Improve Aquaculture

Image
Image
An image of an aquaculture facility
Coming Soon
Off
Summary

Improving aquaculture involves reducing CO₂ and other GHG emissions during the production of farmed fish and other aquatic animals through better feed efficiency and the decarbonization of on-farm energy use. Advantages include reduced demand for feedstocks produced from both wild capture fisheries and terrestrial sources, which benefits marine and terrestrial ecosystems. Disadvantages include the costs of transitioning to fossil-free energy sources. While these interventions are unlikely to lead to globally meaningful emissions reductions (>0.1 Gt CO₂‑eq/yr ), we consider Improve Aquaculture as “Worthwhile” given the rapid and ongoing expansion of the industry, its potential to replace higher-emission protein sources, and the ecosystem benefits of reducing feedstock demand.

Description for Social and Search
Improving aquaculture involves reducing CO2 and other GHG emissions during the production of farmed fish and other aquatic animals through better feed efficiency and the decarbonization of on-farm energy use.
Overview

What is our assessment?

While Improve Aquaculture is unlikely to have a major climate impact, our assessment concludes that it is “Worthwhile” due to its ability to reduce pressure on wild fish stocks and terrestrial biomass, and because efficiency improvements made now are likely to scale into greater climate impact as the sector continues to expand.

Plausible Could it work? Yes
Ready Is it ready? Yes
Evidence Are there data to evaluate it? Yes
Effective Does it consistently work? Yes
Impact Is it big enough to matter? No
Risk Is it risky or harmful? No
Cost Is it cheap? ?

What is it?

GHG emissions from aquaculture can be reduced by increasing the feed conversion efficiency of the cultured animals and decarbonizing on-farm energy use. Aquaculture – farming aquatic animals or plants for food or other purposes – is rapidly growing and now accounts for over half of the global production of aquatic animals, exceeding wild capture fisheries. Over 7% of human-consumed protein is aquaculture-produced. As this sector has grown, it has become increasingly reliant on external feed sources, with the share of non-fed aquaculture (e.g., bivalves that feed from the water column) dropping from nearly 40% in 2000 to 27% in 2022. Improving feed conversion ratios (FCR) – the amount of feed it takes to produce a given amount of biomass – can lower feed demand and reduce CO₂ and other GHG emissions tied to feed production and transport. FCRs can be improved by feed formulations that increase digestibility, genetic or breeding modifications to improve digestive efficiency in the cultured animal, species-specific feed formulations, and optimizing ration size and feeding frequency. At the same time, decarbonizing on-farm energy use can help reduce CO₂ emissions from common equipment, such as aerators and water pumps.

Does it work?

Interventions to improve feed and energy efficiency can reduce CO₂ emissions from aquaculture operations, although the potential achievable climate impact of these actions is currently unlikely to be globally meaningful (>0.1 Gt CO₂‑eq/yr ). Total annual emissions from aquaculture were estimated to be 0.26 Gt CO₂‑eq/yr in 2017, with nearly 60% of that attributed to feed production. Improving FCR is both plausible and effective, since it directly reduces the amount of food needed to cultivate fish and other species, thereby lowering emissions tied to feed production and transport. Between 1995 and 2007, improvements in FCR have ranged between 5 to 15% for a variety of species, including shrimp, salmon, carp, and tilapia.

Decarbonizing on-farm energy use can reduce equipment-related emissions, particularly in intensive systems that use energy for automated feeding systems, water temperature control, and circulation and aeration systems. In general, the potential impact of decarbonizing varies widely because on-farm energy use differs significantly across species and production systems. For instance, shrimp and prawn farming use nearly 20,000 MJ/t of live weight (LW), with over 75% from electricity, while bivalve production uses around 3,000 MJ/t of LW supplied largely by diesel.

Why are we excited?

Improving feed efficiency in aquaculture reduces demand for captured wild fish used in feed, reducing pressure on overfished stocks. It also lowers reliance on terrestrial biomass, such as soy, wheat, and rice, which come with additional land-use and emission costs. More efficient feeding can help reduce nutrient pollution, which can be responsible for high methane and nitrous oxide fluxes in some inland aquaculture systems. At the same time, decarbonizing on-farm energy use might ultimately lead to lower long-term operating costs and improved energy reliability.

