Sector Color
C38813

Manage Oil & Gas Methane

Sector
Other Energy
Image
Image
Oil wells and flame coming from flare stack
Coming Soon
Off
Summary

Oil and gas methane management is the process of reducing methane emissions from oil and gas (O&G) supply chains. These supply chains release methane when pipes and other system parts leak or methane is intentionally vented for operation and safety reasons. We define the Manage Oil & Gas Methane solution as adopting approaches to reduce methane emissions, including fixing leaks in components, upgrading control equipment, changing procedures, and destroying methane by burning methane as a fuel or in flares.

Overview

Methane can be unintentionally released due to imperfections and faults along the supply chain or intentionally released as part of operations and maintenance. Atmospheric methane has a GWP of 81 over a 20-yr time basis and a GWP of 28 over a 100-yr time basis (IPCC, 2023). This means methane is 81 times more effective at trapping heat than CO₂.  Because methane is a short-lived climate pollutant that has a much stronger warming effect than CO₂ over a given time period, abating methane will have a relatively large near-term impact on slowing global climate change (IEA, 2023b).

The first step to reduce methane releases from O&G production is to identify where releases occur along the supply chain. Many occur during O&G extraction as methane is either intentionally vented or unintentionally emitted. The International Energy Agency (IEA, 2024) estimated more than 60% of global energy-related methane emissions originated from the O&G sector in 2023, with the remaining emissions mostly coming from coal use and some bioenergy (Figure 1). The United Nations Environment Programme (UNEP) has formed a transparency and accountability initiative whose members are responsible for 42% of global O&G production. It reported that activities involved in exploration and processing of O&G accounted for 83% of total reported O&G emissions from 2020 to 2023, with production processes being responsible for 90% of those emissions (UNEP 2024). Alvarez et al. (2018) found that in the United States, more than 58% of O&G methane emissions came from production and about 20% came from extraction in 2015. 

Figure 1. Methane emissions (kt) from energy sources (IEA, 2025).

Source: International Energy Agency. (2025). Methane tracker: Data tools. https://www.iea.org/data-and-statistics/data-tools/methane-tracker 

O&G producers can reduce their methane emissions by preventing its release or by converting it to CO₂ through combustion. Strategies for reducing O&G methane emissions can be put into two broad categories (Climate & Clean Air Coalition [CCAC], 2021):

Device conversion, replacement, and installation is the practice of fixing leaks in pipes, valves, compressors, pumps, and other equipment. This can include converting natural gas–powered devices to electric, driving compressors/pneumatics with air instead of natural gas, or replacing emitting components with non-emitting ones (Pembina Institute, 2024).

Changes to operations and maintenance practices seek to reduce the intentional venting of methane. They include eliminating the need for blow-down (releasing gases during the maintenance or operation of pipe infrastructure), reducing venting, and capturing methane before it is released into the atmosphere, then using it as fuel for product refining or burning it to convert it into CO₂.

 Leak detection and repair (LDAR) is the practice of regularly monitoring for methane leaks and modifying or replacing leaking equipment. 

References

Alvarez, R., Zavala-Araiza, D., Lyon, D. R., Allen, D. T., Barkley, Z. B., Brandt, A. R., Davis, K. J., Herndon, S. C., Jacob, D. J., Karion, A., Kort, E. A., Lamb, B. K., Lauvaux, T., Maasakkers, J. D., Marchese, A. J., Omara, M., Pacala, S. W., Peischl, J., Robinson, A. L., Shepson, P. B., Sweeney, C., Townsend-Small, A., Wofsy, S. C., & Hamburg, S. P. (2018). Assessment of methane emissions from the U.S. oil and gas supply chain. Science, 361(6398), 186-188. https://doi.org/10.1126/science.aar7204 

Anejionu, O. C., Whyatt, J. D., Blackburn, G. A., & Price, C. S. (2015). Contributions of gas flaring to a global air pollution hotspot: spatial and temporal variations, impacts and alleviation. Atmospheric Environment, 118, 184-193. https://doi.org/10.1016/j.atmosenv.2015.08.006 

