interactive effects of anthropogenic nitrogen enrichment and climate change on terrestrial and aquatic biodiversity. Biogeochemistry, 114(1), 93–120. Link to source: https://doi.org/10.1007/s10533-012-9803-3

Qiao, C., Liu, L., Hu, S., Compton, J. E., Greaver, T. L., & Li, Q. (2015). How inhibiting nitrification affects nitrogen cycle and reduces environmental impacts of anthropogenic nitrogen input. Global Change Biology, 21(3), 1249–1257. Link to source: https://doi.org/10.1111/gcb.12802

Qin, Z., Deng, S., Dunn, J., Smith, P., & Sun, W. (2021). Animal waste use and implications to agricultural greenhouse gas emissions in the United States. Environmental Research Letters16(6), 064079. Link to source: https://doi.org/10.1088/1748-9326/ac04d7

Reay, D. S., Davidson, E. A., Smith, K. A., Smith, P., Melillo, J. M., Dentener, F., & Crutzen, P. J. (2012). Global agriculture and nitrous oxide emissions. Nature Climate Change2(6), 410–416. Link to source: https://doi.org/10.1038/nclimate1458

Rockström, J., Williams, J., Daily, G., Noble, A., Matthews, N., Gordon, L., Wetterstrand, H., DeClerck, F., Shah, M., Steduto, P., de Fraiture, C., Hatibu, N., Unver, O., Bird, J., Sibanda, L., & Smith, J. (2017). Sustainable intensification of agriculture for human prosperity and global sustainability. Ambio46(1), 4–17. Link to source: https://doi.org/10.1007/s13280-016-0793-6

Rurinda, J., Zingore, S., Jibrin, J. M., Balemi, T., Masuki, K., Andersson, J. A., Pampolino, M. F., Mohammed, I., Mutegi, J., Kamara, A. Y., Vanlauwe, B., & Craufurd, P. Q. (2020). Science-based decision support for formulating crop fertilizer recommendations in sub-Saharan Africa. Agricultural Systems180, 102790. Link to source: https://doi.org/10.1016/j.agsy.2020.102790

Scavia, D., David Allan, J., Arend, K. K., Bartell, S., Beletsky, D., Bosch, N. S., Brandt, S. B., Briland, R. D., Daloğlu, I., DePinto, J. V., Dolan, D. M., Evans, M. A., Farmer, T. M., Goto, D., Han, H., Höök, T. O., Knight, R., Ludsin, S. A., Mason, D., … Zhou, Y. (2014). Assessing and addressing the re-eutrophication of Lake Erie: Central basin hypoxia. Journal of Great Lakes Research40(2), 226–246. Link to source: https://doi.org/10.1016/j.jglr.2014.02.004

Selim, M. M. (2020). Introduction to the integrated nutrient management strategies and their contribution to yield and soil properties. International Journal of Agronomy2020(1), 2821678. https://doi.org/10.1155/2020/2821678

Shcherbak, I., Millar, N., & Robertson, G. P. (2014). Global metaanalysis of the nonlinear response of soil nitrous oxide (nitrous oxide) emissions to fertilizer nitrogen. Proceedings of the National Academy of Sciences111(25), 9199–9204. Link to source: https://doi.org/10.1073/pnas.1322434111

Shindell, D. T., Faluvegi, G., Koch, D. M., Schmidt, G. A., Unger, N., & Bauer, S. E. (2009). Improved attribution of climate forcing to emissions. Science326(5953), 716–718. Link to source: https://doi.org/10.1126/science.1174760

Sobota, D. J., Compton, J. E., McCrackin, M. L., & Singh, S. (2015). Cost of reactive nitrogen release from human activities to the environment in the United States. Environmental Research Letters, 10(2), 025006. Link to source: https://doi.org/10.1088/1748-9326/10/2/025006

Tian, H., Xu, R., Canadell, J. G., Thompson, R. L., Winiwarter, W., Suntharalingam, P., Davidson, E. A., Ciais, P., Jackson, R. B., Janssens-Maenhout, G., Prather, M. J., Regnier, P., Pan, N., Pan, S., Peters, G. P., Shi, H., Tubiello, F. N., Zaehle, S., Zhou, F., … Yao, Y. (2020). A comprehensive quantification of global nitrous oxide sources and sinks. Nature586(7828), 248–256. Link to source: https://doi.org/10.1038/s41586-020-2780-0

van Grinsven, H. J. M., Bouwman, L., Cassman, K. G., van Es, H. M., McCrackin, M. L., & Beusen, A. H. W. (2015). Losses of ammonia and nitrate from agriculture and their effect on nitrogen recovery in the European Union and the United States between 1900 and 2050. Journal of Environmental Quality44(2), 356–367. Link to source: https://doi.org/10.2134/jeq2014.03.0102

Vanlauwe, B., Descheemaeker, K., Giller, K. E., Huising, J., Merckx, R., Nziguheba, G., Wendt, J., & Zingore, S. (2015). Integrated soil fertility management in sub-Saharan Africa: Unravelling local adaptation. SOIL1(1), 491–508. Link to source: https://doi.org/10.5194/soil-1-491-2015

Wang, C., Shen, Y., Fang, X., Xiao, S., Liu, G., Wang, L., Gu, B., Zhou, F., Chen, D., Tian, H., Ciais, P., Zou, J., & Liu, S. (2024). Reducing soil nitrogen losses from fertilizer use in global maize and wheat production. Nature Geoscience, 17(10), 1008–1015. Link to source: https://doi.org/10.1038/s41561-024-01542-x

Wang, Y., Li, C., Li, Y., Zhu, L., Liu, S., Yan, L., Feng, G., & Gao, Q. (2020). Agronomic and environmental benefits of Nutrient Expert on maize and rice in Northeast China. Environmental Science and Pollution Research27(22), 28053–28065. Link to source: https://doi.org/10.1007/s11356-020-09153-w

Ward, M. H., Jones, R. R., Brender, J. D., de Kok, T. M., Weyer, P. J., Nolan, B. T., Villanueva, C. M., & van Breda, S. G. (2018). Drinking water nitrate and human health: an updated review. International Journal of Environmental Research and Public Health15(7), 1557. Link to source: https://doi.org/10.3390/ijerph15071557

Withers, P. J. A., Neal, C., Jarvie, H. P., & Doody, D. G. (2014). Agriculture and eutrophication: where do we go from here? Sustainability6(9), Article 9. Link to source: https://doi.org/10.3390/su6095853

You, L., Ros, G. H., Chen, Y., Shao, Q., Young, M. D., Zhang, F., & de Vries, W. (2023). Global mean nitrogen recovery efficiency in croplands can be enhanced by optimal nutrient, crop and soil management practices. Nature Communications, 14(1), 5747. Link to source: https://doi.org/10.1038/s41467-023-41504-2

Zaehle, S., Ciais, P., Friend, A. D., & Prieur, V. (2011). Carbon benefits of anthropogenic reactive nitrogen offset by nitrous oxide emissions. Nature Geoscience4(9), 601–605. Link to source: https://doi.org/10.1038/ngeo1207

Zhang, X., Fang, Q., Zhang, T., Ma, W., Velthof, G. L., Hou, Y., Oenema, O., & Zhang, F. (2020). Benefits and trade-offs of replacing synthetic fertilizers by animal manures in crop production in China: A meta-analysis. Global Change Biology26(2), 888–900. Link to source: https://doi.org/10.1111/gcb.14826

Credits

Lead Fellow

  • Avery Driscoll

Contributors

  • Ruthie Burrows, Ph.D.

  • James Gerber, Ph.D.

  • Yusuf Jameel, Ph.D.

  • Daniel Jasper

  • Alex Sweeney

  • Eric Toensmeier

Internal Reviewers

  • Aiyana Bodi

  • Hannah Henkin

  • Ted Otte

Effectiveness

We relied on the 2019 Intergovernmental Panel on Climate Change (IPCC) emissions factors to calculate the emissions impacts of improved nutrient management. These are disaggregated by climate zone (“wet” vs. “dry”) and by fertilizer type (“organic” vs. “synthetic”). Nitrogen use reductions in wet climates, which include ~65% of the cropland area represented in this analysis (see Appendix for details), have the largest impact. In these areas, a 1 t reduction in nitrogen use reduces emissions by 8.7 t CO₂‑eq on average for synthetic fertilizers and by 5.0 t CO₂‑eq for organic fertilizers. Emissions savings are lower in dry climates, where a 1 t reduction in nitrogen use reduces emissions by 2.4 t CO₂‑eq for synthetic fertilizers and by 2.6 t CO₂‑eq for organic fertilizers. While these values reflect the median emissions reduction for each climate zone and fertilizer type, they are associated with large uncertainties because emissions are highly variable depending on climate, soil, and management conditions. 

Based on our analysis of the adoption ceiling for each climate zone and fertilizer type (see Appendix), we estimated that a 1 t reduction in nitrogen use reduces emissions by 6.0 t CO₂‑eq at the global median (Table 1). This suggests that ~1.4% of the applied nitrogen is emitted as nitrous oxide at the global average, which is consistent with existing estimates (IPCC, 2019). 

left_text_column_width

Table 1. Effectiveness at reducing emissions.

Unit: t CO₂‑eq /t nitrogen, 100-yr basis

25th percentile 4.2
Median (50th percentile) 6.0
75th percentile 7.7
Left Text Column Width
Cost

Improving nutrient management typically reduces fertilizer costs while maintaining or increasing yields, resulting in a net financial benefit to the producer. Gu et al. (2023) found that a 21% reduction in global nitrogen use would be economically beneficial, notably after accounting for increased fertilizer use in places that do not currently have adequate access. Using data from their study, we evaluated the average cost of reduced nitrogen application considering the following nutrient management practices: increased use of high-efficiency fertilizers, organic fertilizers, and/or legumes; optimizing fertilizer rates; altering the timing and/or placement of fertilizer applications; and use of buffer zones. Implementation costs depend on the strategy used to improve nutrient management. For example, optimizing fertilizer rates requires soil testing and the ability to apply different fertilizer rates to different parts of a field. Improving timing can involve applying fertilizers at two different times during the season, increasing labor and equipment operation costs. Furthermore, planting legumes incurs seed purchase and planting costs. 

Gu et al. (2023) estimated that annual reductions of 42 Mt of nitrogen were achievable globally using these practices, providing total fertilizer savings of US$37.2 billion and requiring implementation costs of US$15.9 billion, adjusted for inflation to 2023. A 1 t reduction in excess nitrogen application, therefore, was estimated to provide an average of US$507.80 of net cost savings, corresponding to a savings of US$85.21 per t CO₂‑eq of emissions reductions (Table 2).

left_text_column_width

Table 2. Cost per unit of climate impact, 100-yr basis.

Unit: 2023 US$/t CO₂‑eq

Mean -85.21
Left Text Column Width
Methods and Supporting Data

Abatzoglou, J. T., Dobrowski, S. Z., Parks, S. A., & Hegewisch, K. C. (2018). TerraClimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958–2015. Scientific Data5(1), 170191. https://doi.org/10.1038/sdata.2017.191

Adalibieke, W., Cui, X., Cai, H., You, L., & Zhou, F. (2023). Global crop-specific nitrogen fertilization dataset in 1961–2020. Scientific Data10(1), 617. https://doi.org/10.1038/s41597-023-02526-z

Gerber, J. S., Ray, D. K., Makowski, D., Butler, E. E., Mueller, N. D., West, P. C., Johnson, J. A., Polasky, S., Samberg, L. H., & Siebert, S. (2024). Global spatially explicit yield gap time trends reveal regions at risk of future crop yield stagnation. Nature Food5(2), 125–135. https://doi.org/10.1038/s43016-023-00913-8 

IPCC, 2019: Summary for Policymakers. In: Climate Change and Land: an IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems [P.R. Shukla, J. Skea, E. Calvo Buendia, V. Masson-Delmotte, H.-O. Pörtner, D. C. Roberts, P. Zhai, R. Slade, S. Connors, R. van Diemen, M. Ferrat, E. Haughey, S. Luz, S. Neogi, M. Pathak, J. Petzold, J. Portugal Pereira, P. Vyas, E. Huntley, K. Kissick, M. Belkacemi, J. Malley, (eds.)].

Mehta, P., Siebert, S., Kummu, M., Deng, Q., Ali, T., Marston, L., Xie, W., & Davis, K. F. (2024). Half of twenty-first century global irrigation expansion has been in water-stressed regions. Nature Water2(3), 254–261. https://doi.org/10.1038/s44221-024-00206-9

Learning Curve

The improved nutrient management strategies considered for this solution are already well established and widely deployed (Fixen, 2020). Large nitrogen excesses are relatively easy to mitigate through simple management changes with low implementation costs. As nitrogen use efficiency increases, further reductions may require increasingly complex mitigation practices and increasing marginal costs. Therefore, a learning curve was not quantified for this solution.

left_text_column_width
Speed of Action

Speed of action refers to how quickly a climate solution physically affects the atmosphere after it is deployed. This is different from speed of deployment, which is the pace at which solutions are adopted.

At Project Drawdown, we define the speed of action for each climate solution as emergency brake, gradual, or delayed.

Improve Nutrient Management is a GRADUAL climate solution. It has a steady, linear impact on the atmosphere. The cumulative effect over time builds as a straight line.

left_text_column_width
Caveats

Emissions reductions from improved nutrient management are permanent, though they may not be additional in all cases.

Permanence

As this solution reduces emissions rather than enhancing sequestration, permanence is not applicable.

Additionality

Additionality requires that the emissions benefits of the practice are attributable to climate-related incentives and would not have occurred in the absence of incentives (Michaelowa et al., 2019). If they are not contingent on external incentives, fertilizer use reductions implemented solely to maximize profits do not meet the threshold for additionality. However, fertilizer reductions may be additional if incentives are required to provide access to the technical knowledge and soil testing required to identify optimal rates. Other forms of nutrient management (e.g., applying nitrification inhibitors, using extended-release or organic fertilizers, or splitting applications between two time points) may involve additional costs, substantial practice change, and technical expertise. Thus, these practices are likely to be additional.

left_text_column_width
Current Adoption

Given that improved nutrient management takes a variety of forms and data on the adoption of individual practices are very limited, we leveraged several global datasets related to nitrogen use and yields to directly assess improvements in nitrogen use efficiency (see Appendix for details).

First, we calculated nitrogen use per metric ton of crop produced using global maps of nitrogen fertilizer use (Adalibieke et al., 2023) and global maps of crop yields (Gerber et al., 2024) for 17 major crops (see Appendix). Next, we determined a target nitrogen use rate (t nitrogen/t crop) for each crop, corresponding to the 20th percentile of nitrogen use rates observed in croplands with yield gaps at or below the 20th percentile, meaning that actual yields were close to an attainable yield ceiling (Gerber et al., 2024). Areas with large yield gaps were excluded from the calculation of target nutrient use efficiency because insufficient nitrogen supply may be compromising yields (Mueller et al., 2012). Yield data were not available for a small number of crops; for these, we assumed reductions in nitrogen use to be proportional to those of other crops.