Why are we concerned?

There are relatively few drawbacks associated with improving aquaculture. In the case of decarbonizing on-farm energy use, upfront costs could be high. For instance, installing solar panels or upgrading pumps can be financially challenging for small-scale operations. Energy use on farms can also vary throughout the day and night, which might not always align with renewable energy sources, like solar, without storage. 

Solution in Action

Badiola, M., Basurko, O. C., Piedrahita, R., Hundley, P., & Mendiola, D. (2018). Energy use in recirculating aquaculture systems (RAS): a review. Aquacultural Engineering, 81, 57-70. Link to source: https://doi.org/10.1016/j.aquaeng.2018.03.003

Boyd, C. E., McNevin, A. A., & Davis, R. P. (2022). The contribution of fisheries and aquaculture to the global protein supply. Food Security, 14(3), 805-827, Link to source: https://doi.org/10.1007/s12571-021-01246-9

Food and Agriculture Organization of the United Nations. (2018). The state of world fisheries and aquaculture. Food and Agriculture Organization of the United Nations. Link to source: https://openknowledge.fao.org/handle/20.500.14283/i9540en

Food and Agriculture Organization of the United Nations. (2024). The State of World Fisheries and Aquaculture 2024 – Blue Transformation in action. Food and Agriculture Organization of the United Nations. Link to source: https://openknowledge.fao.org/handle/20.500.14283/cd0683en

Henriksson, P. J. G., Troell, M., Banks, L. K., Belton, B., Beveridge, M. C. M., Klinger, D. H., ... & Tran, N. (2021). Interventions for improving the productivity and environmental performance of global aquaculture for future food security. One Earth, 4(9), 1220–1232. Link to source: https://doi.org/10.1016/j.oneear.2021.08.009

Jones, A. R., Alleway, H. K., McAfee, D., Reis-Santos, P., Theuerkauf, S. J., & Jones, R. C. (2022). Climate-friendly seafood: the potential for emissions reduction and carbon capture in marine aquaculture. BioScience, 72(2), 123–143. Link to source: https://doi.org/10.1093/biosci/biab126

MacLeod, M. J., Hasan, M. R., Robb, D. H., & Mamun-Ur-Rashid, M. (2020). Quantifying greenhouse gas emissions from global aquaculture. Scientific Reports, 10(1), 11679. Link to source: https://doi.org/10.1038/s41598-020-68231-8

Naylor, R. L., Hardy, R. W., Bureau, D. P., Chiu, A., Elliott, M., Farrell, A. P., ... & Nichols, P. D. (2009). Feeding aquaculture in an era of finite resources. Proceedings of the National Academy of Sciences106(36), 15103–15110. Link to source: https://doi.org/10.1073/pnas.0905235106

Naylor, R. L., Hardy, R. W., Buschmann, A. H., Bush, S. R., Cao, L., Klinger, D. H., ... & Troell, M. (2021). A 20-year retrospective review of global aquaculture. Nature, 591(7851), 551–563. Link to source: https://doi.org/10.1038/s41586-021-03308-6

Scroggins, R. E., Fry, J. P., Brown, M. T., Neff, R. A., Asche, F., Anderson, J. L., & Love, D. C. (2022). Renewable energy in fisheries and aquaculture: Case studies from the United States. Journal of Cleaner Production, 376, 134153. Link to source: https://doi.org/10.1016/j.jclepro.2022.134153

Shen, L., Wu, L., Wei, W., Yang, Y., MacLeod, M. J., Lin, J., ... & Zhuang, M. (2024). Marine aquaculture can deliver 40% lower carbon footprints than freshwater aquaculture based on feed, energy and biogeochemical cycles. Nature Food, 5(7), 615–624. Link to source: https://doi.org/10.1038/s43016-024-01004-y

Stentiford, G. D., Bateman, I. J., Hinchliffe, S. J., Bass, D. 1., Hartnell, R., Santos, E. M., ... & Tyler, C. R. (2020). Sustainable aquaculture through the One Health lens. Nature Food, 1(8), 468–474. Link to source: https://doi.org/10.1038/s43016-020-0127-5