Beck, C., Rashidbeigi, S., Roelofsen, O., & Speelman, E. (2020). The future is now: how oil and gas companies can decarbonize. McKinsey & Companyhttps://www.mckinsey.com/industries/oil-and-gas/our-insights/the-future-is-now-how-oil-and-gas-companies-can-decarbonize 

Carbon Limits. (2014). Quantifying cost-effectiveness of systematic leak detection and repair program using infrared cameras. https://www.catf.us/resource/quantifying-cost-effectiveness-ldar/ 

Clean Air Task Force. (2022). Fossil fumes (2022 update): A public health analysis of toxic air pollution from the oil and gas industry. https://www.catf.us/resource/fossil-fumes-public-health-analysis/ 

Climate & Clean Air Coalition. (2021). Global methane assessment: Summary for decision makers. https://www.ccacoalition.org/resources/global-methane-assessment-summary-decision-makers 

Climate & Clean Air Coalition. (n.d.). Methane. Retrieved July 19, 2024. https://www.ccacoalition.org/short-lived-climate-pollutants/methane#:~:text=While%20methane%20does%20not%20cause,rise%20in%20tropospheric%20ozone%20levels

Climateworks Foundation. (2024). Reducing methane emissions on a global scale. https://climateworks.org/blog/reducing-methane-emissions-on-a-global-scale/ 

Conrad, B. M., Tyner, D. R., Li, H. Z., Xie, D. & Johnson, M. R. (2023). A measurement-based upstream oil and gas methane inventory for Alberta, Canada reveals higher emissions and different sources than official estimates. Earth & Environmenthttps://doi.org/10.1038/s43247-023-01081-0 

DeFabrizio, S., Glazener, W., Hart, C., Henderson, K., Kar, J., Katz, J., Pratt, M. P., Rogers, M., Ulanov, A., & Tryggestad, C. (2021). Curbing methane emissions: How five industries can counter a major climate threat. McKinsey Sustainabilityhttps://www.mckinsey.com/~/media/mckinsey/business%20functions/sustainability/our%20insights/curbing%20methane%20emissions%20how%20five%20industries%20can%20counter%20a%20major%20climate%20threat/curbing-methane-emissions-how-five-industries-can-counter-a-major-climate-threat-v4.pdf 

Dunsky. (2023, July 21). Canada’s methane abatement opportunity. https://dunsky.com/project/methane-abatement-opportunities-in-the-oil-gas-extraction-sector/ 

Fawole, O. G., Cai, X. M., & MacKenzie, A. R. (2016). Gas flaring and resultant air pollution: A review focusing on black carbon. Environmental pollution216, 182-197. https://doi.org/10.1016/j.envpol.2016.05.075 

Fiore, A. M., Jacob, D. J., & Field, B. D. (2002). Linking ozone pollution and climate change: The case for controlling methane. Geophysical Research Letters29(19), 182-197. https://doi.org/10.1029/2002GL015601 

Giwa, S. O., Nwaokocha, C. N., Kuye, S. I., & Adama, K. O. (2019). Gas flaring attendant impacts of criteria and particulate pollutants: A case of Niger Delta region of Nigeria. Journal of King Saud University-Engineering Sciences31(3), 209-217. https://doi.org/10.1016/j.jksues.2017.04.003 

Global Energy Monitor (2024). Global Methane Emitters Tracker [Data set, September 2024 release]. Retrieved April 18, 2025 from https://globalenergymonitor.org/projects/global-methane-emitters-tracker/ 

Global Methane Initiative (2019). GMI methane data EPA [Data set]. https://www.globalmethane.org/methane-emissions-data.aspx 

Global Methane Initiative (2024). 2023 Accomplishments in methane mitigation, recovery, and use through U.S.-supported international efforts. https://www.epa.gov/gmi/us-government-global-methane-initiative-accomplishments 

Global Methane Pledge. (n.d.). Global methane pledge. Retrieved August 16, 2024 from https://www.globalmethanepledge.org/ 