We considered croplands that had achieved the target rate and had yield gaps lower than the global median to have adopted the solution. We calculated the amount of excess nitrogen use avoided from these croplands as the difference in total nitrogen use under current fertilization rates relative to median fertilizer application rates. As of 2020, croplands that had achieved the adoption threshold for improved nutrient management avoided 10.45 Mt of nitrogen annually relative to the median nitrogen use rate (Table 3), equivalent to 11% of the adoption ceiling.

left_text_column_width

Table 3. Current (2020) adoption level.

Unit: t nitrogen/yr

Estimate 10,450,000
Left Text Column Width
Adoption Trend

Global average nitrogen use efficiency increased from 47.7% to 54.6% between 2000 and 2020, a rate of approximately 0.43%/yr (Ludemann et al., 2024). This increase accelerated somewhat in the latter decade, from an average rate of 0.38%/yr to 0.53%/yr. Underlying this increase were increases in both the amount of nitrogen used and the amount of excess nitrogen. Total nitrogen additions increased by approximately 2.64 Mt/yr, with the amount of nitrogen used increasing more rapidly (1.99 Mt/yr) than the amount of excess nitrogen (0.65 Mt/yr) between 2000 and 2020 (Ludemann et al., 2024). Although nitrogen use increased between 2000 and 2020 as yields increased, the increase in nitrogen use efficiency suggests uptake of this solution.

left_text_column_width
Adoption Ceiling

We estimated the adoption ceiling of improved nutrient management to be 95.13 Mt avoided excess nitrogen use/year, not including current adoption (Table 4). This value reflects our estimate of the maximum potential reduction in nitrogen application while avoiding large yield losses and consists of the potential to avoid 62.25 Mt of synthetic nitrogen use and 32.88 Mt of manure and other organic nitrogen use, in addition to current adoption. In total, this is equivalent to an additional 68% reduction in global nitrogen use. The adoption ceiling was calculated as the difference between total nitrogen use at the current rate and total nitrogen use at the target rate (as described in Current Adoption), assuming no change in crop yields. For nitrogen applied to crops for which yield data were not available, the potential reduction in nitrogen use was assumed to be proportional to that of crops for which full data were available.

left_text_column_width

Table 4. Adoption ceiling.

Unit: t nitrogen/yr

Estimate 105,580,000
Left Text Column Width
Achievable Adoption

We estimated that fertilizer use reductions of 69.85–91.06 Mt of nitrogen are achievable, reflecting current adoption plus nitrogen savings due to the achievement of nitrogen application rates equal to the median and 30th percentile of nitrogen application rates occurring in locations where yield gaps are small (Table 5).

This range is more ambitious than a comparable recent estimate by Gu et al. (2023), who found that reductions of approximately 42 Mt of nitrogen are avoidable via cost-effective implementation of similar practices. Differences in target nitrogen use efficiencies underlie differences between our estimates and those of Gu et al., whose findings correspond to an increase in global average cropland nitrogen use efficiency from 42% to 52%. Our estimates reflect higher target nitrogen use efficiencies. Nitrogen use efficiencies greater than 52% have been widely achieved through basic practice modification without compromising yields or requiring prohibitively expensive additional inputs. For instance, You et al. (2023) estimated that the global average nitrogen use efficiency could be increased to 78%. Similarly, cropland nitrogen use efficiency in the United States in 2020 was estimated to be 71%, and substantial opportunities for improved nitrogen use efficiency are still available within the United States (Ludemann et al., 2024), though Lu et al. (2019) and Swaney et al. (2018) report slightly lower estimates. These findings support our slightly more ambitious range of achievable nitrogen use reductions for this solution.

left_text_column_width

Table 5. Range of achievable adoption levels.

Unit: t nitrogen/yr

Current adoption 10,450,000
Achievable – low 69,850,000
Achievable – high 91,060,000
Adoption ceiling 105,580,000
Left Text Column Width

We estimated that improved nutrient management has the potential to reduce emissions by 0.63 Gt CO₂‑eq/yr, with achievable emissions reductions of 0.42–0.54 Gt CO₂‑eq/yr (Table 6). This is equivalent to an additional 56–76% reduction in total nitrous oxide emissions from fertilizer use, based on the croplands represented in our analysis.

We estimated avoidable emissions by multiplying our estimates of adoption ceiling and achievable adoption by the relevant IPCC 2019 emissions factors, disaggregated by climate zone and fertilizer type. Under the adoption ceiling scenario, approximately 70% of emissions reductions occurred in wet climates, where emissions per t of applied fertilizer are higher. Reductions in synthetic fertilizer use, which are larger than reductions in organic fertilizer use, contributed about 76% of the potential avoidable emissions. We estimated that the current implementation of improved nutrient management was associated with 0.06 Gt CO₂‑eq/yr of avoided emissions. 

Our estimates are slightly more optimistic but well within the range of the IPCC 2021 estimates, which found that improved nutrient management could reduce nitrous oxide emissions by 0.06–0.7 Gt CO₂‑eq/yr.

left_text_column_width

Table 6. Climate impact at different levels of adoption.

Unit: Gt CO-eq/yr, 100-yr basis

Current adoption 0.06
Achievable – low 0.42
Achievable – high 0.54
Adoption ceiling 0.63
Left Text Column Width
Additional Benefits

Droughts

Balanced nutrient concentration contributes to long-term soil fertility and improved soil health by enhancing organic matter content, microbial diversity, and nutrient cycling (Antil & Raj, 2020; Selim, 2020). Healthy soil experiences reduced erosion and has higher water content, which increases its resilience to droughts and extreme heat (Rockström et al., 2017).

Income and Work

Better nutrient management reduces farmers' input costs and increases profitability (Rurinda et al., 2020; Wang et al., 2020). It is especially beneficial to smallholder farmers in sub-Saharan Africa, where site-specific nutrient management programs have demonstrated a significant increase in yield (Chivenge et al., 2021). A review of 61 studies across 11 countries showed that site-specific nutrient management resulted in an average increase in yield by 12% and increased farmer’s’ income by 15% while improving nitrogen use efficiency (Chivenge et al., 2021). 

Food Security

While excessive nutrients cause environmental problems in some parts of the world, insufficient nutrients are a significant problem in others, resulting in lower agricultural yields (Foley et al., 2011). Targeted, site-specific, efficient use of fertilizers can improve crop productivity (Mueller et al., 2012; Vanlauwe et al., 2015), improving food security globally. 

Health

Domingo et al. (2021) estimated about 16,000 premature deaths annually in the United States are due to air pollution from the food sector and found that more than 3,500 premature deaths per year could be avoided through reduced use of ammonia fertilizer, a secondary particulate matter precursor. Better agriculture practices overall can reduce particulate matter-related premature deaths from the agriculture sector by 50% (Domingo et al., 2021). Nitrogen oxides from fertilized croplands are another source of agriculture-based air pollution, and improved management can lead to decreased respiratory and cardiovascular disease (Almarez et al., 2018; Sobota et al., 2015). 

Nitrate contamination of drinking water due to excessive runoff from agriculture fields has been linked to several health issues, including blood disorders and cancer (Patel et al., 2022; Ward et al., 2018). Reducing nutrient runoff through better management is critical to minimize these risks (Ward et al., 2018). 

Nature Protection

Nutrient runoff from agricultural systems is a major driver of water pollution globally, leading to eutrophication and hypoxic zones in aquatic ecosystems (Bijay-Singh & Craswell, 2021). Nitrogen pollution also harms terrestrial biodiversity through soil acidification and increases productivity of fast-growing species, including invasives, which can outcompete native species (Porter et al., 2013). Improved nutrient management is necessary to reduce nitrogen and phosphorus loads to water bodies (Withers et al., 2014; van Grinsven et al., 2019) and terrestrial ecosystems (Porter et al., 2013). These practices have been effective in reducing harmful algal blooms and preserving biodiversity in sensitive water systems (Scavia et al., 2014). 

left_text_column_width
Risks

Although substantial reductions in nitrogen use can be achieved in many places with no or minimal impacts on yields, reducing nitrogen application by too much can lead to yield declines, which in turn can boost demand for cropland, causing GHG-producing land use change. Reductions in only excess nitrogen application will prevent substantial yield losses.

left_text_column_width

Some nutrient management practices are associated with additional emissions. For example, nitrification inhibitors reduce direct nitrous oxide emissions (Qiao et al., 2014) but can increase ammonia volatilization and subsequent indirect nitrous oxide emissions (Lam et al., 2016). Additionally, in wet climates, nitrous oxide emissions may be reduced through the use of manure instead of synthetic fertilizers (Hergoualc’h et al., 2019), though impacts vary across sites and studies (Zhang et al., 2020). Increased demand for manure could increase livestock production, which has high associated GHG emissions. Emissions also arise from transporting manure to the site of use (Qin et al., 2021).

Although nitrous oxide has a strong direct climate-warming effect, fertilizer use can cool the climate through emissions of other reactive nitrogen-containing compounds (Gong et al., 2024). First, aerosols from fertilizers scatter heat from the sun and cool the climate (Shindell et al., 2009; Gong et al., 2024). Moreover, other reactive nitrogen compounds from fertilizers shorten the lifespan of methane in the atmosphere, reducing its warming effects (Pinder et al., 2012). Finally, nitrogen fertilizers that leave farm fields through volatilization or runoff are ultimately deposited elsewhere, enhancing photosynthesis and storing more carbon in plants and soils (Zaehle et al., 2011; Gong et al., 2024). Improved nutrient management would reduce these cooling effects.

left_text_column_width
Interactions with Other Solutions

Reinforcing

Improved nutrient management will reduce emissions from the production phase of biomass crops, increasing their benefit.

left_text_column_width

(mixed) Improving nutrient management can reduce nutrient pollution in nearby and downstream ecosystems, aiding in their protection or restoration. However, this interaction can be mixed as fertilizer can also enhance terrestrial primary productivity and carbon sequestration in some landscapes.

left_text_column_width

Competing

Improved nutrient management will reduce the GHG production associated with each calorie and, therefore, the impacts of the Improve Diets and Reduce Food Loss and Waste solutions will be reduced. 

left_text_column_width

Each of these solutions could decrease emissions associated with fertilizer production, but improved nutrient management will reduce total demand for fertilizers.

left_text_column_width
Dashboard

Solution Basics

t avoided excess nitrogen application

t CO₂-eq (100-yr)/unit
04.26
units/yr
Current 1.045×10⁷ 06.985×10⁷9.106×10⁷
Achievable (Low to High)

Climate Impact

Gt CO₂-eq (100-yr)/yr
Current 0.06 0.420.54
US$ per t CO₂-eq
-85
Gradual

N₂O

t CO2-eq/ha/yr
01

The problem: nitrous oxide emissions from over-fertilized soils

The world’s agricultural lands can emit high levels of nitrous oxide, the third most powerful greenhouse gas. These emissions stem from overusing nitrogen-based fertilizers, especially in regions in China, India, Western Europe, and central North America (in red). While crops absorb some of the nitrogen fertilizer we apply, much of what remains is lost to the atmosphere as nitrous oxide pollution or to local waterways as nitrate pollution. Using fertilizers more wisely can dramatically reduce greenhouse gas emissions and water pollution while maintaining high levels of crop production.

Project Drawdown

t CO2-eq/ha/yr
01

The problem: nitrous oxide emissions from over-fertilized soils

The world’s agricultural lands can emit high levels of nitrous oxide, the third most powerful greenhouse gas. These emissions stem from overusing nitrogen-based fertilizers, especially in regions in China, India, Western Europe, and central North America (in red). While crops absorb some of the nitrogen fertilizer we apply, much of what remains is lost to the atmosphere as nitrous oxide pollution or to local waterways as nitrate pollution. Using fertilizers more wisely can dramatically reduce greenhouse gas emissions and water pollution while maintaining high levels of crop production.

Project Drawdown

Maps Introduction

Improved nutrient management will have the greatest emissions reduction if it is targeted at areas with the largest excesses of nitrogen fertilizer use. In 2020, China, India, and the United States alone accounted for 52% of global excess nitrogen application (Ludemann et al., 2024). Improved nutrient management could be particularly beneficial in China and India, where nutrient use efficiency is currently lower than average (Ludemann et al., 2024). You et al. (2023) also found potential for large increases in nitrogen use efficiency in parts of China, India, Australia, Northern Europe, the United States Midwest, Mexico, and Brazil under standard best management practices. Gu et al. (2024) found that nitrogen input reductions are economically feasible in most of Southern Asia, Northern and Western Europe, parts of the Middle East, North America, and Oceania.

In addition to regional patterns in the adoption ceiling, greater nitrous oxide emissions reductions are possible in wet climates or on irrigated croplands compared to dry climates. Nitrous oxide emissions tend to peak when nitrogen availability is high and soil moisture is in the ~70–90% range (Betterbach-Bahl et al., 2013; Elberling et al., 2023; Hao et al., 2025; Lawrence et al., 2021), though untangling the drivers of nitrous oxide emissions is complex (Lawrence et al., 2021). Water management to avoid prolonged periods of soil moisture in this range is an important complement to nutrient management in wet climates and on irrigated croplands (Deng et al., 2018).

Importantly, improved nutrient management, as defined here, is not appropriate for implementation in areas with nitrogen deficits or negligible nitrogen surpluses, including much of Africa. In these areas, crop yields are constrained by nitrogen availability, and an increase in nutrient inputs may be needed to achieve target yields. Additionally, nutrient management in paddy (flooded) rice systems is not included in this solution but rather in the Improve Rice Production solution.

Action Word
Improve
Solution Title
Nutrient Management
Classification
Highly Recommended
Lawmakers and Policymakers
  • Focus policies and regulations on the four nutrient management principles – right rate, type, time, and place.
  • Create dynamic nutrient management policies that account for varying practices, environments, drainage, historical land use, and other factors that may require adjusting nutrient regulations.
  • Offer financial assistance responsive to local soil and weather conditions, such as grants and subsidies, insurance programs, and tax breaks, to encourage farmers to comply with regulations.
  • Mandate insurance schemes that allow farmers to reduce fertilizer use.
  • Mandate nutrient budgets or ceilings that are responsive to local yield, weather, and soil conditions.
  • Require farmers to formulate nutrient management and fertilizer plans.
  • Mandate efficiency rates for manure-spreading equipment.
  • Ensure access to and require soil tests to inform fertilizer application.
  • Invest in research on alternative organic nutrient sources.
  • Create and expand education programs and extension services that highlight the problems that arise from the overuse of fertilizers, benefits of soil management such as cost-savings, and penalties for non-compliance
  • Create ongoing support groups among farmers.

Further information:

Practitioners
  • Use the four nutrient management principles – right rate, type, time, and place – to guide fertilizer application.
  • Utilize or advocate for financial assistance and tax breaks for farmers to improve nutrient management techniques.
  • Create and adhere to nutrient and fertilizer management plans.
  • Conduct soil tests to inform fertilizer application.
  • Use winter cover crops, crop rotations, residue retention, and split applications for fertilizer.
  • Improve the efficiency of, and regularly calibrate, manure-spreading equipment.
  • Leverage agroecological practices such as nutrient recycling and biological nitrogen fixation.
  • Join, create, or participate in partnerships or certification programs dedicated to improving nutrient management.
  • Take advantage of education programs, support groups, and extension services focused on improved nutrient management.