Tacon, A. G., & Metian, M. (2008). Global overview on the use of fish meal and fish oil in industrially compounded aquafeeds: Trends and future prospects. Aquaculture, 285(1-4), 146–158. Link to source: https://doi.org/10.1016/j.aquaculture.2008.08.015

Vo, T. T. E., Ko, H., Huh, J. H., & Park, N. (2021). Overview of solar energy for aquaculture: The potential and future trends. Energies, 14(21), 6923. Link to source: https://doi.org/10.3390/en14216923

Zhang, Z., Liu, H., Jin, J., Zhu, X., Han, D., & Xie, S. (2024). Towards a low-carbon footprint: Current status and prospects for aquaculture. Water Biology and Security, 3(4), 100290. Link to source: https://doi.org/10.1016/j.watbs.2024.100290

Credits

Lead Fellow

  • Christina Richardson, Ph.D.

Internal Reviewer

  • Christina Swanson, Ph.D.
Speed of Action
left_text_column_width
Caveats
left_text_column_width
Risks
left_text_column_width
Consensus
left_text_column_width
Trade-offs
left_text_column_width
Action Word
Improve
Solution Title
Aquaculture
Classification
Worthwhile
Lawmakers and Policymakers
Practitioners
Business Leaders
Nonprofit Leaders
Investors
Philanthropists and International Aid Agencies
Thought Leaders
Technologists and Researchers
Communities, Households, and Individuals
Updated Date

Restore Seaweed

Image
Image
Peatland
Coming Soon
On
Description for Social and Search
The Restore Seaweed solution is coming soon.
Solution in Action
Speed of Action
left_text_column_width
Caveats
left_text_column_width
Risks
left_text_column_width
Consensus
left_text_column_width
Trade-offs
left_text_column_width
Action Word
Restore
Solution Title
Seaweed
Classification
Highly Recommended
Lawmakers and Policymakers
Practitioners
Business Leaders
Nonprofit Leaders
Investors
Philanthropists and International Aid Agencies
Thought Leaders
Technologists and Researchers
Communities, Households, and Individuals
Updated Date

Deploy Ocean Biomass Sinking

Image
Image
An image of kelp suspended in the water column
Coming Soon
Off
Summary

Ocean biomass sinking involves sinking terrestrial plant material and/or seaweed in the deep sea, where the carbon it has converted into biomass can be stored. Using terrestrial material diverts biomass that might otherwise break down on land and release CO₂, while using seaweed removes carbon by cultivating and sinking new biomass produced in the ocean. This practice might be able to remove over 0.1 Gt CO₂‑eq/yr, but estimates remain highly uncertain due to limited data, and the adoption levels needed to reach this threshold are probably impractical. Advantages include the use of terrestrial biomass that might otherwise degrade on land and emit CO₂, and the ability to reduce nutrient pollution in some ocean areas when cultivating marine biomass. Disadvantages include its unclear effectiveness and durability, potentially high environmental risks, limited feasibility to operate at scale (particularly for seaweed biomass), and complex monitoring and verification. We conclude that Deploy Ocean Biomass Sinking is “Not Recommended” as a climate solution.

Description for Social and Search
Ocean biomass sinking involves sinking terrestrial plant material and/or seaweed in the deep sea, where the carbon it has converted into biomass can be stored.
Overview

What is our assessment?

Our analysis finds that Deploy Ocean Biomass Sinking could have high potential environmental risks, including unknown impacts on marine ecosystems. It is also unclear how effective or durable carbon storage in the deep sea is from this approach. There are likely better alternative uses for terrestrial biomass, and cultivating seaweed at climate-relevant scales is probably not feasible. Even if it were, seaweed would probably provide greater value through other applications. Therefore, Deploy Ocean Biomass Sinking is currently “Not Recommended” as a climate solution.

Plausible Could it work? Yes
Ready Is it ready? No
Evidence Are there data to evaluate it? Limited
Effective Does it consistently work? No
Impact Is it big enough to matter? No
Risk Is it risky or harmful? Yes
Cost Is it cheap? ?

