Aumont, O., & Bopp, L. (2006). Globalizing results from ocean in situ iron fertilization studies. Global Biogeochemical Cycles, 20(2). Link to source: https://doi.org/10.1029/2005GB002591
Bakker, D. C. (2004). Storage of carbon dioxide by greening of oceans. The global carbon cycle: integrating humans, climate, and the natural world, 62, 453-469.
Boettcher, M., Chai, F., Canothan, M., Cooley, S., Keller, D. P., Klinsky, S., ... & Webb, R. M. (2023). A code of conduct for marine carbon dioxide removal research. Link to source: https://www.aspeninstitute.org/publications/a-code-of-conduct-for-marine-carbon-dioxide-removal-research/
Boyd, P. W. (2008). Implications of large-scale iron fertilization of the oceans. Marine Ecology Progress Series, 364, 213-218. Link to source: https://www.int-res.com/articles/theme/m364p213.pdf
Boyd, P. W., Jickells, T., Law, C. S., Blain, S., Boyle, E. A., Buesseler, K. O., ... & Watson, A. J. (2007). Mesoscale iron enrichment experiments 1993-2005: synthesis and future directions. Science, 315(5812), 612-617. Link to source: https://doi.org/10.1126/science.1131669
Buesseler, K. O., & Boyd, P. W. (2003). Will ocean fertilization work?. Science, 300(5616), 67-68. Link to source: https://doi.org/10.1126/science.1082959
Cao, L., & Caldeira, K. (2010). Can ocean iron fertilization mitigate ocean acidification? A letter. Climatic Change, 99(1), 303-311. Link to source: https://link.springer.com/article/10.1007/s10584-010-9799-4
Emerson, D., Sofen, L. E., Michaud, A. B., Archer, S. D., & Twining, B. S. (2024). A cost model for ocean iron fertilization as a means of carbon dioxide removal that compares ship‐and aerial‐based delivery, and estimates verification costs. Earth's Future, 12(4), e2023EF003732. Link to source: https://doi.org/10.1029/2023EF003732
Gattuso, J. P., Williamson, P., Duarte, C. M., & Magnan, A. K. (2021). The potential for ocean-based climate action: negative emissions technologies and beyond. Frontiers in Climate, 2, 575716. Link to source: https://doi.org/10.3389/fclim.2020.575716
Harrison, D. P. (2013). A method for estimating the cost to sequester carbon dioxide by delivering iron to the ocean. International Journal of Global Warming, 5(3), 231-254. Link to source: https://doi.org/10.1504/IJGW.2013.055360
Harvey, J. (2020, June 18). 30 years: The iron hypothesis is no more. Moss Landing Marine Laboratories. Link to source: https://mlml.sjsu.edu/2020/06/18/30-years-the-iron-hypothesis-is-no-more/
Jin, X., & Gruber, N. (2003). Offsetting the radiative benefit of ocean iron fertilization by enhancing N2O emissions. Geophysical Research Letters, 30(24). Link to source: https://doi.org/10.1029/2003GL018458
Marinov, I., Gnanadesikan, A., Toggweiler, J. R., & Sarmiento, J. L. (2006). The southern ocean biogeochemical divide. Nature, 441(7096), 964-967. Link to source: https://doi.org/10.1038/nature04883
Martin, J. H., Gordon, M., & Fitzwater, S. E. (1991). The case for iron. Limnology and Oceanography, 36(8), 1793-1802. Link to source: https://doi.org/10.4319/lo.1991.36.8.1793
National Academies of Sciences, Engineering, and Medicine. (2021). A research strategy for ocean-based carbon dioxide removal and sequestration. Link to source: https://www.nationalacademies.org/our-work/a-research-strategy-for-ocean-carbon-dioxide-removal-and-sequestration
Ocean Visions. (2023). Microalgae cultivation. Retrieved May 29, 2025, from Link to source: https://oceanvisions.org/microalgae-cultivation/
Oschlies, A., Koeve, W., Rickels, W., & Rehdanz, K. (2010). Side effects and accounting aspects of hypothetical large-scale Southern Ocean iron fertilization. Biogeosciences, 7(12), 4017-4035. Link to source: https://bg.copernicus.org/articles/7/4017/2010/bg-7-4017-2010.pdf
Oschlies, A., Slomp, C., Altieri, A. H., Gallo, N. D., Gregoire, M., Isensee, K., ... & Wu, J. (2025). Potential impacts of marine carbon dioxide removal on ocean oxygen. Environmental Research Letters. Link to source: https://doi.org/10.1088/1748-9326/ade0d4
Robinson, J., Popova, E. E., Yool, A., Srokosz, M., Lampitt, R. S., & Blundell, J. R. (2014). How deep is deep enough? Ocean iron fertilization and carbon sequestration in the Southern Ocean. Geophysical Research Letters, 41(7), 2489-2495. Link to source: https://doi.org/10.1002/2013GL058799
Sarmiento, J. L., Gruber, N., Brzezinski, M. A., & Dunne, J. P. (2004). High-latitude controls of thermocline nutrients and low latitude biological productivity. Nature, 427(6969), 56-60. Link to source: https://doi.org/10.1038/nature02127
Shepherd, J. G. (2009). Geoengineering the climate: science, governance and uncertainty. Royal Society. Link to source: https://royalsociety.org/-/media/policy/publications/2009/8693.pdf
Strong, A., Chisholm, S., Miller, C., & Cullen, J. (2009). Ocean fertilization: time to move on. Nature, 461(7262), 347-348. Link to source: https://doi.org/10.1038/461347a
Tagliabue, A., Aumont, O., DeAth, R., Dunne, J. P., Dutkiewicz, S., Galbraith, E., ... & Yool, A. (2016). How well do global ocean biogeochemistry models simulate dissolved iron distributions?. Global Biogeochemical Cycles, 30(2), 149-174. Link to source: https://doi.org/10.1002/2015GB005289
Tagliabue, A., Twining, B. S., Barrier, N., Maury, O., Berger, M., & Bopp, L. (2023). Ocean iron fertilization may amplify climate change pressures on marine animal biomass for limited climate benefit. Global Change Biology, 29(18), 5250-5260. Link to source: https://doi.org/10.1111/gcb.16854
Trick, C. G., Bill, B. D., Cochlan, W. P., Wells, M. L., Trainer, V. L., & Pickell, L. D. (2010). Iron enrichment stimulates toxic diatom production in high-nitrate, low-chlorophyll areas. Proceedings of the National Academy of Sciences, 107(13), 5887-5892. Link to source: https://doi.org/10.1073/pnas.0910579107
Yoon, J. E., Yoo, K. C., Macdonald, A. M., Yoon, H. I., Park, K. T., Yang, E. J., ... & Kim, I. N. (2018). Reviews and syntheses: Ocean iron fertilization experiments–past, present, and future looking to a future Korean Iron Fertilization Experiment in the Southern Ocean (KIFES) project. Biogeosciences, 15(19), 5847-5889. Link to source: https://doi.org/10.5194/bg-15-5847-2018