Further information:

Business Leaders
  • Provide incentives for farmers in primary sourcing regions to adopt best management practices for reducing nitrogen application.
  • Invest in companies that use improved nutrient management techniques or produce equipment or research for fertilizer application and testing.
  • Advocate to policymakers for improved nutrient management techniques, incentives, and regulations.
  • Join, create, or participate in partnerships or certification programs dedicated to improving nutrient management practices.
  • Promote products produced with improved nutrient management techniques and educate consumers about the importance of the practice.
  • Create or support education programs and extension services that highlight the problems that arise from the overuse of fertilizers, benefits of soil management such as cost-savings, and penalties for non-compliance.
  • Create ongoing support groups among farmers.

Further information:

Nonprofit Leaders
  • Start model farms to demonstrate improved nutrient management techniques, conduct experiments, and educate local farmers.
  • Conduct and share research on improved nutrient management techniques, alternative organic fertilizers, or local policy options.
  • Advocate to policymakers for improved nutrient management techniques, incentives, and regulations.
  • Engage with businesses to encourage corporate responsibility and/or monitor water quality and soil health.
  • Join, create, or participate in partnerships or certification programs dedicated to improving nutrient management practices.
  • Create or support education programs and extension services that highlight the problems that arise from the overuse of fertilizers, benefits of soil management such as cost-savings, and penalties for non-compliance.
  • Create ongoing support groups among farmers.

Further information:

Investors
  • Invest in companies developing technologies that support improved nutrient management such as precision fertilizer applicators, alternative fertilizers, soil management equipment, and software.
  • Invest in ETFs and ESG funds that hold companies committed to improved nutrient management techniques in their portfolios.
  • Encourage companies in your investment portfolio to adopt improved nutrient management.
  • Provide access to capital at reduced rates for farmers adhering to improved nutrient management.

Further information:

Philanthropists and International Aid Agencies
  • Provide financing for farmers to improve nutrient management.
  • Start model farms to demonstrate nutrient management techniques, conduct experiments, and educate local farmers.
  • Conduct and share research on improved nutrient management, alternative organic fertilizers, or local policy options.
  • Advocate to policymakers for improved nutrient management techniques, incentives, and regulations.
  • Engage with businesses to encourage corporate responsibility and/or monitor water quality and soil health.
  • Join, create, or participate in partnerships or certification programs dedicated to improving nutrient management practices.
  • Create or support education programs and extension services that highlight the problems that arise from the overuse of fertilizers, benefits of soil management such as cost-savings, and penalties for non-compliance.
  • Create ongoing support groups among farmers.

Further information:

Thought Leaders
  • Start model farms to demonstrate techniques, conduct experiments, and educate local farmers.
  • Conduct and share research on improved nutrient management, alternative organic fertilizers, or local policy options.
  • Advocate to policymakers for improved nutrient management techniques, incentives, and regulations.
  • Engage with businesses to encourage corporate responsibility and/or monitor water quality and soil health.
  • Join, create, or participate in partnerships dedicated to improving nutrient management practices.
  • Create or support education programs and extension services that highlight the problems that arise from the overuse of fertilizers, benefits of soil management such as cost-savings, and penalties for non-compliance.
  • Create ongoing support groups among farmers.

Further information:

Technologists and Researchers
  • Improve technology and cost-effectiveness of precision fertilizer application, slow-release fertilizer, alternative organic fertilizers, nutrient recycling, and monitoring equipment.
  • Create tracking and monitoring software to support farmers' decision-making.
  • Research and develop the application of AI and robotics for precise fertilizer application.
  • Improve data and analytics to monitor soil and water quality, assist farmers, support policymaking, and assess the impacts of policies.
  • Develop education and training applications to promote improved nutrient management and provide real-time feedback.

Further information:

Communities, Households, and Individuals
  • Create or join community-supported agriculture programs that source from farmers who used improved nutrient management practices.
  • Conduct soil tests on your lawn and garden and reduce fertilizer use if you are over-fertilizing.
  • Volunteer for soil and water quality monitoring and restoration projects.
  • Start model farms to demonstrate techniques, conduct experiments, and educate local farmers.
  • Advocate to policymakers for improved nutrient management techniques, incentives, and regulations.
  • Engage with businesses to encourage corporate responsibility and/or monitor water quality and soil health.
  • Join, create, or participate in partnerships dedicated to improving nutrient management.
  • Create or support education programs and extension services that highlight the problems that arise from the overuse of fertilizers, benefits of soil management such as cost-savings, and penalties for non-compliance.
  • Create ongoing support groups among farmers.

Further information:

Evidence Base

Consensus of effectiveness in reducing nitrous oxide emissions from croplands: High

There is high scientific consensus that reducing nitrogen surpluses through improved nutrient management reduces nitrous oxide emissions from croplands. 

Nutrient additions to croplands produce an estimated 0.9 Gt CO₂‑eq/yr (range 0.7–1.1 Gt CO₂‑eq/yr ) of direct nitrous oxide emissions from fields, plus approximately 0.3 Gt CO₂‑eq/yr of emissions from fertilizers that runoff into waterways or erode (Tian et al., 2020). Nitrous oxide emissions from croplands are directly linked to the amount of nitrogen applied. Furthermore, the amount of nitrous oxide emitted per unit of applied nitrogen is well quantified for a range of different nitrogen sources and field conditions (Reay et al., 2012; Shcherbak et al., 2014; Gerber et al., 2016; Intergovernmental Panel on Climate Change [IPCC], 2019; Hergoualc’h et al., 2021). Tools to improve nutrient management have been extensively studied, and practices that improve nitrogen use efficiency through right rate, time, place, and type principles have been implemented in some places for several decades (Fixen, 2020; Ludemann et al., 2024).

Recently, Gao & Cabrera Serrenho (2023) estimated that fertilizer-related emissions could be reduced up to 80% by 2050 relative to current levels using a combination of nutrient management and new fertilizer production methods. You et al. (2023) found that adopting improved nutrient management practices would increase nitrogen use efficiency from a global average of 48% to 78%, substantially reducing excess nitrogen. Wang et al. (2024) estimated that the use of enhanced-efficiency fertilizers could reduce nitrogen losses to the environment 70–75% for maize and wheat systems. Chivenge et al. (2021) found comparable results in smallholder systems in Africa and Asia.

The results presented in this document were produced through analysis of global datasets. We recognize that geographic biases can influence the development of global datasets and hope this work inspires research and data sharing on this topic in underrepresented regions.

left_text_column_width
Appendix

In this analysis, we calculated the potential for reducing crop nitrogen inputs and associated nitrous oxide emissions by integrating spatially explicit, crop-specific data on nitrogen inputs, crop yields, attainable yields, irrigated extent, and climate. Broadly, we calculated a “target” yield-scaled nitrogen input rate based on pixels with low yield gaps and calculated the difference between nitrous oxide emissions under the current rate and under the hypothetical target emissions rate, using nitrous oxide emissions factors disaggregated by fertilizer type and climate. 

Emissions Factors

We used Tier 1 emissions factors from the IPCC 2019 Refinement to the 2006 Guidelines for National Greenhouse Gas Inventories, including direct emissions factors as well as indirect emissions from volatilization and leaching pathways. Direct emissions factors represent the proportion of applied nitrogen emitted as nitrous oxide, while we calculated volatilization and leaching emissions factors by multiplying the proportion of applied nitrogen lost through these pathways by the proportion of volatilized or leached nitrogen ultimately emitted as nitrous oxide. Including both direct and indirect emissions, organic and synthetic fertilizers emit 4.97 kg CO₂‑eq/kg nitrogen and 8.66 kg CO₂‑eq/kg nitrogen, respectively, in wet climates, and 2.59 kg CO₂‑eq/kg nitrogen and 2.38 kg CO₂‑eq/kg nitrogen in dry climates. We included uncertainty bounds (2.5th and 97.5th percentiles) for all emissions factors. 

We classified each pixel as “wet” or “dry” using an aridity index (AI) threshold of 0.65, calculated as the ratio of annual precipitation to potential evapotranspiration (PET) from TerraClimate data (1991–2020), based on a threshold of 0.65. For pixels in dry climates that contained irrigation, we took the weighted average of wet and dry emissions factors based on the fraction of cropland that was irrigated (Mehta et al., 2024). We excluded irrigated rice from this analysis due to large differences in nitrous oxide dynamics in flooded rice systems.

Current, Target, and Avoidable Nitrogen Inputs and Emissions

Using highly disaggregated data on nitrogen inputs from Adalibieke et al. (2024) for 21 crop groups (Table S1), we calculated total crop-specific inputs of synthetic and organic nitrogen. We then averaged over 2016–2020 to reduce the influence of interannual variability in factors like fertilizer prices. These values are subsequently referred to as “current” nitrogen inputs. We calculated nitrous oxide emissions under current nitrogen inputs as the sum of the products of nitrogen inputs and the climatically relevant emissions factors for each fertilizer type.

Next, we calculated target nitrogen application rates in terms of kg nitrogen per ton of crop yield using data on actual and attainable yields for 17 crops from Gerber et al., 2024 (Table S1). For each crop, we first identified pixels in which the ratio of actual to attainable yields was above the 80th percentile globally. The target nitrogen application rate was then calculated as the 20th percentile of nitrogen application rates across low-yield-gap pixels. Finally, we calculated total target nitrogen inputs as the product of actual yields and target nitrogen input rates. We calculated hypothetical nitrous oxide emissions from target nitrogen inputs as the product of nitrogen inputs and the climatically relevant emissions factor for each fertilizer type.

The difference between current and target nitrogen inputs represents the amount by which nitrogen inputs could hypothetically be reduced without compromising crop productivity (i.e., “avoidable” nitrogen inputs). We calculated avoidable nitrous oxide emissions as the difference between nitrous oxide emissions with current nitrogen inputs and those with target nitrogen inputs. For crops for which no yield or attainable yield data were available, we applied the average percent reduction in nitrogen inputs under the target scenario from available crops to the nitrogen input data for missing crops to calculate the avoidable nitrogen inputs and emissions. 

This simple and empirically driven method aimed to identify realistically low but nutritionally adequate nitrogen application rates by including only pixels with low yield gaps, which are unlikely to be substantially nutrient-constrained. We did not control for other factors affecting nitrogen availability, such as historical nutrient application rates or depletion, rotation with nitrogen fixing crops, or tillage and residue retention practices.

left_text_column_width

Table S1. Crops represented by the source data on nitrogen inputs (Adalibieke et al., 2024) and estimated and attainable yields (Gerber et al., 2024). Crop groups included consistently in both datasets are marked as “both,” and crop groups represented in the nitrogen input data but not in the yield datasets are marked as “nitrogen only.”

Crop Dataset(s)
BarleyBoth
CassavaBoth
CottonBoth
MaizeBoth
MilletBoth
Oil palmBoth
PotatoBoth
RiceBoth
RyeBoth
RapeseedBoth
SorghumBoth
SoybeanBoth
SugarbeetBoth
SugarcaneBoth
SunflowerBoth
Sweet potatoBoth
WheatBoth
GroundnutNitrogen only
FruitsNitrogen only
VegetablesNitrogen only
OtherNitrogen only
Left Text Column Width
Updated Date

Protect Grasslands & Savannas

Image
Image
Boreal grassland
Coming Soon
Off
Summary

This solution focuses on the legal protection of grassland and savanna ecosystems through the establishment of protected areas (PAs), which are managed with the primary goal of conserving nature, and land tenure for Indigenous peoples. These protections reduce grassland degradation, which preserves carbon stored in soils and vegetation and enables continued carbon sequestration by healthy grasslands.

This solution only includes non-coastal grasslands and savannas on mineral soils in areas that do not naturally support forests. Salt marshes are included in the Protect Coastal Wetlands solution, grasslands on peat soils are included in the Protect Peatlands solution, grasslands that are the product of deforestation are included in the Restore Forests solution, and grasslands that have been converted to other uses are included in the Restore Grasslands and Savannas solution.

Description for Social and Search
The Protect Grasslands & Savannas solution is coming soon.
Overview

Grasslands, also called steppes (Europe and Asia), pampas (South America), and prairies (North America), are ecosystems dominated by herbaceous plants that have relatively low tree or shrub cover. Savannas are ecosystems characterized by low-density tree cover that allows for a grass subcanopy (Bardgett et al., 2021; Parente et al., 2024). Grasslands and savannas span arid to mesic climates from the tropics to the tundra; many depend on periodic fires and grazing by large herbivores. The dataset used to define grassland extent for this analysis classifies areas with sparse vegetation, including some shrublands, deserts, and tundra, as grasslands (Parente et al., 2024), but excludes planted and intensively managed livestock pastures. Hereafter we refer to all of these ecosystems, including savannas, as “grasslands.” 

Historically, grasslands covered up to 40% of global land area, depending on the definition used (Bardgett et al., 2021; Parente et al., 2024; Suttie et al., 2005). An estimated 46% of temperate grasslands and 24% of tropical grasslands have been converted to cropland or lost to afforestation or development (Hoekstra et al., 2004). Nearly half of remaining grasslands are estimated to be degraded due to over- or undergrazing, woody plant encroachment, climate change, invasive species, addition of fertilizers or legumes for forage production, and changing fire regimes (Bardgett et al., 2021; Briggs et al., 2005; Gang et al., 2014; Ratajczak et al., 2012). 

Grasslands store carbon primarily in soils and below-ground biomass (Bai & Cotrufo, 2022). A large fraction of the carbon that grasses take up is allocated to root growth, which over time is incorporated into soil organic matter (Bai & Cotrufo, 2022). When native vegetation is removed and land is tilled to convert grasslands to croplands, carbon from biomass and soils is lost as CO₂.  

Estimates of total carbon stocks in grasslands range from 388–1,257 Gt CO₂‑eq (Conant et al., 2017; Goldstein et al., 2020; Poeplau, 2021). Soil carbon generally persists over long timescales and takes decades to rebuild, with one study estimating that 132 Gt CO₂‑eq in grasslands is vulnerable to loss, and that 25 Gt CO₂‑eq of that would be irrecoverable over a 30-year timeframe (Goldstein et al., 2020). Our analysis did not quantify the impacts of grazing or woody plant encroachment on grassland carbon stocks, which can be mixed, though grazing is discussed further in the Improve Livestock Grazing solution (Barger et al., 2011; Conant et al., 2017; Jackson et al., 2002; Stanley et al., 2024). 

Long-term legal protection of grasslands through PAs and Indigenous peoples’ land tenure reduces conversion and therefore avoids conversion-related pulses of GHG emissions from plowing soils and removing biomass. We consider grasslands to be protected if they are 1) formally designated as PAs (United Nations Environment Programme World Conservation Monitoring Centre [UNEP-WCMC] and International Union for Conservation of Nature and Natural Resources [IUCN], 2024), or 2) mapped as Indigenous peoples’ lands (IPLs) by Garnett et al. (2018) (Appendix). PAs vary in their allowed uses, ranging from strict wilderness preserves to sustainable-use areas that allow for some natural resource extraction; all levels were included in this analysis (UNEP-WCMC and IUCN, 2024). 