What is it?

Ocean biomass sinking relies on sinking terrestrial plant material and/or seaweed grown in the ocean to the deep sea or seafloor where it can be stored long-term. Cultivating and sinking seaweed removes carbon from the surface ocean, whereas sinking terrestrial biomass material can help reduce emissions that might otherwise occur if the material instead decomposed on land. While not a current practice, terrestrial biomass grown explicitly for sinking would also constitute a form of carbon removal. When biomass sinks naturally, most of it is degraded into CO₂ or other forms of carbon before reaching the deep sea. Deliberate sinking of biomass might avoid some of this degradation by expediting its delivery to the deep sea, depending on the method used. Once sunk, the biomass and any CO₂ or other forms of carbon produced from its degradation can be isolated from the atmosphere for decades to centuries due to the ocean’s slow circulation times at depth. Biomass sinking can be accomplished using active methods, like submersibles, or passive methods, like letting weighted bundles sink on their own. There has been a recent focus on sinking material in low-oxygen ocean basins (e.g., the Black Sea), which might help further minimize degradation, while improving the durability of sequestered carbon due to the long circulation time-scales typical of these regions.

Does it work?

Global estimates suggest that ~11% of carbon produced in natural seaweed ecosystems might be sequestered at depth, generally defined as below the mixed layer at around 1,000 m. However, very few studies have documented the export efficiency, or the fraction of carbon in surface waters that makes its way to the deep sea, of purposefully sunk terrestrial and seaweed biomass, as this practice is currently in the early stages of development and research. If biomass is quickly sunk, most carbon might make its way to the deep sea, while passive sinking techniques, if slower, could result in higher degradation rates. Sequestration also depends on the storage efficiency and durability of carbon once at depth. Some initial research suggests that biomass degradation may be slowed in low-oxygen basins, but this also remains poorly characterized in field studies. It is similarly unclear how durable the carbon stored below the mixed layer will be over climate-relevant timescales, both in the deep sea in general and in low-oxygen basins specifically.

Why are we excited?

The advantages of ocean biomass sinking include its potential ability to use land-based biomass that might otherwise be degraded in landfills or incinerated, both of which lead to CO₂ emissions. In some regions, seaweed cultivation could help reduce nutrient pollution, provide habitat for marine organisms, and locally buffer against ocean acidification. Estimates of potential climate impacts suggest that ocean biomass sinking using biomass from seaweed farms could theoretically exceed 0.1 Gt CO₂‑eq/yr. Still, those estimates remain highly speculative and require more research. Costs are poorly quantified, but some estimates suggest they could be low to moderately expensive compared to other marine carbon dioxide removal approaches, close to US$100/t CO₂.

Why are we concerned?

Ocean biomass sinking has many environmental and social risks that, though not currently fully understood, could make it unfeasible to deploy the technology at scale. Deep-sea and seafloor ecosystems are highly understudied, and it's unclear how new biomass might alter these unique environments. Potential impacts include increased acidification, nutrient pollution, and oxygen depletion of the deep sea, which could affect diverse marine life. Large-scale seaweed cultivation could reduce phytoplankton abundance, disrupt food webs, and deplete nutrients needed by other ecosystems. Cultivation in open ocean areas might relieve demand for coastal space, but they are often nutrient-poor, and adding nutrients raises serious concerns (see Deploy Ocean Fertilization). Terrestrial biomass sources could introduce contaminants into the ocean due to inadvertent inclusion of plastics or other pollutants in sunken biomass. This practice also comes with social risks. Some countries might disproportionately bear negative impacts wherever biomass is cultivated and/or sunk, as it could alter marine food webs and livelihoods. There could also be issues with public perception due to historical injustices around ocean dumping, potentially impeding future projects without meaningful community engagement and transparency. 