Guarin, J. R., Jägermeyr, J., Ainsworth, E. A., Oliveira, F. A., Asseng, S., Boote, K., ... & Sharps, K. (2024). Modeling the effects of tropospheric ozone on the growth and yield of global staple crops with DSSAT v4. 8.0. Geoscientific Model Development17(7), 2547-2567. https://doi.org/10.5194/gmd-17-2547-2024 

Hong, C., Mueller, N. D., Burney, J. A., Zhang, Y., AghaKouchak, A., Moore, F. C., Qin, Y., Tong, D., & Davis, S. J. (2020). Impacts of ozone and climate change on yields of perennial crops in California. Nature Food1(3), 166-172. https://doi.org/10.1038/s43016-020-0043-8 

ICF International. (2016). Economic analysis of methane emission reduction potential from natural gas systems. https://onefuture.us/wp-content/uploads/2018/05/ONE-Future-MAC-Final-6-1.pdf 

Intergovernmental Panel on Climate Change (IPCC). (2023). In: Climate change 2023: Synthesis report. Contribution of working groups I, II and III to the sixth assessment report of the intergovernmental panel on climate change [core writing team, H. Lee and J. Romero (eds.)]. IPCC, Geneva, Switzerland, pp. 1-34, doi: 10.59327/IPCC/AR6-9789291691647.001 https://www.ipcc.ch/report/ar6/syr/ 

International Energy Agency. (2021). Global methane tracker 2021: Methane abatement and regulation. https://www.iea.org/reports/methane-tracker-2021/methane-abatement-and-regulation 

International Energy Agency. (2023a). Financing reductions in oil and gas methane emissions. https://www.iea.org/reports/financing-reductions-in-oil-and-gas-methane-emissions 

International Energy Agency. (2023b). Net zero roadmap: A global pathway to keep the 1.5℃ goal in reach - 2023 update. https://www.iea.org/reports/net-zero-roadmap-a-global-pathway-to-keep-the-15-0c-goal-in-reach 

International Energy Agency. (2023c). The imperative of cutting methane from fossil fuels. https://www.iea.org/reports/the-imperative-of-cutting-methane-from-fossil-fuels 

International Energy Agency. (2023d). World energy outlook 2023. https://www.iea.org/reports/world-energy-outlook-2023 

International Energy Agency. (2025). Methane tracker: Data tools. https://www.iea.org/data-and-statistics/data-tools/methane-tracker 

Ismail, O. S., & Umukoro, G. E. (2012). Global impact of gas flaring. Energy and Power Engineering4(4), 290-302. http://dx.doi.org/10.4236/epe.2012.44039 

Johnson, M. R., & Coderre, A. R. (2012). Opportunities for CO₂ equivalent emissions reductions via flare and vent mitigation: A case study for Alberta, Canada. International Journal of Greenhouse Gas Control8, 121-131. https://doi.org/10.1016/j.ijggc.2012.02.004 

Laan, T., Do, N., Haig, S., Urazova, I., Posada, E., & Wang, H. (2024). Public financial support for renewable power generation and integration in the G20 countries. International Institute for Sustainable Developmenthttps://www.iisd.org/system/files/2024-09/renewable-energy-support-g20.pdf 

Malley, C. S., Borgford-Parnell, N. Haeussling, S., Howard, L. C., Lefèvre E. N., & Kuylenstierna J. C. I. (2023). A roadmap to achieve the global methane pledge. Environmental Research: Climate, 2(1). https://doi.org/10.1088/2752-5295/acb4b4 

Mar, K. A., Unger, C., Walderdorff, L., & Butler, T. (2022). Beyond CO₂ equivalence: The impacts of methane on climate, ecosystems, and health. Environmental Science & Policy134, 127-136. https://doi.org/10.1016/j.envsci.2022.03.027 

Marks, L. (2022). The abatement cost of methane emissions from natural gas production. Journal of the Association of Environmental and Resource Economists, 9(2). https://doi.org/10.1086/716700 

Methane Guiding Principles Partnership. (n.d.). Reducing methane emissions on a global scale. Retrieved August 16, 2024 from https://methaneguidingprinciples.org/ 