IPLs and PAs reduce, but do not eliminate, ecosystem loss (Baragwanath et al., 2020; Blackman & Viet 2018; Li et al., 2024; McNicol et al., 2023; Sze et al. 2022; Wolf et al., 2023; Wade et al., 2020). Improving management to further reduce land use change within PAs and ensure ecologically appropriate grazing and fire regimes is a critical component of grassland protection (Jones et al., 2018; Meng et al., 2023; Vijay et al., 2018; Visconti et al., 2019; Watson et al., 2014). Additionally, market-based strategies and other policies can complement legal protection by reducing incentives for grassland conversion (e.g., Garett et al., 2019; Golub et al., 2021; Heilmayr et al., 2020; Lambin et al., 2018; Levy et al., 2023; Macdonald et al., 2024; Marin et al., 2022; Villoria et al., 2022; West et al., 2023). Our analyses are based on legal protection because the impact of market-based strategies is difficult to quantify, but these strategies will be further discussed in an additional appendix (coming soon).

Adams, V. M., Iacona, G. D., & Possingham, H. P. (2019). Weighing the benefits of expanding protected areas versus managing existing ones. Nature Sustainability2(5), 404–411. Link to source: https://doi.org/10.1038/s41893-019-0275-5

Ahlering, M., Fargione, J., & Parton, W. (2016). Potential carbon dioxide emission reductions from avoided grassland conversion in the northern Great Plains. Ecosphere7(12), Article e01625. Link to source: https://doi.org/10.1002/ecs2.1625

Asamoah, E. F., Beaumont, L. J., & Maina, J. M. (2021). Climate and land-use changes reduce the benefits of terrestrial protected areas. Nature Climate Change11(12), 1105–1110. Link to source: https://doi.org/10.1038/s41558-021-01223-2

Bai, Y., & Cotrufo, M. F. (2022). Grassland soil carbon sequestration: Current understanding, challenges, and solutions. Science377(6606), 603–608. Link to source: https://doi.org/10.1126/science.abo2380

Baragwanath, K., & Bayi, E. (2020). Collective property rights reduce deforestation in the Brazilian Amazon. Proceedings of the National Academy of Sciences117(34), 20495–20502. Link to source: https://doi.org/10.1073/pnas.1917874117

Bardgett, R. D., Bullock, J. M., Lavorel, S., Manning, P., Schaffner, U., Ostle, N., Chomel, M., Durigan, G., L. Fry, E., Johnson, D., Lavallee, J. M., Le Provost, G., Luo, S., Png, K., Sankaran, M., Hou, X., Zhou, H., Ma, L., Ren, W., … Shi, H. (2021). Combating global grassland degradation. Nature Reviews Earth & Environment2(10), 720–735. Link to source: https://doi.org/10.1038/s43017-021-00207-2

Barger, N. N., Archer, S. R., Campbell, J. L., Huang, C., Morton, J. A., & Knapp, A. K. (2011). Woody plant proliferation in North American drylands: A synthesis of impacts on ecosystem carbon balance. Journal of Geophysical Research: Biogeosciences116(G4), Article G00K07. Link to source: https://doi.org/10.1029/2010JG001506

Barnes, M. D., Glew, L., Wyborn, C., & Craigie, I. D. (2018). Prevent perverse outcomes from global protected area policy. Nature Ecology & Evolution2(5), 759–762. Link to source: https://doi.org/10.1038/s41559-018-0501-y

Bengtsson, J., Bullock, J. M., Egoh, B., Everson, C., Everson, T., O’Connor, T., O’Farrell, P. J., Smith, H. G., & Lindborg, R. (2019). Grasslands—More important for ecosystem services than you might think. Ecosphere10(2), Article e02582. Link to source: https://doi.org/10.1002/ecs2.2582

Berg, A., & McColl, K. A. (2021). No projected global drylands expansion under greenhouse warming. Nature Climate Change11(4), 331–337. Link to source: https://doi.org/10.1038/s41558-021-01007-8

Blackman, A., & Veit, P. (2018). Titled Amazon Indigenous communities cut forest carbon emissions. Ecological Economics153, 56–67. Link to source: https://doi.org/10.1016/j.ecolecon.2018.06.016

Briggs, J. M., Knapp, A. K., Blair, J. M., Heisler, J. L., Hoch, G. A., Lett, M. S., & McCarron, J. K. (2005). An ecosystem in transition: Causes and consequences of the conversion of mesic grassland to shrubland. BioScience55(3), 243–254. Link to source: https://doi.org/10.1641/0006-3568(2005)055[0243:AEITCA]2.0.CO;2

Bruner, A. G., Gullison, R. E., & Balmford, A. (2004). Financial costs and shortfalls of managing and expanding Protected-Area systems in developing countries. BioScience54(12), 1119–1126. Link to source: https://doi.org/10.1641/0006-3568(2004)054[1119:FCASOM]2.0.CO;2

Carbutt, C., Henwood, W. D., & Gilfedder, L. A. (2017). Global plight of native temperate grasslands: Going, going, gone? Biodiversity and Conservation26(12), 2911–2932. Link to source: https://doi.org/10.1007/s10531-017-1398-5

Chang, J., Ciais, P., Gasser, T., Smith, P., Herrero, M., Havlík, P., Obersteiner, M., Guenet, B., Goll, D. S., Li, W., Naipal, V., Peng, S., Qiu, C., Tian, H., Viovy, N., Yue, C., & Zhu, D. (2021). Climate warming from managed grasslands cancels the cooling effect of carbon sinks in sparsely grazed and natural grasslands. Nature Communications12(1), Article 118. Link to source: https://doi.org/10.1038/s41467-020-20406-7

Conant, R. T., Cerri, C. E. P., Osborne, B. B., & Paustian, K. (2017). Grassland management impacts on soil carbon stocks: A new synthesis. Ecological Applications27(2), 662–668. Link to source: https://doi.org/10.1002/eap.1473

Craine, J. M., Ocheltree, T. W., Nippert, J. B., Towne, E. G., Skibbe, A. M., Kembel, S. W., & Fargione, J. E. (2013). Global diversity of drought tolerance and grassland climate-change resilience. Nature Climate Change3(1), 63–67. Link to source: https://doi.org/10.1038/nclimate1634

Dinerstein, E., Joshi, A. R., Hahn, N. R., Lee, A. T. L., Vynne, C., Burkart, K., Asner, G. P., Beckham, C., Ceballos, G., Cuthbert, R., Dirzo, R., Fankem, O., Hertel, S., Li, B. V., Mellin, H., Pharand-Deschênes, F., Olson, D., Pandav, B., Peres, C. A., … Zolli, A. (2024). Conservation Imperatives: Securing the last unprotected terrestrial sites harboring irreplaceable biodiversity. Frontiers in Science2. Link to source: https://doi.org/10.3389/fsci.2024.1349350

ESA CCI (2019). Copernicus Climate Change Service, Climate Data Store: Land cover classification gridded maps from 1992 to present derived from satellite observation. Copernicus Climate Change Service (C3S) Climate Data Store (CDS). Accessed November 2024. Link to source: https://doi.org/10.24381/cds.006f2c9a

Feng, S., & Fu, Q. (2013). Expansion of global drylands under a warming climate. Atmospheric Chemistry and Physics13(19), 10081–10094. Link to source: https://doi.org/10.5194/acp-13-10081-2013

Gang, C., Zhou, W., Chen, Y., Wang, Z., Sun, Z., Li, J., Qi, J., & Odeh, I. (2014). Quantitative assessment of the contributions of climate change and human activities on global grassland degradation. Environmental Earth Sciences72(11), 4273–4282. Link to source: https://doi.org/10.1007/s12665-014-3322-6

Garnett, S. T., Burgess, N. D., Fa, J. E., Fernández-Llamazares, Á., Molnár, Z., Robinson, C. J., Watson, J. E. M., Zander, K. K., Austin, B., Brondizio, E. S., Collier, N. F., Duncan, T., Ellis, E., Geyle, H., Jackson, M. V., Jonas, H., Malmer, P., McGowan, B., Sivongxay, A., & Leiper, I. (2018). A spatial overview of the global importance of Indigenous lands for conservation. Nature Sustainability1(7), 369–374. Link to source: https://doi.org/10.1038/s41893-018-0100-6

Garrett, R. D., Levy, S., Carlson, K. M., Gardner, T. A., Godar, J., Clapp, J., Dauvergne, P., Heilmayr, R., le Polain de Waroux, Y., Ayre, B., Barr, R., Døvre, B., Gibbs, H. K., Hall, S., Lake, S., Milder, J. C., Rausch, L. L., Rivero, R., Rueda, X., … Villoria, N. (2019). Criteria for effective zero-deforestation commitments. Global Environmental Change54, 135–147. Link to source: https://doi.org/10.1016/j.gloenvcha.2018.11.003

Goldstein, A., Turner, W. R., Spawn, S. A., Anderson-Teixeira, K. J., Cook-Patton, S., Fargione, J., Gibbs, H. K., Griscom, B., Hewson, J. H., Howard, J. F., Ledezma, J. C., Page, S., Koh, L. P., Rockström, J., Sanderman, J., & Hole, D. G. (2020). Protecting irrecoverable carbon in Earth’s ecosystems. Nature Climate Change10(4), 287–295. Link to source: https://doi.org/10.1038/s41558-020-0738-8

Golub, A., Herrera, D., Leslie, G., Pietracci, B., & Lubowski, R. (2021). A real options framework for reducing emissions from deforestation: Reconciling short-term incentives with long-term benefits from conservation and agricultural intensification. Ecosystem Services49, Article 101275. Link to source: https://doi.org/10.1016/j.ecoser.2021.101275

Graham, V., Geldmann, J., Adams, V. M., Negret, P. J., Sinovas, P., & Chang, H.-C. (2021). Southeast Asian protected areas are effective in conserving forest cover and forest carbon stocks compared to unprotected areas. Scientific Reports11(1), Article 23760. Link to source: https://doi.org/10.1038/s41598-021-03188-w

Grasslands, Rangelands, Savannahs and Shrublands (GRaSS) Alliance. (2023). Valuing Grasslands: Critical ecosystems for nature, climate, and people [Discussion paper]. Link to source: https://www.birdlife.org/wp-content/uploads/2023/12/Valuing-Grasslands-Report-Dec-2023.pdf

Griscom, B. W., Adams, J., Ellis, P. W., Houghton, R. A., Lomax, G., Miteva, D. A., Schlesinger, W. H., Shoch, D., Siikamäki, J. V., Smith, P., Woodbury, P., Zganjar, C., Blackman, A., Campari, J., Conant, R. T., Delgado, C., Elias, P., Gopalakrishna, T., Hamsik, M. R., … Fargione, J. (2017). Natural climate solutions. Proceedings of the National Academy of Sciences114(44), 11645–11650. Link to source: https://doi.org/10.1073/pnas.1710465114

Heilmayr, R., Rausch, L. L., Munger, J., & Gibbs, H. K. (2020). Brazil’s Amazon Soy Moratorium reduced deforestation. Nature Food1(12), 801–810. Link to source: https://doi.org/10.1038/s43016-020-00194-5

Hoekstra, J. M., Boucher, T. M., Ricketts, T. H., & Roberts, C. (2005). Confronting a biome crisis: Global disparities of habitat loss and protection. Ecology Letters8(1), 23–29. Link to source: https://doi.org/10.1111/j.1461-0248.2004.00686.x

Huang, J., Yu, H., Guan, X., Wang, G., & Guo, R. (2016). Accelerated dryland expansion under climate change. Nature Climate Change6(2), 166–171. Link to source: https://doi.org/10.1038/nclimate2837

Huang, X., Ibrahim, M. M., Luo, Y., Jiang, L., Chen, J., & Hou, E. (2024). Land use change alters soil organic carbon: Constrained global patterns and predictors. Earth’s Future12(5), Article e2023EF004254. Link to source: https://doi.org/10.1029/2023EF004254

IPCC Task Force on National Greenhouse Gas Inventories. (2019). Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Calvo Buendia, E., Tanabe, K., Kranjc, A., Baasansuren, J., Fukuda, M., Ngarize S., Osako, A., Pyrozhenko, Y., Shermanau, P. and Federici, S., Eds.). Intergovernmental Panel on Climate Change. Link to source: https://www.ipcc-nggip.iges.or.jp/public/2019rf/pdf/0_Overview/19R_V0_00_Cover_Foreword_Preface_Dedication.pdf 

Isbell, F., Craven, D., Connolly, J., Loreau, M., Schmid, B., Beierkuhnlein, C., Bezemer, T. M., Bonin, C., Bruelheide, H., de Luca, E., Ebeling, A., Griffin, J. N., Guo, Q., Hautier, Y., Hector, A., Jentsch, A., Kreyling, J., Lanta, V., Manning, P., … Eisenhauer, N. (2015). Biodiversity increases the resistance of ecosystem productivity to climate extremes. Nature526(7574), 574–577. Link to source: https://doi.org/10.1038/nature15374

Jackson, R. B., Banner, J. L., Jobbágy, E. G., Pockman, W. T., & Wall, D. H. (2002). Ecosystem carbon loss with woody plant invasion of grasslands. Nature418(6898), 623–626. Link to source: https://doi.org/10.1038/nature00910

Jones, K. R., Venter, O., Fuller, R. A., Allan, J. R., Maxwell, S. L., Negret, P. J., & Watson, J. E. M. (2018). One-third of global protected land is under intense human pressure. Science360(6390), 788–791. Link to source: https://doi.org/10.1126/science.aap9565

Kachler, J., Benra, F., Bolliger, R., Isaac, R., Bonn, A., & Felipe-Lucia, M. R. (2023). Can we have it all? The role of grassland conservation in supporting forage production and plant diversity. Landscape Ecology38(12), 4451–4465. Link to source: https://doi.org/10.1007/s10980-023-01729-4

Kemp, D. R., Guodong, H., Xiangyang, H., Michalk, D. L., Fujiang, H., Jianping, W., & Yingjun, Z. (2013). Innovative grassland management systems for environmental and livelihood benefits. Proceedings of the National Academy of Sciences110(21), 8369–8374. Link to source: https://doi.org/10.1073/pnas.1208063110

Kim, J. H., Jobbágy, E. G., & Jackson, R. B. (2016). Trade-offs in water and carbon ecosystem services with land-use changes in grasslands. Ecological Applications26(6), 1633–1644. Link to source: https://doi.org/10.1890/15-0863.1

Knapp, A. K., Chen, A., Griffin-Nolan, R. J., Baur, L. E., Carroll, C. J. W., Gray, J. E., Hoffman, A. M., Li, X., Post, A. K., Slette, I. J., Collins, S. L., Luo, Y., & Smith, M. D. (2020). Resolving the Dust Bowl paradox of grassland responses to extreme drought. Proceedings of the National Academy of Sciences117(36), 22249–22255. Link to source: https://doi.org/10.1073/pnas.1922030117