Moreover, there are numerous technical challenges relating to the effectiveness and durability of carbon sequestration. Biomass sources differ in how easily they break down, affecting how much carbon is stored at depth. Sunk biomass could also potentially release other greenhouse gases, such as methane and nitrous oxide. The location where biomass is disposed of also matters, impacting how much carbon reaches and stays at depth. However, all of these factors remain poorly constrained. Operational and technical challenges are also significant. To remove at least 0.1 Gt CO₂‑eq/yr using marine biomass, nearly 7 million ha of ocean – over 60% of the global coastline – could be needed for seaweed cultivation, which is impractical. Measurement and verification pose additional hurdles. In the case of seaweed cultivation, tracking carbon removal requires monitoring both CO₂ uptake at the ocean’s surface and export as well as storage at depth across large spatial and temporal scales. In addition, the opportunity cost of sinking terrestrial biomass is high due to competing land-based uses, as waste biomass and crop residues are finite resources. Growing new biomass explicitly for ocean sinking would introduce new risks, given that land is also a finite resource. Similarly, seaweed probably has higher value and carbon benefits as food, fertilizer, and other products.

Solution in Action

Arzeno-Soltero, I. B., Saenz, B. T., Frieder, C. A., Long, M. C., DeAngelo, J., Davis, S. J., & Davis, K. A. (2023). Large global variations in the carbon dioxide removal potential of seaweed farming due to biophysical constraints. Communications Earth & Environment, 4(1), 185. Link to source: https://doi.org/10.1038/s43247-023-00833-2

Bach, L. T., Tamsitt, V., Gower, J., Hurd, C. L., Raven, J. A., & Boyd, P. W. (2021). Testing the climate intervention potential of ocean afforestation using the Great Atlantic Sargassum Belt. Nature Communications, 12(1), 2556. Link to source: https://doi.org/10.1038/s41467-021-22837-2

Boettcher, M., Chai, F., Canothan, M., Cooley, S., Keller, D. P., Klinsky, S., ... & Webb, R. M. (2023). A code of conduct for marine carbon dioxide removal research. Link to source: https://www.aspeninstitute.org/publications/a-code-of-conduct-for-marine-carbon-dioxide-removal-research/

Chopin, T., Costa-Pierce, B. A., Troell, M., Hurd, C. L., Costello, M. J., Backman, S., ... & Yarish, C. (2024). Deep-ocean seaweed dumping for carbon sequestration: Questionable, risky, and not the best use of valuable biomass. One Earth, 7(3), 359-364. Link to source: https://doi.org/10.1016/j.oneear.2024.01.013

Duarte, C. M., Wu, J., Xiao, X., Bruhn, A., & Krause-Jensen, D. (2017). Can seaweed farming play a role in climate change mitigation and adaptation?. Frontiers in Marine Science, 4, 100. Link to source: https://doi.org/10.3389/fmars.2017.00100

Hurd, C. L., Gattuso, J. P., & Boyd, P. W. (2024). Air‐sea carbon dioxide equilibrium: Will it be possible to use seaweeds for carbon removal offsets?. Journal of Phycology, 60(1), 4-14. Link to source: https://doi.org/10.1111/jpy.13405

Hurd, C. L., Law, C. S., Bach, L. T., Britton, D., Hovenden, M., Paine, E. R., ... & Boyd, P. W. (2022). Forensic carbon accounting: Assessing the role of seaweeds for carbon sequestration. Journal of Phycology, 58(3), 347-363. Link to source: https://doi.org/10.1111/jpy.13249

Jones, D. C., Ito, T., Takano, Y., & Hsu, W. C. (2014). Spatial and seasonal variability of the air‐sea equilibration timescale of carbon dioxide. Global Biogeochemical Cycles, 28(11), 1163-1178. Link to source: https://doi.org/10.1002/2014GB004813

Keil, R. G., Nuwer, J. M., & Strand, S. E. (2010). Burial of agricultural byproducts in the deep sea as a form of carbon sequestration: A preliminary experiment. Marine Chemistry, 122(1-4), 91-95. Link to source: https://doi.org/10.1016/j.marchem.2010.07.007

National Academies of Sciences, Engineering, and Medicine. (2021). A research strategy for ocean-based carbon dioxide removal and sequestration. Link to source: https://www.nationalacademies.org/our-work/a-research-strategy-for-ocean-carbon-dioxide-removal-and-sequestration