MethaneSAT. (2024). Solving a crucial climate challenge. Retrieved September 2, 2024 https://www.methanesat.org/satellite/ 

Michanowicz, D. R., Lebel, E. D., Domen, J. K., Hill, L. A. L., Jaeger, J. M., Schiff, J. E., Krieger, E. M., Banan, Z., Goldman, J. S. W., Nordgaard, C. L., & Shonkoff, S. B.C. (2021). Methane and health-damaging air pollutants from the oil and gas sector: Bridging 10 years of scientific understanding. PSE Healthy Energyhttps://www.psehealthyenergy.org/work/methane-and-health-damaging-air-pollutants-from-oil-and-gas/ 

Mills, G., Sharps, K., Simpson, D., Pleijel, H., Frei, M., Burkey, K., Emberson, L., Cuddling, J., Broberg, M., Feng, Z., Kobayashi, K. & Agrawal, M. (2018). Closing the global ozone yield gap: Quantification and cobenefits for multistress tolerance. Global Change Biology24(10), 4869-4893. https://doi.org/10.1111/gcb.14381 

Moore, C. W., Zielinska, B., Pétron, G., & Jackson, R. B. (2014). Air impacts of increased natural gas acquisition, processing, and use: A critical review. Environmental Science & Technology48(15), 8349–8359. https://doi.org/10.1021/es4053472

Motte, J., Alvarenga, R. A., Thybaut, J. W., & Dewulf, J. (2021). Quantification of the global and regional impacts of gas flaring on human health via spatial differentiation. Environmental Pollution291, 118213. https://doi.org/10.1016/j.envpol.2021.118213 

National Atmospheric and Ocean Agency (2024). Carbon cycle greenhouse gases in CH₄ . Retrieved July 19, 2024. https://gml.noaa.gov/ccgg/trends_ch4/

Ocko, I. B., Sun, T., Shindell, D., Oppenheimer, M. Hristov, A. N., Pacala, S. W., Mauzerall, D. L., Xu, Y. & Hamburg, S. P. (2021). Acting rapidly to deploy readily available methane mitigation measures by sector can immediately slow global warming. Environmental Research, 16(5). https://doi.org/10.1088/1748-9326/abf9c8 

Odjugo, P. A. O. & Osemwenkhae, E. J. (2009). Natural gas flaring affects microclimate and reduces maize (Zea mays) yield.. International Journal of Agriculture and Biology11(4), 408-412. https://www.cabidigitallibrary.org/doi/full/10.5555/20093194660

Oil and Gas Climate Initiative. (2023). Building towards net zero. https://www.ogci.com/progress-report/building-towards-net-zero 

Olczak, M., Piebalgs, A., & Balcombe, P. (2023). A global review of methane policies reveals that only 13% of emissions are covered with unclear effectiveness. One Earth, 6(5), 519–535. https://doi.org/10.1016/j.oneear.2023.04.009

Pembina Institute. (2024). Comments on environment and climate change Canada’s (ECCC) regulations amending the regulations respecting reduction in the release of methane and certain volatile organic compounds (upstream oil and gas sector). https://www.pembina.org/reports/2024-02-joint-methane-submission-eccc.pdf 

Project Drawdown. (2021). Climate solutions at work. https://drawdown.org/publications/climate-solutions-at-work 

Project Drawdown. (2022). Legal job function action guide. https://drawdown.org/programs/drawdown-labs/job-function-action-guides/legal 

Project Drawdown. (2023). Government relations and public policy job function action guide. https://drawdown.org/programs/drawdown-labs/job-function-action-guides/government-relations-and-public-policy 

Project Drawdown. (2024, May 29). Unsung (climate) hero: The business case for curbing methane | presented by Stephan Nicoleau [video]. YouTube. https://www.youtube.com/watch?v=Y5y0i-RMfJ0 

Ramya, A., Dhevagi, P., Poornima, R., Avudainayagam, S., Watanabe, M., & Agathokleous, E. (2023). Effect of ozone stress on crop productivity: A threat to food security. Environmental Research, 236(2), 116816. https://doi.org/10.1016/j.envres.2023.116816 