Lambin, E. F., Gibbs, H. K., Heilmayr, R., Carlson, K. M., Fleck, L. C., Garrett, R. D., le Polain de Waroux, Y., McDermott, C. L., McLaughlin, D., Newton, P., Nolte, C., Pacheco, P., Rausch, L. L., Streck, C., Thorlakson, T., & Walker, N. F. (2018). The role of supply-chain initiatives in reducing deforestation. Nature Climate Change8(2), 109–116. Link to source: https://doi.org/10.1038/s41558-017-0061-1

Lefcheck, J. S., Byrnes, J. E. K., Isbell, F., Gamfeldt, L., Griffin, J. N., Eisenhauer, N., Hensel, M. J. S., Hector, A., Cardinale, B. J., & Duffy, J. E. (2015). Biodiversity enhances ecosystem multifunctionality across trophic levels and habitats. Nature Communications6(1), Article 6936. Link to source: https://doi.org/10.1038/ncomms7936

Levy, S. A., Cammelli, F., Munger, J., Gibbs, H. K., & Garrett, R. D. (2023). Deforestation in the Brazilian Amazon could be halved by scaling up the implementation of zero-deforestation cattle commitments. Global Environmental Change80, Article 102671. Link to source: https://doi.org/10.1016/j.gloenvcha.2023.102671

Li, G., Fang, C., Watson, J. E. M., Sun, S., Qi, W., Wang, Z., & Liu, J. (2024). Mixed effectiveness of global protected areas in resisting habitat loss. Nature Communications15(1), Article 8389. Link to source: https://doi.org/10.1038/s41467-024-52693-9

Li, J., Huang, L., Cao, W., Wang, J., Fan, J., Xu, X., & Tian, H. (2023). Benefits, potential and risks of China’s grassland ecosystem conservation and restoration. Science of The Total Environment905, Article 167413. Link to source: https://doi.org/10.1016/j.scitotenv.2023.167413

Liechti, K., & Biber, J.-P. (2016). Pastoralism in Europe: Characteristics and challenges of highland-lowland transhumance. Revue Scientifique Et Technique (International Office of Epizootics)35(2), 561–575. Link to source: https://doi.org/10.20506/rst.35.2.2541

Macdonald, K., Diprose, R., Grabs, J., Schleifer, P., Alger, J., Bahruddin, Brandao, J., Cashore, B., Chandra, A., Cisneros, P., Delgado, D., Garrett, R., & Hopkinson, W. (2024). Jurisdictional approaches to sustainable agro-commodity governance: The state of knowledge and future research directions. Earth System Governance22, Article 100227. Link to source: https://doi.org/10.1016/j.esg.2024.100227

Marin, F. R., Zanon, A. J., Monzon, J. P., Andrade, J. F., Silva, E. H. F. M., Richter, G. L., Antolin, L. A. S., Ribeiro, B. S. M. R., Ribas, G. G., Battisti, R., Heinemann, A. B., & Grassini, P. (2022). Protecting the Amazon forest and reducing global warming via agricultural intensification. Nature Sustainability5, 1018–1026. Link to source: https://doi.org/10.1038/s41893-022-00968-8

McNicol, I. M., Keane, A., Burgess, N. D., Bowers, S. J., Mitchard, E. T. A., & Ryan, C. M. (2023). Protected areas reduce deforestation and degradation and enhance woody growth across African woodlands. Communications Earth & Environment4(1), Article 392. Link to source: https://doi.org/10.1038/s43247-023-01053-4

Meng, Z., Dong, J., Ellis, E. C., Metternicht, G., Qin, Y., Song, X.-P., Löfqvist, S., Garrett, R. D., Jia, X., & Xiao, X. (2023). Post-2020 biodiversity framework challenged by cropland expansion in protected areas. Nature Sustainability6(7), 758–768. Link to source: https://doi.org/10.1038/s41893-023-01093-w

Michalk, D. L., Kemp, D. R., Badgery, W. B., Wu, J., Zhang, Y., & Thomassin, P. J. (2019). Sustainability and future food security—A global perspective for livestock production. Land Degradation & Development30(5), 561–573. Link to source: https://doi.org/10.1002/ldr.3217

Nabuurs, G.-J., Mrabet, R., Hatab, A. A., Bustamante, M., Clark, H., Havlík, P., House, J. I., Mbow, C., Ninan, K. N., Popp, A., Roe, S., Sohngen, B., & Towprayoon, S. (2022). Agriculture, forestry and other land uses (AFOLU). In P. R. Shukla, J. Skea, R. Slade, A. Al Khourdajie, R. van Diemen, D. McCollum, M. Pathak, S. Some, P. Vyas, R. Fradera, M. Belkacemi, A. Hasija, G. Lisboa, S. Luz, & J. Malley (Eds.), Climate change 2022: Mitigation of climate change. Contribution of working group III to the sixth assessment report of the intergovernmental panel on climate change (pp. 747–860). Cambridge University Press. Link to source: https://doi.org/10.1017/9781009157926.009

Nugent, D. T., Baker-Gabb, D. J., Green, P., Ostendorf, B., Dawlings, F., Clarke, R. H., & Morgan, J. W. (2022). Multi-scale habitat selection by a cryptic, critically endangered grassland bird—The Plains-wanderer (Pedionomus torquatus): Implications for habitat management and conservation. Austral Ecology47(3), 698–712. Link to source: https://doi.org/10.1111/aec.13157

Olson, D. M., Dinerstein, E., Wikramanayake, E. D., Burgess, N. D., Powell, G. V. N., Underwood, E. C., D’amico, J. A., Itoua, I., Strand, H. E., Morrison, J. C., Loucks, C. J., Allnutt, T. F., Ricketts, T. H., Kura, Y., Lamoreux, J. F., Wettengel, W. W., Hedao, P., & Kassem, K. R. (2001). Terrestrial ecoregions of the world: A new map of life on Earth: A new global map of terrestrial ecoregions provides an innovative tool for conserving biodiversity. BioScience51(11), 933–938. Link to source: https://doi.org/10.1641/0006-3568(2001)051[0933:TEOTWA]2.0.CO;2

Parente, L., Sloat, L., Mesquita, V., Consoli, D., Stanimirova, R., Hengl, T., Bonannella, C., Teles, N., Wheeler, I., Hunter, M., Ehrmann, S., Ferreira, L., Mattos, A. P., Oliveira, B., Meyer, C., Şahin, M., Witjes, M., Fritz, S., Malek, Z., & Stolle, F. (2024a). Annual 30-m maps of global grassland class and extent (2000–2022) based on spatiotemporal Machine Learning. Scientific Data11(1), Article 1303. Link to source: https://doi.org/10.1038/s41597-024-04139-6

Parente, L., Sloat, L., Mesquita, V., Consoli, D., Stanimirova, R., Hengl, T., Bonannella, C., Teles, N., Wheeler, I., Hunter, M., Ehrmann, S., Ferreira, L., Mattos, A. P., Oliveira, B., Meyer, C., Şahin, M., Witjes, M., Fritz, S., Malek, Ž., & Stolle, F. (2024b). Global Pasture Watch—Annual grassland class and extent maps at 30-m spatial resolution (2000—2022) (Version v1) [Data set]. Zenodo. Link to source: https://doi.org/10.5281/zenodo.13890417

Pelser, A., Redelinghuys, N., & Kernan, A.-L. (2015). Protected Areas and ecosystem services—Integrating grassland conservation with human well-being in South Africa. In Biodiversity in Ecosystems—Linking Structure and Function. IntechOpen. Link to source: https://doi.org/10.5772/59015

Petermann, J. S., & Buzhdygan, O. Y. (2021). Grassland biodiversity. Current Biology31(19), R1195–R1201. Link to source: https://doi.org/10.1016/j.cub.2021.06.060

Poeplau, C. (2021). Grassland soil organic carbon stocks along management intensity and warming gradients. Grass and Forage Science76(2), 186–195. Link to source: https://doi.org/10.1111/gfs.12537

Poggio, L., de Sousa, L. M., Batjes, N. H., Heuvelink, G. B. M., Kempen, B., Ribeiro, E., & Rossiter, D. (2021). SoilGrids 2.0: Producing soil information for the globe with quantified spatial uncertainty. SOIL7(1), 217–240. Link to source: https://doi.org/10.5194/soil-7-217-2021

Ratajczak, Z., Nippert, J. B., & Collins, S. L. (2012). Woody encroachment decreases diversity across North American grasslands and savannas. Ecology93(4), 697–703. Link to source: https://doi.org/10.1890/11-1199.1

Resare Sahlin, K., Gordon, L. J., Lindborg, R., Piipponen, J., Van Rysselberge, P., Rouet-Leduc, J., & Röös, E. (2024). An exploration of biodiversity limits to grazing ruminant milk and meat production. Nature Sustainability7(9), 1160–1170. Link to source: https://doi.org/10.1038/s41893-024-01398-4

Saura, S., Bertzky, B., Bastin, L., Battistella, L., Mandrici, A., & Dubois, G. (2019). Global trends in protected area connectivity from 2010 to 2018. Biological Conservation238, Article 108183. Link to source: https://doi.org/10.1016/j.biocon.2019.07.028

Sloat, L., Balehegn, M., & Johnson, P. (2025, May 2). Grasslands Are Some of Earth’s Most Underrated Ecosystems. World Resources Institute. Link to source: https://www.wri.org/insights/grassland-benefits

Smith, M. D., Wilkins, K. D., Holdrege, M. C., Wilfahrt, P., Collins, S. L., Knapp, A. K., Sala, O. E., Dukes, J. S., Phillips, R. P., Yahdjian, L., Gherardi, L. A., Ohlert, T., Beier, C., Fraser, L. H., Jentsch, A., Loik, M. E., Maestre, F. T., Power, S. A., Yu, Q., … Zuo, X. (2024). Extreme drought impacts have been underestimated in grasslands and shrublands globally. Proceedings of the National Academy of Sciences121(4), Article e2309881120. Link to source: https://doi.org/10.1073/pnas.2309881120

Spawn, S. A., Sullivan, C. C., Lark, T. J., & Gibbs, H. K. (2020). Harmonized global maps of above and belowground biomass carbon density in the year 2010. Scientific Data7(1), Article 112. Link to source: https://doi.org/10.1038/s41597-020-0444-4

Stanley, P. L., Wilson, C., Patterson, E., Machmuller, M. B., & Cotrufo, M. F. (2024). Ruminating on soil carbon: Applying current understanding to inform grazing management. Global Change Biology30(3), Article e17223. Link to source: https://doi.org/10.1111/gcb.17223

Su, X., Han, W., Liu, G., Zhang, Y., & Lu, H. (2019). Substantial gaps between the protection of biodiversity hotspots in alpine grasslands and the effectiveness of protected areas on the Qinghai-Tibetan Plateau, China. Agriculture, Ecosystems & Environment278, 15–23. Link to source: https://doi.org/10.1016/j.agee.2019.03.013

Suttie, J. M., Reynolds, S. G., & Batello, C. (Eds.). (2005). Grasslands of the world (Vol. 34). Food and Agriculture Organization of the United Nations. Link to source: https://www.fao.org/4/y8344e/y8344e00.htm 

Sze, J. S., Carrasco, L. R., Childs, D., & Edwards, D. P. (2021). Reduced deforestation and degradation in Indigenous Lands pan-tropically. Nature Sustainability5(2), 123–130. Link to source: https://doi.org/10.1038/s41893-021-00815-2

United Nations Environment Programme World Conservation Monitoring Centre, & International Union for Conservation of Nature. (2024). Protected planet: The world database on protected areas (WDPA) and world database on other effective area-based conservation measures (WD-OECM) [Data set]. Retrieved November 2024 from Link to source: https://www.protectedplanet.net

Vijay, V., Fisher, J. R. B., & Armsworth, P. R. (2022). Co-benefits for terrestrial biodiversity and ecosystem services available from contrasting land protection policies in the contiguous United States. Conservation Letters15(5), Article e12907. Link to source: https://doi.org/10.1111/conl.12907

Villoria, N., Garrett, R., Gollnow, F., & Carlson, K. (2022). Leakage does not fully offset soy supply-chain efforts to reduce deforestation in Brazil. Nature Communications13(1), Article 5476. Link to source: https://doi.org/10.1038/s41467-022-33213-z

Visconti, P., Butchart, S. H. M., Brooks, T. M., Langhammer, P. F., Marnewick, D., Vergara, S., Yanosky, A., & Watson, J. E. M. (2019). Protected area targets post-2020. Science364(6437), 239–241. Link to source: https://doi.org/10.1126/science.aav6886

Wade, C. M., Austin, K. G., Cajka, J., Lapidus, D., Everett, K. H., Galperin, D., Maynard, R., & Sobel, A. (2020). What is threatening forests in Protected Areas? A global assessment of deforestation in Protected Areas, 2001–2018. Forests11(5), Article 539. Link to source: https://doi.org/10.3390/f11050539

Waldron, A., Adams, V., Allan, J., Arnell, A., Asner, G., Atkinson, S., Baccini, A., Baillie, J. E. M., Balmford, A., Beau, J. A., Brander, L., Brondizio, E., Bruner, A., Burgess, N., Burkart, K., Butchart, S., Button, R., Carrasco, R., Cheung, W., … Zhang, Y. P. (2020). Protecting 30% of the planet for nature: Costs, benefits and economic implications [Working paper]. International Institute for Applied Systems Analysis. Link to source: https://pure.iiasa.ac.at/id/eprint/16560/1/Waldron_Report_FINAL_sml.pdf

Ward, M., Saura, S., Williams, B., Ramírez-Delgado, J. P., Arafeh-Dalmau, N., Allan, J. R., Venter, O., Dubois, G., & Watson, J. E. M. (2020). Just ten percent of the global terrestrial protected area network is structurally connected via intact land. Nature Communications11(1), Article 4563. Link to source: https://doi.org/10.1038/s41467-020-18457-x

Watson, J. E. M., Dudley, N., Segan, D. B., & Hockings, M. (2014). The performance and potential of protected areas. Nature515(7525), 67–73. Link to source: https://doi.org/10.1038/nature13947

West, T. A. P., Wunder, S., Sills, E. O., Börner, J., Rifai, S. W., Neidermeier, A. N., Frey, G. P., & Kontoleon, A. (2023). Action needed to make carbon offsets from forest conservation work for climate change mitigation. Science381(6660), 873–877. Link to source: https://doi.org/10.1126/science.ade3535

Williams, M., Reay, D., & Smith, P. (2023). Avoiding emissions versus creating sinks—Effectiveness and attractiveness to climate finance. Global Change Biology29(8), 2046–2049. https://doi.org/10.1111/gcb.16598

Wolf, C., Levi, T., Ripple, W. J., Zárrate-Charry, D. A., & Betts, M. G. (2021). A forest loss report card for the world’s protected areas. Nature Ecology & Evolution5(4), 520–529. Link to source: https://doi.org/10.1038/s41559-021-01389-0

Yao, J., Liu, H., Huang, J., Gao, Z., Wang, G., Li, D., Yu, H., & Chen, X. (2020). Accelerated dryland expansion regulates future variability in dryland gross primary production. Nature Communications11(1), Article 1665. Link to source: https://doi.org/10.1038/s41467-020-15515-2

Yu, Q., Xu, C., Wu, H., Ke, Y., Zuo, X., Luo, W., Ren, H., Gu, Q., Wang, H., Ma, W., Knapp, A. K., Collins, S. L., Rudgers, J. A., Luo, Y., Hautier, Y., Wang, C., Wang, Z., Jiang, Y., Han, G., … Han, X. (2025). Contrasting drought sensitivity of Eurasian and North American grasslands. Nature639(8053), 114–118. Link to source: https://doi.org/10.1038/s41586-024-08478-7

Zhu, K., Chiariello, N. R., Tobeck, T., Fukami, T., & Field, C. B. (2016). Nonlinear, interacting responses to climate limit grassland production under global change. Proceedings of the National Academy of Sciences113(38), 10589–10594. Link to source: https://doi.org/10.1073/pnas.1606734113

Zhu, K., Song, Y., Lesage, J. C., Luong, J. C., Bartolome, J. W., Chiariello, N. R., Dudney, J., Field, C. B., Hallett, L. M., Hammond, M., Harrison, S. P., Hayes, G. F., Hobbs, R. J., Holl, K. D., Hopkinson, P., Larios, L., Loik, M. E., & Prugh, L. R. (2024). Rapid shifts in grassland communities driven by climate change. Nature Ecology & Evolution8(12), 2252–2264. Link to source: https://doi.org/10.1038/s41559-024-02552-z

Credits

Lead Fellow

  • Avery Driscoll

Contributors

  • Ruthie Burrows, Ph.D.