Raven, M. R., Crotteau, M. A., Evans, N., Girard, Z. C., Martinez, A. M., Young, I., & Valentine, D. L. (2024). Biomass storage in anoxic marine basins: Initial estimates of geochemical impacts and CO2 sequestration capacity. AGU Advances, 5(1), e2023AV000950. Link to source: https://doi.org/10.1029/2023AV000950

Raven, M. R., Evans, N., Martinez, A. M., & Phillips, A. A. (2025). Big decisions from small experiments: observational strategies for biomass-based marine carbon storage. Environmental Research Letters, 20(5), 051001. Link to source: https://doi.org/10.1088/1748-9326/adc28d

Ricart, A. M., Krause-Jensen, D., Hancke, K., Price, N. N., Masqué, P., & Duarte, C. M. (2022). Sinking seaweed in the deep ocean for carbon neutrality is ahead of science and beyond the ethics. Environmental Research Letters, 17(8), 081003. Link to source: https://doi.org/10.1088/1748-9326/ac82ff

Ross, F. W., Boyd, P. W., Filbee-Dexter, K., Watanabe, K., Ortega, A., Krause-Jensen, D., ... & Macreadie, P. I. (2023). Potential role of seaweeds in climate change mitigation. Science of the Total Environment, 885, 163699. Link to source: https://doi.org/10.1016/j.scitotenv.2023.163699

Sheppard, E. J., Hurd, C. L., Britton, D. D., Reed, D. C., & Bach, L. T. (2023). Seaweed biogeochemistry: Global assessment of C: N and C: P ratios and implications for ocean afforestation. Journal of Phycology, 59(5), 879-892. Link to source: https://doi.org/10.1111/jpy.13381

Strand, S. E., & Benford, G. (2009). Ocean sequestration of crop residue carbon: recycling fossil fuel carbon back to deep sediments. Environmental Science and TechnologyLink to source: https://doi.org/10.1021/es8015556

Visions, O. (2022). Answering Critical Questions About Sinking Macroalgae for Carbon Dioxide Removal: A Research Framework to Investigate Sequestration Efficacy and Environmental Impacts. Link to source: https://oceanvisions.org/wp-content/uploads/2022/10/Ocean-Visions-Sinking-Seaweed-Report_FINAL.pdf

Wu, J., Keller, D. P., & Oschlies, A. (2023). Carbon dioxide removal via macroalgae open-ocean mariculture and sinking: an Earth system modeling study. Earth System Dynamics, 14(1), 185-221. Link to source: https://doi.org/10.5194/esd-14-185-2023

Xiao, X., Agusti, S., Lin, F., Li, K., Pan, Y., Yu, Y., ... & Duarte, C. M. (2017). Nutrient removal from Chinese coastal waters by large-scale seaweed aquaculture. Scientific Reports, 7(1), 46613. Link to source: https://doi.org/10.1038/srep46613

Xiao, X., Agustí, S., Yu, Y., Huang, Y., Chen, W., Hu, J., ... & Duarte, C. M. (2021). Seaweed farms provide refugia from ocean acidification. Science of the Total Environment, 776, 145192. Link to source: https://doi.org/10.1016/j.scitotenv.2021.145192

Credits

Lead Fellow

  • Christina Richardson, Ph.D.

Internal Reviewer

  • Christina Swanson, Ph.D.
Speed of Action
left_text_column_width
Caveats
left_text_column_width
Risks
left_text_column_width
Consensus
left_text_column_width
Trade-offs
left_text_column_width
Action Word
Deploy
Solution Title
Ocean Biomass Sinking
Classification
Not Recommended
Lawmakers and Policymakers
Practitioners
Business Leaders
Nonprofit Leaders
Investors
Philanthropists and International Aid Agencies
Thought Leaders
Technologists and Researchers
Communities, Households, and Individuals
Updated Date
Subscribe to

Support Climate Action

Drawdown Delivered

Join the 85,000+ subscribers discovering how to drive meaningful climate action around the world! Every other week, you'll get expert insights, cutting-edge research, and inspiring stories.

Receive biweekly email newsletter updates from Project Drawdown. Unsubscribe at any time.