Ravikumar, A. P., & Brandt, A. R. (2017). Designing better methane mitigation policies: The challenge of distributed small sources in the natural gas sector. Environmental Research Letters, 12(4), 044023. https://doi.org/10.1088/1748-9326/aa6791

Rissman, J. (2021). Benefits of the build back better act’s methane fee. Energy Innovation. https://energyinnovation.org/wp-content/uploads/2021/10/Benefits-of-the-Build-Back-Better-Act-Methane-Fee.pdf 

Sampedro, J., Waldhoff, S., Sarofim, M., & Van Dingenen, R. (2023). Marginal damage of methane emissions: Ozone impacts on agriculture. Environmental and Resource Economics84(4), 1095-1126. https://doi.org/10.1007/s10640-022-00750-6 

Schiffner, D., Kecinski, M., & Mohapatra, S. (2021). An updated look at petroleum well leaks, ineffective policies and the social cost of methane in Canada’s largest oil-producing province. Climatic Change, 164(3-4). https://doi.org/10.1007/s10584-021-03044-w

Shindell, D., Sadavarte, P., Aben, I., Bredariol, T. O., Dreyfus, G., Höglund-Isaksson, L., Poulter, B., Saunois, M., Schmidt, G. A., Szopa, S., Rentz, K., Parsons, L., Qu, Z., Faluvegi, G., & Maasakkers, J. D. (2024). The methane imperative. Frontiershttps://www.frontiersin.org/journals/science/articles/10.3389/fsci.2024.1349770/full

Schmeisser, L., Tecza, A., Huffman, M., Bylsma, S., Delang, M., Stanger, J., Conway, TJ, and Gordon, D. (2024). Fossil Fuel Operations Sector: Oil and Gas Production and Transport Emissions [Data set]. RMI, Climate TRACE Emissions Inventory. Retrieved April 18, 2025 from https://climatetrace.org 

Smith, C., Nicholls, Z. R. J., Armour, K., Collins, W., Forster, P., Meinshausen, M., Palmer, M. D., & Watanabe, M. (2021). The earth’s energy budget, climate feedbacks, and climate sensitivity supplementary material (climate change 2021: The physical science basis. Contribution of working group I to the sixth assessment report of the Intergovernmental Panel on Climate Change). Intergovernmental Panel on Climate Change (IPCC). https://www.ipcc.ch/ 

Tai, A. P., Sadiq, M., Pang, J. Y., Yung, D. H., & Feng, Z. (2021). Impacts of surface ozone pollution on global crop yields: Comparing different ozone exposure metrics and incorporating co-effects of CO₂.  Frontiers in Sustainable Food Systems5, 534616. https://doi.org/10.3389/fsufs.2021.534616 

Tradewater. (2023). Methane. Retrieved August 16, 2024, from https://www.ogci.com/progress-report/building-towards-net-zero 

Tran, H., Polka, E., Buonocore, J. J., Roy, A., Trask, B., Hull, H., & Arunachalam, S. (2024). Air quality and health impacts of onshore oil and gas flaring and venting activities estimated using refined satellite‐based emissions. GeoHealth8(3), e2023GH000938. https://doi.org/10.1029/2023GH000938 

UN Environment Program. (2021). Global methane assessment: Benefits and costs of mitigating methane emissions. https://www.unep.org/resources/report/global-methane-assessment-benefits-and-costs-mitigating-methane-emissions 

UN Environment Program. (2024). An eye on methane: Invisible but not unseen. https://www.unep.org/interactives/eye-on-methane-2024/ 

U.S. Department of Commerce, Commercial Law Development Programme. (2023). Methane abatement for oil and gas - handbook for policymakers. https://cldp.doc.gov/sites/default/files/2023-09/CLDP%20Methane%20Abatement%20Handbook.pdf

U.S. Energy Information Administration. (2024). What countries are the top producers and consumers of oil?. https://www.eia.gov/tools/faqs/faq.php?id=709&t=6