  • James Gerber, Ph.D.

  • Daniel Jasper

  • Alex Sweeney

Internal Reviewers

  • Aiyana Bodi

  • Hannah Henkin

  • Ted Otte

  • Christina Richardson, Ph.D.

  • Christina Swanson, Ph.D.

  • Paul C. West, Ph.D.

Effectiveness

We estimated that protecting 1 ha of grasslands avoids 0.06–0.90 t CO₂‑eq/yr, with emissions reductions tending to be higher in boreal and temperate regions than tropical and subtropical regions (100-yr GWP; Table 1a–d; Appendix).

We estimated effectiveness as the avoided emissions attributable to the reduction in grassland conversion conferred by protection (Equation 1; Appendix), assuming that converted grasslands are used as croplands due to data constraints. Although some grasslands are converted to intensively managed pastures or urban development, we assumed that the total land area converted to infrastructure is relatively small and emissions associated with conversion to planted pastures are comparable to those from conversion to cropland.

We aggregated estimates of avoided grassland conversion attributable to PAs from Li et al. (2024) to the biome level (Grassland lossavoided), then multiplied the result by the total emissions over 30 years from 1 ha of grassland converted to cropland. These emissions include the change in biomass and soil carbon on conversion to cropland (Carbonemissions), 30 years of lost carbon sequestration potential (Carbonuptake), and nitrous oxide emissions associated with soil carbon loss, which is a small component of total emissions (see Appendix for details; Chang et al. 2021; Huang et al., 2024; Intergovernmental Panel on Climate Change [IPCC] 2019; Poggio et al., 2021; Spawn et al., 2020).

left_text_column_width

Equation 1.

\[Effectiveness=(Grassland\text{ }loss_{avoided}) \times (Carbon_{emissions} + Carbon_{uptake}) \]

The effectiveness of grassland protection as defined here reflects only a small percentage of the carbon stored in grasslands because we accounted for the likelihood that the grassland would be converted without protection. Grassland protection is particularly impactful for areas at high risk of conversion.

left_text_column_width

Table 1a–d. Effectiveness of grassland protection at avoiding emissions and sequestering carbon. Regional differences in values are driven by variation in carbon stocks, baseline rates of grassland conversion, and the effectiveness of PAs at reducing conversion.

Unit: t CO₂‑eq (100-yr basis)/ha/yr

Estimate 0.90

Unit: t CO₂‑eq (100-yr basis)/ha/yr

Estimate 0.54

Unit: t CO₂‑eq (100-yr basis)/ha/yr

Estimate 0.13

Unit: t CO₂‑eq (100-yr basis)/ha/yr

Estimate 0.06
Left Text Column Width
Cost

The costs of grassland protection include up-front costs of land acquisition and ongoing costs of management and enforcement. The market price of land reflects the opportunity cost of not using the land for other purposes, such as agriculture or urban development. Data related to the costs of grassland protection are very limited. 

We estimated that grassland protection provides a net cost savings of approximately US$0.53/ha/yr, or US$1.58/t CO₂‑eq avoided (Table 2). This estimate reflects global averages rather than regionally specific values, and some data are not specific to grasslands. Costs and revenues are highly variable across regions, depending on the costs of land and enforcement and the potential for tourism. 

Dienerstein et al. (2024) estimated the initial cost of establishing a PA for 60 high-biodiversity ecoregions. Amongst the 20 regions that contain grasslands, the median acquisition cost was US$897/ha, which we amortized over 30 years. Costs of PA maintenance were estimated at US$9–17/ha/yr (Bruner et al., 2004; Waldron et al., 2020), though these estimates were not specific to grasslands. Additionally, these estimates reflect the costs of effective enforcement and management, but many existing PAs lack adequate funds for effective enforcement (Adams et al., 2019; Barnes et al., 2018; Burner et al., 2004). 

Protecting grasslands can generate revenue through increased tourism. Waldron et al. (2020) estimated that, across all ecosystems, tourism revenues directly attributable to PA establishment were US$43 ha/yr, not including downstream revenues from industries that benefit from increased tourism. Inclusion of a tourism multiplier would substantially increase the estimated economic benefits of grassland protection.

left_text_column_width

Table 2. Cost per unit of climate impact for grassland protection. Negative value indicates cost savings.

Unit: 2023 US$/t CO₂‑eq , 100-yr basis

Median -1.58
Left Text Column Width
Learning Curve

A learning curve is defined here as falling costs with increased adoption. The costs of grassland protection do not fall with increasing adoption, so there is no learning curve for this solution.

left_text_column_width
Speed of Action

The term speed of action refers to how quickly a climate solution physically affects the atmosphere after it is deployed. This is separate from the speed of deployment, which is the pace at which solutions are adopted.

At Project Drawdown, we define the speed of action for each climate solution as emergency brake, gradual, or delayed.

Protect Grasslands is an EMERGENCY BRAKE climate solution. It reduces pulses of emissions from the conversion of grasslands, offering the potential to deliver a more rapid impact than gradual and delayed solutions. Because emergency brake solutions can deliver their climate benefits quickly, they can help accelerate our efforts to address dangerous levels of climate change. For this reason, they are a high priority.

left_text_column_width
Caveats

Permanence

Permanence is a caveat for emissions avoidance through grassland protection that is not addressed in this analysis. Protected grasslands could be converted to agricultural uses or other development if legal protections are reversed or inadequately enforced, resulting in the loss of stored carbon. Many PAs allow for some human uses, and PA management that is not tailored to grazing needs, fire dependency, or woody plant encroachment can reduce carbon stocks within PAs (Barger et al., 2011; Chang et al., 2021; Conant et al, 2017; Jackson et al., 2002; Kemp et al., 2013; Popleau et al., 2011). Climate change is also causing widespread degradation of grasslands, including reductions in vegetation productivity that may reduce carbon storage over the long term even in the absence of additional disturbance (Chang et al., 2021; Gang et al., 2014; Li et al., 2023; Zhu et al., 2016). Climate change and aridification may also cause expansion of grassland extent (Berg & McColl, 2021; Feng & Fu, 2014; Huang et al., 2016), with mixed but overall negative impacts on terrestrial carbon uptake (Yao et al., 2020).

Additionality

Additionality is another important caveat for emissions avoidance through ecosystem protection (Ahlering et al., 2016; Williams et al., 2023). In this analysis, additionality was addressed by using baseline rates of grassland conversion in calculating effectiveness. Evaluating additionality is challenging and remains an active area of research.

left_text_column_width
Current Adoption

A total of 555 Mha of grasslands (excluding grasslands on peat soils, grasslands that are also coastal wetlands, and grasslands created through deforestation) are currently located within PAs, and an additional 832 Mha are located on IPLs not classified as PAs (Table 3e). That means that ~48% of grasslands are under some form of protection globally, with 6% in strict PAs, 13% in non-strict PAs, and 29% on IPLs that are not also PAs. As of 2023, tropical regions had the largest extent of protected grasslands (583 Mha), followed by boreal regions (339 Mha), and subtropical regions (293 Mha). In temperate regions, only 24% of grasslands (172 Mha) were under any form of protection (Table 3a–d).

left_text_column_width

Table 3a–e. Grassland under protection by biome (circa 2023). Estimates are provided for three different forms of protection: “strict” protection, including IUCN classes I and II; “non-strict” protection, including all other IUCN categories; and IPLs outside of PAs. Regional values may not sum to global totals due to rounding.

Unit: ha protected

Strict PAs 52,564,000
Non-strict PAs 82,447,000
IPLs 203,579,000

Unit: ha protected

Strict PAs 30,242,000
Non-strict PAs 51,033,000
IPLs 90,973,000

Unit: ha protected

Strict PAs 31,949,000
Non-strict PAs 83,745,000
IPLs 177,301,000

Unit: ha protected

Strict PAs 56,233,000
Non-strict PAs 166,356,000
IPLs 359,997,000

Unit: ha protected

Strict PAs 170,988,000
Non-strict PAs 383,581,000
IPLs 831,850,000
Left Text Column Width
Adoption Trend

We calculated the annual rate of new grassland protection based on the year of PA establishment for areas established in 2000–2020. The median annual increase in grassland protection was 8.1 Mha (mean 11.4 Mha; Table 4e). This represents a roughly 1.5%/yr increase in grasslands within PAs, or protection of an additional 0.3%/yr of total global grasslands. Grassland protection has proceeded more quickly in tropical regions (median increase of 4.0 Mha/yr) than in other climate zones (median increases of 1.2–1.6 Mha/yr) (Table 4a–d). 

left_text_column_width

Table 4a–e. Adoption trend for grassland protection in PAs of any IUCN class (2000–2020). The 25th and 75th percentiles reflect only interannual variance (ha grassland protected/yr). IPLs are not included in this analysis due to a lack of data.

Unit: ha grassland protected/yr

25th percentile 659,000
Median (50th percentile) 1,338,000
Mean 2,152,000
75th percentile 3,007,000

Unit: ha grassland protected/yr

25th percentile 692,000
Median (50th percentile) 1,178,000
Mean 1,728,000
75th percentile 1,715,000

Unit: ha grassland protected/yr

25th percentile 940,000
Median (50th percentile) 1,580,000
Mean 2,791,000
75th percentile 3,226,000

Unit: ha grassland protected/yr

25th percentile 2,628,000
Median (50th percentile) 4,044,000
Mean 4,711,000
75th percentile 5,774,000

Unit: ha grassland protected/yr

25th percentile 4,919,000
Median (50th percentile) 8,140,000
Mean 11,382,000
75th percentile 13,722,000
Left Text Column Width

Figure 1. Trend in grassland protection by climate zone (2000-2020) in terms of total hectares protected (left) and the percent of the current adoption ceiling protected (right). These values reflect only the area located within PA. Grasslands located in IPLs, which were not included in the calculation of the adoption trend due to a lack of data, are excluded. Data from Project Drawdown.

Enable Download
On
Adoption Ceiling

Including grasslands that are currently protected, we estimated that there are approximately 2,891 Mha of natural grasslands that are not counted in a different solution (Table 5e). This ceiling includes 1,505 Mha that are not currently under any form of protection. This includes 533 Mha of eligible grasslands in boreal regions, 723 Mha in temperate regions, 626 Mha in the subtropics, and 1,008 Mha in the tropics (Table 5a–d). 

To develop these estimates, we relied on the global grassland map from Parente et al. (2024), excluded areas that were included in the Protect ForestsProtect Peatlands, and Protect Coastal Wetlands solutions, and excluded areas that were historically forested according to the Terrestrial Ecoregions of The World dataset (Olson et al., 2001; Appendix). While it is not socially, politically, or economically realistic that all remaining grasslands could be protected, these values represent the technical upper limit to adoption of this solution.

left_text_column_width

Table 5a–e. Adoption ceiling: upper limit for adoption of legal protection of grasslands by biome. Values may not sum to global totals due to rounding. 

Unit: ha protected

Estimate 533,033,000

Unit: ha protected

Estimate 723,429,000

Unit: ha protected

Estimate 626,474,000

Unit: ha protected

Estimate 1,008,375,000

Unit: ha protected

Estimate 2,891,311,000
Left Text Column Width
Achievable Adoption

We assigned a low achievable level of a minimum of 50% of grasslands in each climate zone (Table 6a–e). For boreal and tropical regions, in which 64% and 58%, respectively, of grasslands are already protected, we assumed no change in the area under protection (Table 6a, d). For temperate areas, the low achievable target reflects an increase of 189 Mha, or more than a doubling of the current PA extent (Table 6b). In subtropical zones, this target reflects an additional 20 Mha under protection (Table 6c). We assigned a high achievable level of 70% of grasslands in each climate zone, reflecting an additional 637 Mha of protected grasslands globally, or a 46% increase in the current PA extent (Table 6a–e).

left_text_column_width

Table 6a–e. Range of achievable adoption of grassland protection by biome.

Unit: ha protected

Current adoption 338,590,000
Achievable – low 338,590,000
Achievable – high 373,123,000
Adoption ceiling 533,033,000

Unit: ha protected

Current adoption 172,248,000
Achievable – low 361,715,000
Achievable – high 506,400,000
Adoption ceiling 723,429,000

Unit: ha protected

Current adoption 292,995,000
Achievable – low 313,237,000
Achievable – high 438,532,000
Adoption ceiling 626,474,000

Unit: ha protected

Current adoption 582,586,000
Achievable – low 582,586,000
Achievable – high 705,863,000
Adoption ceiling 1,008,375,000

Unit: ha protected

Current adoption 1,386,419,000
Achievable – low 1,596,128,000
Achievable – high 2,023,918,000
Adoption ceiling 2,891,311,000
Left Text Column Width

We estimated that PAs currently reduce GHG emissions from grassland conversion by 0.468 Gt CO₂‑eq/yr (Table 7a–e). Achievable levels of grassland protection have the potential to reduce emissions 0.572–0.704 Gt CO₂‑eq/yr, with a technical upper bound of 1.006 Gt CO₂‑eq/yr (Table 7a–e). This indicates that further emissions reductions of 0.105–0.237 Gt CO₂‑eq/yr are achievable. For these benefits to be realized, grazing, fire, and woody plant management must be responsive to local grassland needs and compatible with the maintenance of carbon stocks. The solutions Improve Livestock Grazing and Deploy Silvopasture address the climate impacts of some aspects of grassland management.

Few other sources explicitly quantify the climate impacts of grassland protection, but the available data are roughly aligned with our estimates of additional mitigation potential. The Intergovernmental Panel on Climate Change estimated that avoided conversion of grasslands to croplands could reduce emissions by 0.03–0.7 Gt CO₂‑eq/yr (Nabuurs et al., 2022). Griscom et al. (2017) estimated that avoided grassland conversion could save 0.12 Gt CO₂‑eq/yr emissions from soil carbon only (not counting loss of vegetation, sequestration potential, or nitrous oxide), though their analysis did not account for current protection and relied on older estimates of grassland conversion. 

left_text_column_width

Table 7a–e. Climate impact at different levels of adoption.