U.S. Environmental Protection Agency. (2019). Global non-CO₂ greenhouse gas emission projections & mitigation 2015 - 2050https://www.epa.gov/ozone-layer-protection/transitioning-low-gwp-alternatives-residential-and-commercial-air

Van Dingenen, R., Crippa, M., Maenhout, G., Guizzardi, D., & Dentener, F. (2018). Global trends of methane emissions and their impacts on ozone concentrations. Joint Research Commission (European Commission)https://op.europa.eu/en/publication-detail/-/publication/c40e6fc4-dbf9-11e8-afb3-01aa75ed71a1/language-en

Wang, J., Fallurin, J., Peltier, M., Conway, TJ, and Gordon, D. (2024). Fossil Fuel Operations Sector: Refining Emissions [Data set]. RMI, Climate TRACE Emissions Inventory. Retrieved April 18, 2025 from https://climatetrace.org

World Bank Group. (2023). What you need to know about abatement costs and decarbonizationhttps://www.worldbank.org/en/news/feature/2023/04/20/what-you-need-to-know-about-abatement-costs-and-decarbonisation 

World Bank Group. (2024). Global flaring and methane reduction partnership (GFMR). Retrieved August 16, 2024, from https://www.worldbank.org/en/programs/gasflaringreduction 

Credits

Lead Fellow

  • Jason Lam

Contributors

  • Ruthie Burrows, Ph.D.

  • James Gerber, Ph.D.

  • Yusuf Jameel, Ph.D.

  • Daniel Jasper

  • Alex Sweeney

Internal Reviewers

  • Aiyana Bodi

  • Hannah Henkin

  • Ted Otte

  • Amanda Smith, Ph.D.

  • Paul West, Ph.D.

Effectiveness

Each Mt of methane that is not emitted avoids 81.2 million t CO₂‑eq on a 20-yr basis and 27.9 million t CO₂‑eq on a 100-yr basis (Smith et al., 2021). The GWP of methane is shown in Table 1. If the methane is burned (converted into CO₂ ), the contribution to climate change will still be less than that of methane released directly into the atmosphere. Methane abatement can have a more immediate impact on future global temperature rise because it has a larger and faster warming effect than CO₂. Mitigating methane emissions in the near term can give us more time for reducing GHG emissions in hard to abate sectors.

left_text_column_width

Table 1. Effectiveness at reducing emissions.

Unit: t CO₂‑eq /Mt of methane abated

100-yr Global Warming Potential 27,900,000
20-yr Global Warming Potential 81,200,000
Left Text Column Width
Cost

The cost of methane abatement will vary depending on the type of O&G production, the methane content of the O&G resource, and the strategies used to address it. We averaged the costs for various abatement strategies; methane content is sufficiently high to utilize methane abatement strategies, and energy infrastructure is available to utilize abated methane. The initial cost to abate 1 Mt of methane is US$594 million, the revenue is about US$193 million, and the overall net savings over a 30-yr amortization period is US$173 million. This means that reducing O&G methane emissions offers a net economic gain for O&G producers. We were not able to find operating cost information for the solution, meaning the net economic gain may be lower in practice. 

We considered the baseline scenario where O&G producers do not have systems or practices in place to monitor or stop methane from escaping to the atmosphere and found very limited cost data. We assumed baseline costs to be 0 for initial costs, operational costs, and revenue because current practices and infrastructure are releasing methane to the atmosphere as a part of their existing cost of doing business. 

Many of the initial cost data for methane abatement come from studies estimating how much capital would be required to reach methane emission targets for the O&G industry. These costs are for the global scale of O&G methane abatement and not from the point of view of an individual O&G producer. These studies do not go into detail about the cost of specific abatement strategies or their potential revenues. The context and assumptions are difficult to identify, since the abatement strategies must be tailored to each site. Ocko et al (2021) noted that most (around 80%) of economically feasible methane abatement actions are from the O&G sector. 

Table 2 shows the costs per t CO₂‑eq .The value of the methane sold, instead of released, will often bring in revenue that covers the costs of abatement. Refer to the Appendix for information on the proportion of strategies that O&G producers could implement at low to no cost.

left_text_column_width

Table 2. Net cost per unit of climate impact.