Unit: GtCO₂‑eq/yr, 100-year basis

Current adoption 0.305
Achievable – low 0.305
Achievable – high 0.336
Adoption ceiling 0.481

Unit: GtCO₂‑eq/yr, 100-year basis

Current adoption 0.093
Achievable – low 0.195
Achievable – high 0.273
Adoption ceiling 0.390

Unit: GtCO₂‑eq/yr, 100-year basis

Current adoption 0.037
Achievable – low 0.039
Achievable – high 0.055
Adoption ceiling 0.078

Unit: GtCO₂‑eq/yr, 100-year basis

Current adoption 0.033
Achievable – low 0.033
Achievable – high 0.040
Adoption ceiling 0.057

Unit: GtCO₂‑eq/yr, 100-year basis

Current adoption 0.468
Achievable – low 0.572
Achievable – high 0.704
Adoption ceiling 1.006
Left Text Column Width
Additional Benefits

Floods

Grassland plants often have deep root systems, leading to high soil carbon stocks (Sloat et al., 2025). These roots can absorb water and reduce discharge into surrounding water bodies during periods of excessive rain (GRaSS, 2024).

Droughts

Different grassland plant species respond differently to drought. Variations in precipitation seasonality due to drought may allow some grass species to dominate over others (Knapp et al., 2020). Evidence suggests that higher species diversity can enhance grassland resilience to drought (Smith et al., 2024; Yu et al., 2025).  Additionally, the deep root systems of grassland plants contribute to the drought resilience of these ecosystems (Sloat et al., 2025). More resilient, biodiverse grasslands are associated with greater ecosystem stability and productivity, and can maintain ecosystem services during periods of extreme weather, such as drought (Isbell et al, 2015; Lefcheck et al., 2015).

Income and Work

Grasslands are an important source of income for surrounding communities through tourism and other ecosystem services (Bengtsson et al., 2019). Protecting grasslands sustains the long-term health of the ecosystem, which is especially important for subsistence livelihoods that depend on intact landscapes for incomes (Pelser, 2015). Sources of income that are directly generated from grasslands include: meat, milk, wool, and leather and thatching materials to make brooms, hats, and baskets (GRaSS, 2024; Pelser, 2015). People living near grasslands often rely on grazing livestock for food and income (GRaSS, 2024, Kemp 2013, Su et al., 2019). Grasslands in China support the livelihoods of about 16 million people, many of whom live in poverty (Kemp et al., 2013). The Qinghai-Tibetan Plateau is especially important for grazing livestock (Su et al., 2019). Evidence has shown that declines in grassland productivity are also linked to declines in income (Kemp et al., 2013).

Food Security

Grasslands can contribute to food security by providing food for livestock and supporting pollinators for nearby agriculture (Sloat et al., 2025). Grassland-based grazing systems are important sources of food for populations in low and middle-income countries, particularly in Oceania, Latin America, the Caribbean, the Middle East, North Africa, and sub-Saharan Africa (Resare Sahlin et al., 2023). Grasslands can support the food security of smallholder farmers and pastoralists in these regions by providing meat and milk (GRaSS, 2024; Michalk, 2018). 

Equality

Grasslands are central to many cultures, and grassland protection can support shared cultural and spiritual values for many populations. They can be sources of identity for people living in or near grassland ecosystems who have strong connections with the land (Bengtsson et al., 2019, GRaSS, 2024). In Mongolia, for example, grasslands sustain horses, which are central to the cultural identities and livelihoods of communities, particularly nomadic populations (Kemp et al., 2014). Grasslands can also be an important source of shared identity for pastoralists who move herds to graze based on seasonal cycles during the year (Liechti & Biber, 2016).

Nature Protection

Many grasslands are biodiversity hot spots (Petermann & Buzhdygan, 2021; Su et al., 2019). Numerous plant and animal species are endemic to grasslands, meaning they have limited habitat ranges and can easily become endangered with habitat degradation (Sloat et al., 2025). In Germany, grasslands in PAs were found to have higher plant diversity than in non-PAs (Kachler et al., 2023). Grasslands are important habitats for bird species that rely on them for breeding grounds (GRaSS, 2024; Nugent et al., 2022).

Land Resources

The unique, deep root structures of some grassland plants can improve soil stability and reduce soil erosion (Bengtsson et al., 2019; GRaSS, 2024; Kemp et al., 2013).

Water Resources

Grasslands can regulate water flows and water storage. The root systems can help rainwater reach deep underground, recharging groundwater stores (Bengtsson et al., 2019; GRaSS, 2024).

left_text_column_width
Risks

Relying on grassland protection as an emissions reduction strategy can be undermined if ecosystem conversion that is not allowed inside a PA simply takes place outside of it instead (Aherling et al., 2016; Asamoah et al., 2021). If such leakage leads to conversion of ecosystems that have higher carbon stocks, such as forests, peatlands, or coastal wetlands, total emissions may increase. Combining grassland protection with policies to reduce incentives for ecosystem conversion can help avoid leakage.

left_text_column_width
Interactions with Other Solutions

Reinforcing

PAs often include multiple ecosystems. Grassland protection will likely lead to protection of other ecosystems within the same areas, and the health of nearby ecosystems is improved by the services provided by intact grasslands. 

left_text_column_width

Restored grasslands need protection to reduce the risk of future disturbance, and the health of protected grasslands can be improved through the restoration of adjacent degraded grasslands.

left_text_column_width

Competing

Protecting grasslands & savannas could limit land availability for renewable energy technologies and raw material and food production and therefore competes with the following solutions for land:

left_text_column_width
Dashboard

Solution Basics

ha of grassland or savanna protected

t CO₂-eq (100-yr)/unit/yr
0.9
units
Current 3.386×10⁸ 03.386×10⁸3.731×10⁸
Achievable (Low to High)

Climate Impact

Gt CO₂-eq (100-yr)/yr
Current 0.305 0.3050.336
US$ per t CO₂-eq
-2
Emergency Brake

CO₂,  N₂O

Solution Basics

ha of grassland or savanna protected

t CO₂-eq (100-yr)/unit/yr
0.54
units
Current 1.722×10⁸ 03.617×10⁸5.064×10⁸
Achievable (Low to High)

Climate Impact

Gt CO₂-eq (100-yr)/yr
Current 0.093 0.1950.273
US$ per t CO₂-eq
-2
Emergency Brake

CO₂,  N₂O

Solution Basics

ha of grassland or savanna protected

t CO₂-eq (100-yr)/unit/yr
0.13
units
Current 2.93×10⁸ 03.132×10⁸4.385×10⁸
Achievable (Low to High)

Climate Impact

Gt CO₂-eq (100-yr)/yr
Current 0.037 0.0390.055
US$ per t CO₂-eq
-2
Emergency Brake

CO₂,  N₂O

Solution Basics

ha of grassland or savanna protected

t CO₂-eq (100-yr)/unit/yr
0.06
units
Current 5.826×10⁸ 05.826×10⁸7.059×10⁸
Achievable (Low to High)

Climate Impact

Gt CO₂-eq (100-yr)/yr
Current 0.033 0.0330.04
US$ per t CO₂-eq
-2
Emergency Brake

CO₂,  N₂O

Trade-offs

Establishment of PAs may limit local access to grasslands for grazing or other forms of income generation, although effective management plans should account for the grazing needs of the protected grassland. Second, allocation of budgetary resources to PA establishment may divert resources from maintenance and enforcement of existing PAs. Finally, protection of grasslands may reduce land availability for renewable energy infrastructure, such as solar and wind power.

left_text_column_width
Action Word
Protect
Solution Title
Grasslands & Savannas
Classification
Highly Recommended
Lawmakers and Policymakers
  • Set scalable targets (across both biogeographic and administrative levels) for grassland protections, including outcomes-based reporting, indicators for the rate of progress, goals for inclusivity, and measurements for enforcement efficacy; incorporate these targets into national climate plans and multilateral agreements.
  • Ensure public procurement uses products and supply chains that do not disrupt PAs and grasslands; ensure public development projects do not disturb PAs and grasslands.
  • Grant Indigenous communities full property rights and autonomy and support them in monitoring, managing, and enforcing PAs; adhere to principles of free, prior, and informed consent when engaging with Indigenous communities and lands.
  • Manage fire, biodiversity, and grazing in protected grasslands in accordance with ecological needs, learning from and working with Indigenous communities.
  • Ensure PAs don’t displace, violate rights, or reduce access to vital resources for local and Indigenous communities.
  • Expand regulatory, legal, and technical support for privately protected grasslands.
  • When expanding PAs, acquire relevant adjacent properties first, if possible, to increase connectivity and reduce costs; grant restored grasslands protected status.
  • Invest in PA infrastructure, monitoring, management, and enforcement mechanisms.
  • Ban or restrict overgrazing and extractive harvesting while allowing for sustainable use of PAs from Indigenous and local communities; compensate herders for lost grazing lands, if necessary.
  • Ensure PAs are adequately financed and, if applicable, provide financing for low- and middle-income countries and communities for grassland protections.
  • Ensure incentives and/or compensation for reducing livestock or protecting grasslands are evenly distributed with particular attention to low- and middle-income farmers and communities.
  • Use financial incentives such as subsidies, tax breaks, payments for ecosystem services (PES), and debt-for-nature swaps to protect grasslands from development.
  • Remove harmful subsidies for agricultural, grazing, mining, and other resource extraction.
  • Use comanagement, community-governed, land-trust, and/or privately protected models to expand PAs, increase connectivity, and engage communities; ensure a participatory approach to designating and managing PAs.
  • Use real-time monitoring, ground-level sensors, and satellite data to enforce protections, ensuring adequate baseline data are gathered if possible.
  • Ensure budgets adequately split financing between expanding PAs and managing PAs; prioritize quality management of existing PAs before expanding new designations except in cases where nonprotected land conversion presents the most serious risks to people, the climate, or biodiversity.
  • Conduct proactive land-use planning to avoid roads and other development projects that may interfere with PAs or incentivize development.
  • Create processes for legal grievances, dispute resolution, and restitution.
  • Create programs that educate the public on PA regulations, the benefits of the regulations, and how to use grassland resources sustainably.
  • Join, support, or create certification and independent audit schemes to monitor effectiveness and identify necessary improvements in management.
Practitioners
  • Set scalable targets (across both biogeographic and administrative levels) for grassland protection, including outcomes-based reporting, indicators for the rate of progress, goals for inclusivity, and measurements for enforcement efficacy; advocate to incorporate these targets into national climate plans and multilateral agreements.
  • Improve monitoring and evaluation standards for grassland ecologies and the impacts from animal agriculture.
  • Ensure incentives and/or compensation for reducing livestock or protecting grasslands are evenly distributed with particular attention to low- and middle-income farmers and communities.
  • Ensure PAs are adequately financed and, if applicable, provide financing for low- and middle-income countries and communities for grassland protections.
  • When expanding PAs, acquire relevant adjacent properties first, if possible, to increase connectivity and reduce costs.
  • Use financial incentives such as subsidies, tax breaks, PES, and debt-for-nature swaps to protect grasslands from development.
  • Empower local communities to manage grasslands and ensure a participatory approach to designating and managing PAs.
  • Use comanagement, community-governed, land-trust, and/or privately-protected models to expand PAs, increase connectivity, and engage communities.
  • Ban or restrict overgrazing and extractive harvesting while allowing sustainable use of PAs by Indigenous and local communities; compensate herders for lost grazing lands if necessary.
  • Use real-time monitoring, ground-level sensors, and satellite data to enforce protections, ensuring adequate baseline data are gathered if possible.
  • Ensure budgets adequately split financing between expanding PAs and managing PAs; prioritize quality management of existing PAs before expanding new designations - except in cases where non-protected land conversion presents the most serious risk to people, the climate, or biodiversity.
  • Create education programs that educate the public on PA regulations, the benefits of the regulations, and how to use grassland resources sustainably.
  • Join, support, or create certification and independent audit schemes to monitor effectiveness and identify necessary improvements in management.
Business Leaders
  • Ensure operations, development, and supply chains are not degrading grasslands or interfering with PA management.
  • Integrate grassland protection into net-zero strategies, if relevant.
  • Commit and adhere to minimizing irrecoverable carbon loss through development projects, supply-chain management, and general operations.
  • Help revise existing or create new high-integrity carbon markets, institutions, rules, and norms to cultivate the demand for high-quality carbon credits.
  • Only purchase carbon credits from high-integrity, verifiable carbon markets, and do not use them as replacements for decarbonizing operations or claim them as “offsets.”
  • Consider donating to established grassland protection funds in place of carbon credits.
  • Take advantage of financial incentives such as subsidies, tax breaks, and PES to grasslands from development.
  • Amplify the voices of local communities and civil society to promote robust media coverage.
  • Invest in and support Indigenous and local communities' capacity for management, legal protection, and public relations.
  • Leverage political influence to advocate for stronger grassland protection policies at national and international levels.
  • Conduct proactive land use planning to avoid roads and other development projects that may interfere with PAs.
  • Join, support, or create certification and independent audit schemes to monitor effectiveness and identify necessary improvements in management.

Further information:

Nonprofit Leaders
  • Advocate for enhanced enforcement of existing PAs and IPLs, expansion of new PAs and IPLs, and for more public investments.
  • Advocate for scalable targets (across both biogeographic and administrative levels) for grassland protections, including outcomes-based reporting, indicators for the rate of progress, goals for inclusivity, and measurements for enforcement efficacy; advocate for these goals to be incorporated into national climate plans and multilateral agreements.
  • Help manage and monitor protected grasslands using real-time monitoring, ground-based sensors, and satellite data.
  • Provide financial support for monitoring and enforcement of PAs and IPLs.
  • Help conduct proactive land-use planning to avoid infrastructure or development projects that may interfere with protected grasslands or incentivize destruction.
  • Advocate for creating legal grievance processes, dispute resolution mechanisms, and restitution procedures for violations or disagreements over PAs or IPLs.
  • Help revise existing or create new high-integrity carbon markets, institutions, rules, and norms to cultivate the demand for high-quality carbon credits.
  • Amplify the voices of local communities and civil society to promote robust media coverage.
  • Invest in and support the capacity of Indigenous and local communities for management, legal protection, and public relations.
  • Use or advocate for financial incentives such as subsidies, tax breaks, and PES to protect grasslands from development.
  • Improve monitoring and evaluation standards for grassland ecologies and the impacts from animal agriculture.
  • Help classify and map grasslands, carbon stocks, and biodiversity data and create local, national, and international standards for classification.
  • Work with insurance companies to reduce insurance premiums for properties that protect or maintain grasslands.
  • Create and manage a global database of protected grasslands, grassland loss, restoration, and management initiatives.
  • Join, support, or create certification and independent audit schemes to monitor effectiveness and identify necessary improvements in management.
  • Create programs that educate the public on PA regulations, the benefits of the regulations, and how to use grassland resources sustainably.

Further information:

Investors
  • Ensure investment portfolios do not degrade grasslands or interfere with PAs or IPLs, using data, information, and the latest technology to inform investments.
  • Consider any project that releases irrecoverable carbon loss through the destruction of ecosystems like grasslands to be high risk, avoid investments in these projects as much as possible, and divest from any companies violating this principle.
  • Invest in grassland protection, monitoring, management, and enforcement mechanisms.
  • Use financial mechanisms such as credible biodiversity offsets, payments for ecosystem services, voluntary high-integrity carbon markets, and debt-for-nature swaps to fund grassland protection.
  • Invest in and support the capacity of Indigenous and local communities for management, legal protection, and public relations.
  • Share with other investors and nongovernmental organizations data, information, and investment frameworks that successfully avoid investments that drive grassland destruction.
  • Provide favorable loans to Indigenous communities and entrepreneurs and businesses protecting grasslands.
  • Join, support, or create certification and independent audit schemes to monitor effectiveness and identify necessary improvements in management.

Further information:

Philanthropists and International Aid Agencies
  • Advocate for enhanced enforcement of existing PAs and IPLs, expansion of new PAs and IPLs, and more public investments.
  • Advocate for scalable targets (across both biogeographic and administrative levels) for grassland protections, including outcomes-based reporting, indicators for the rate of progress, goals for inclusivity, and measurements for enforcement efficacy; advocate for these goals to be incorporated into national climate plans and multilateral agreements.
  • Use or advocate for financial incentives such as subsidies, tax breaks, and PES to protect grasslands from development.
  • Help manage and monitor protected grassland, using real-time monitoring and satellite data.
  • Provide technical assistance to low- and middle-income countries and communities for grasslands protection.
  • Provide financial assistance to low- and middle-income countries and communities for grasslands protection.
  • Provide financial support to organizations and institutions developing and deploying monitoring technology and conducting grassland research.
  • Help conduct proactive land-use planning to avoid infrastructure or development projects that may interfere with protected grasslands or incentivize destruction.
  • Help revise existing or create new high-integrity carbon markets, institutions, rules, and norms to cultivate the demand for high-quality carbon credits.
  • Amplify the voices of local communities and civil society to promote robust media coverage.
  • Invest in and support Indigenous and local communities' capacity for management, legal protection, and public relations.
  • Advocate for creating legal grievance processes, dispute resolution mechanisms, and restitution procedures for violations or disagreements over PAs or IPLs.
  • Help classify and map grasslands, carbon stocks, and biodiversity data and create local, national, and international standards for classification.
  • Work with insurance companies to reduce insurance premiums for properties that protect or maintain grasslands.
  • Create and manage a global database of protected grasslands, grassland loss, restoration, and management initiatives.
  • Join, support, or create certification and independent audit schemes to monitor effectiveness and identify necessary improvements in management.
  • Create education programs that educate the public on PA regulations, the benefits of the regulations, and how to use grassland resources sustainably.

Further information:

Thought Leaders
  • Help change the narrative around grasslands by highlighting their value and benefits such as supporting human life, biodiversity, ecosystem resilience, and climate regulation.
  • Advocate for enhanced enforcement of existing PAs and IPLs, expansion of new PAs and IPLs, and public investments.
  • Advocate for scalable targets (across both biogeographic and administrative levels) for grassland protections, including outcomes-based reporting, indicators for the rate of progress, goals for inclusivity, and measurements for enforcement efficacy; advocate for these to be incorporated into national climate plans and multilateral agreements.
  • Advocate for or use financial incentives such as subsidies, tax breaks, PES, and debt-for-nature swaps to protect grasslands from development.
  • Help manage and monitor protected grasslands using real-time monitoring and satellite data.
  • Help conduct proactive land-use planning to avoid infrastructure or development projects that may interfere with protected grasslands or incentivize conversion.
  • Advocate for creating legal grievance processes, dispute resolution mechanisms, and restitution procedures for violations or disagreements over PAs or IPLs.
  • Help improve monitoring and evaluation standards for grassland ecologies and impacts from animal agriculture.
  • Help revise existing or create new high-integrity carbon and biodiversity markets, institutions, rules, and norms to cultivate the demand for high-quality carbon credits.
  • Amplify the voices of local communities and civil society to promote robust media coverage.
  • Support Indigenous and local communities' capacity for legal protection, management, and public relations.
  • Help classify and map grasslands, carbon stocks, and biodiversity data and create local, national, and international standards for classification.
  • Create and manage a global database of protected grasslands, grassland loss, restoration, and management initiatives.
  • Join, support, or create certification and independent audit schemes to monitor effectiveness and identify necessary improvements in management.
  • Create programs that educate the public on PA regulations, the benefits of the regulations, and how to use grassland resources sustainably.

Further information:

Technologists and Researchers
  • Develop standardized indicators of grassland degradation.
  • Research the ecological interactions of grasslands with other ecosystems; share data widely and include recommendations for coordinated action.
  • Assess and publish costs of PA designation, management, and evaluation.
  • Conduct comparative analysis on different types of governance models for PAs to determine impacts on climate, biodiversity, and human well-being.
  • Examine the relationship between geography and governance structures of private PAs, looking for spatial patterns and roles of various stakeholders such NGOs, businesses, and private landowners.
  • Study behavioral change mechanisms that can increase effectiveness and enforcement of PAs.
  • Improve monitoring methods using field measurements, models, satellite imagery, and GIS tools.
  • Create or improve on existing software tools that allow for dynamic planning and management of PAs by monitoring impacts on local communities, the climate, and biodiversity.
  • Create local research sites to support PAs and provide technical assistance.
  • Create tools for local communities to monitor grasslands, such as mobile apps, e-learning platforms, and mapping tools.
  • Develop supply chain tracking software for investors and businesses seeking to create sustainable portfolios and products.

Further information:

Communities, Households, and Individuals
  • Avoid developing intact grasslands and adhere to sustainable use guidelines of PAs.
  • Participate or volunteer in local grassland protection efforts; use or advocate for comanagement, community-governed, land-trust, and/or privately protected models to expand PAs, increase connectivity, and allow for continued community engagement.
  • Help manage and monitor protected grasslands using real-time monitoring and satellite data.
  • Establish coordinating bodies for farmers, herders, developers, landowners, policymakers, and other stakeholders to holistically manage PAs.
  • Advocate for enhanced enforcement of existing PAs and IPLs, expansion of new PAs and IPLs, and public investments.
  • Help conduct proactive land-use planning to avoid infrastructure or development projects that may interfere with protected grasslands or incentivize destruction.
  • Advocate for creating legal grievance processes, dispute resolution mechanisms, and restitution procedures for violations or disagreements over PAs or IPLs.
  • Help revise existing or create new high-integrity carbon and biodiversity markets, institutions, rules, and norms to cultivate the demand for high-quality carbon credits.
  • Support Indigenous communities' capacity for management, legal protection and public relations.
  • Use or advocate for financial incentives such as subsidies, tax breaks, and PES to protect grasslands from development.
  • Help classify and map grasslands and create local, national, and international standards for classification.
  • Ensure PAs don’t displace, violate rights, or reduce access to vital resources for local and Indigenous communities.
  • Work with insurance companies to reduce insurance premiums for properties that protect or maintain grasslands.
  • Plant native species to help improve the local ecological balance and stabilize the soil, especially on property adjacent to PAs.
  • Use nontoxic cleaning and gardening supplies, purchase unbleached paper products, and recycle to help keep pollution and debris out of grasslands.
  • Join, support, or create certification and independent audit schemes to monitor effectiveness and identify necessary improvements in management.
  • Create programs that educate the public on PA regulations, the benefits of the regulations, and how to use grassland resources sustainably.

Further information:

Evidence Base

Consensus of effectiveness in reducing emissions and maintaining carbon removal: High

There is high scientific consensus that grassland protection reduces emissions by reducing conversion of grasslands. Grasslands have been extensively converted globally because of their utility for agricultural use, and many extant grasslands are at high risk of conversion (Carbutt et al., 2017; Gang et al., 2014). Li et al. (2024) found that PAs prevent conversion of approximately 0.35% of global grasslands per year. Although grasslands remain understudied relative to some other ecosystems, there is robust evidence that PAs and IPLs reduce forest conversion, with estimates in different regions ranging from 17–75% reductions in forest loss relative to unprotected areas (Baragwanth & Bayi, 2020; Graham et al., 2021; McNichol et al., 2023; Sze et al., 2022; Wolf et al., 2022). Additional research specific to grasslands on the effectiveness of PAs and IPLs at preventing land use change would be valuable. 

Conversion of grasslands to croplands produces emissions through the loss of soil carbon and biomass (IPCC, 2019). A recent meta-analysis based on 5,980 soil carbon measurements found that grassland conversion to croplands reduces soil carbon stocks by a global average of 23%, or almost 30 t CO₂ /ha (Huang et al., 2024), before accounting for nitrous oxide emissions (IPCC, 2019), loss of biomass carbon stocks (Spawn et al., 2020), and loss of sequestration potential (Chang et al., 2021).

Regional studies also find that grassland protection provides emissions savings. For instance, a study of grasslands in Argentina and the United States found that conversion to croplands reduced total carbon stocks, including soil and biomass, by 117 t CO₂‑eq /ha (Kim et al., 2016). Ahlering et al. (2016) conclude that protecting just 210,000 ha of unprotected grasslands in the U.S. Northern Great Plains would avoid 11.7 Mt CO₂‑eq over 20 years, with emissions savings of 51.6 t CO₂‑eq /ha protected, or 35.6 t CO₂‑eq /ha after accounting for leakage and uncertainty. 

The quantitative results presented in this assessment synthesize findings from 13 global datasets supplemented by three meta-analyses with global scopes. We recognize that geographic bias in the information underlying global data products creates bias and hope this work inspires research and data sharing on this topic in underrepresented regions.

left_text_column_width
Appendix

This analysis quantifies the emissions avoidable through legal protection of grasslands via establishment of PAs or land tenure for Indigenous peoples. We leveraged a global grassland distribution map alongside other ecosystem distribution maps, shapefiles of PAs and IPLs, available data on rates of avoided ecosystem loss attributable to PA establishment, maps of grassland carbon stocks in above- and below-ground biomass, and biome-level estimates of soil carbon loss for grasslands converted to croplands. This appendix describes the source data products and how they were integrated. 

Grassland Extent

We relied on the 30-m resolution global map of grassland extent developed by Parente et al. (2024), which classifies both “natural and semi-natural grasslands” and “managed grasslands.” This solution considers only the “natural and semi-natural grasslands” class. We first resampled the data to 1 km resolution by calculating the percent of the pixel occupied by grasslands. To avoid double counting land considered in other ecosystem protection solutions (Protect ForestsProtect Peatlands, and Protect Coastal Wetlands), we then adjusted the grassland map so that no pixel contained a value greater than 100% after summing all ecosystem types. These other ecosystems can overlap with grasslands either because they are non-exclusive (e.g., peatland soils can have grassland vegetation), or because of variable definitions (e.g., the grassland map allows up to 50% tree cover, which could be classified as a forest by other land cover maps). After adjusting for other ecosystems, we used the Terrestrial Ecoregions of the World data (Olson et al., 2001) to exclude areas of natural forest, because these areas are eligible for other solutions. 

The resultant raster of proportionate grassland coverage was converted to absolute areas, and used to calculate the total grassland area for each of four latitude bands (tropical: –23.4° to 23.4°; subtropical: –35° to –23.4° and 23.4° to 35°; temperate: –50° to –35° and 35° to 50°; boreal: <–50° and >50°). The analysis was conducted by latitude bands in order to retain some spatial variability in emissions factors and degradation rates. 

Protected Grassland Areas

We identified protected grassland areas using the World Database on Protected Areas (WDPA) (UNEP-WCMC and IUCN, 2024), which contains boundaries for each PA and additional information, including their establishment year and IUCN management category (Ia–VI, not applicable, not reported, and not assigned). The PA boundary data were converted to a raster and used to calculate the grassland area within PA boundaries for each latitude band and each PA category. To evaluate trends in adoption over time, we also aggregated protected areas by establishment year as reported in the WDPA. 

We used the maps of IPLs from Garnett et al. (2018) to identify IPLs that were not inside of established PAs. The total grassland area within IPLs was calculated according to the same process as for PAs.

Avoided Grassland Conversion

Broadly, we estimated annual, per-hectare emissions savings from grassland protection as the difference between net carbon exchange in a protected grassland and an unprotected grassland. This calculation followed Equation A1, in which the annual grassland loss avoided due to protection (%/yr) is multiplied by the 30-yr cumulative sum of emissions per hectare of grassland converted to cropland (CO₂‑eq /ha over 30 yr). 

left_text_column_width

Equation A1.

\[ Effectiveness = Grassland\text{ }loss_{avoided} \times \sum_{t=1}^{30}{Emissions} \]

The avoided grassland loss attributable to PAs was calculated from the source data for Figure 7 of Li et al. (2024), which provides the difference in habitat loss between protected areas and unprotected control areas between 2003 and 2019 by ecoregion. These data were filtered to only include grasslands, aggregated to latitude bands, and used to calculate annual linear rates of avoided habitat loss. Tropical and subtropical regions were not clearly distinguished, so the same rate was used for both.

Grassland Conversion Emissions

The emissions associated with grassland conversion to cropland include loss of above- and below-ground biomass carbon stocks, loss of soil carbon stocks, and loss of carbon sequestration potential. We used data on above- and below-ground biomass carbon stocks from Spawn et al. (2020) to calculate the average carbon stocks by latitude band for grassland pixels and cropland pixels. We used the 2010 European Space Agency Climate Change Initiative (ESA CCI, 2019) land cover dataset for this calculation because it was the base map used to generate the biomass carbon stock dataset. The per-hectare difference between biomass carbon stocks in grasslands and croplands represents the emissions from biomass carbon stocks following grassland conversion.

We aggregated soil carbon stocks from SoilGrids 2.0 (0–30 cm depth) to latitude bands for grassland pixels from the 2015 ESA CCI land cover dataset, which was the base map used for the SoilGrids dataset (Poggio et al., 2021). To avoid capturing peatlands, which have higher carbon stocks, we excluded pixels with soil carbon contents >15% by mass (a slightly conservative cutoff for organic soils) prior to aggregation. We took the percent loss of soil carbon following grassland-to-cropland conversion from Table S8 of the meta-analysis by Huang et al. (2024), who also conducted their analysis by latitude band. Soil carbon losses are also associated with nitrous oxide emissions, which were calculated per the IPCC Tier 1 equations as follows using the default carbon-to-nitrogen ratio of 15:1. 

We calculated the loss of carbon sequestration potential based on estimates of grassland annual net CO₂ flux, extracted from Table S2 from Chang et al. (2021). These data include field- and model-based measurements of grassland net CO₂ flux and were used to calculate median values by latitude band.

left_text_column_width
Updated Date
Subscribe to Droughts

Drawdown Delivered

Join the 85,000+ subscribers discovering how to drive meaningful climate action around the world! Every other week, you'll get expert insights, cutting-edge research, and inspiring stories.

Receive biweekly email newsletter updates from Project Drawdown. Unsubscribe at any time.

Support Climate Action