Unit: 2023 US$/t CO₂‑eq

median (100-yr basis) -6.20
Left Text Column Width
Learning Curve

Many of the technology solutions for reducing methane emissions are mature, and we were unable to find literature suggesting the costs to implement these solutions will fall in the future. There may be efficiencies to be gained in LDAR, but little research offers insights into the costs of LDAR programs (Delphi Group, 2017, ICF 2016). 

left_text_column_width
Speed of Action

Speed of action refers to how quickly a climate solution physically affects the atmosphere after it is deployed. This is different from speed of deployment, which is the pace at which solutions are adopted.

At Project Drawdown, we define the speed of action for each climate solution as gradualemergency brake, or delayed.

Manage OIl & Gas Methane is an EMERGENCY BRAKE climate solution. It has the potential to deliver a more rapid impact than nominal and delayed solutions. Because emergency brake solutions can deliver their climate benefits quickly, they can help accelerate our efforts to address dangerous levels of climate change. For this reason, they are a high priority.

left_text_column_width
Caveats

Burning methane produces CO₂. Though the GWP is far less than that of releasing methane into the atmosphere, the practice still creates a negative climate impact. Depending on the type of O&G production, methane abatement is already practiced with natural gas production and is likely to bring additional profit. However, oil producers who are not already producing methane for profit may not be able to abate methane at a profit. 

Avoiding fossil fuel extraction, transport, and use is the only way to permanently reduce emissions from O&G production. For many low- and middle-income countries (LMICs), O&G is the main source of energy, and it is challenging for them to completely eliminate O&G from their energy mix while they are simultaneously working to improve living standards. High-income countries can help LMICs develop clean energy infrastructure by providing financial and technological support. This will prevent new investments in O&G infrastructure (Laan, et al., 2024), which would result in ongoing emissions for decades. It would also allow LMICs a realistic pathway to transition away from their existing O&G usage. O&G demand must fall by 80% between 2022 and 2050 to stay in alignment with the net-zero emissions scenarios modeled by IEA (2023c). O&G methane abatement will decrease over time as the O&G industry produces less methane to be abated.

Our assessment does not include the impact of the CO₂ created from the destruction of methane.

left_text_column_width
Current Adoption

We found little literature quantifying the current adoption of methane management; much of the methane abatement research revolves around the amount of methane that needs to be abated to reach certain climate targets. Based on data from Global Methane Initiative (GMI, 2024), 0 Mt of methane was abated in 2023 and is shown in Table 3.


GMI (2024) provided a conservative estimate of cumulative methane emissions abated each year, with a total of 153.6 Mt CO₂‑eq (5.51 Mt methane) abated as of 2023. The methane is given as a cumulative value to show the incremental increase in total methane abated and to avoid double counting methane abated. GMI members only cover 70% of human-caused methane emissions, and the organization does not capture methane mitigation that occurs outside of GMI members. This suggests that even in years where methane was abated, it would likely still be an underestimate of what may have actually occurred globally. The untapped potential for methane abatement suggests that O&G companies are investing in increasing natural gas production, which may be due to relatively smaller profits from abatement and nonbinding regulations (Shindell et al., 2024). 

left_text_column_width

Table 3. Current (2023) adoption level.

Unit: Mt of methane abated/yr

median (50th percentile) 0
Left Text Column Width
Adoption Trend

Although there is little research specifically quantifying the adoption of methane abatement strategies over time, we estimate the average adoption trend in recent years to be about 0.35 Mt/yr of methane abated. To create this estimate, we relied on GMI analysis (GMI, 2024). GMI showed methane abatement gradually increasing from 2011 to 2023, then tapering off around 2020 and beginning to decrease among its member organizations. Table 4 shows the adoption trend for O&G methane abatement.

The IEA (2025) compiled country-level reporting for GHG emissions with data up to 2024. However, we were not able to use the data for the adoption trend because the changes in methane emissions could have been due to reasons other than methane abatement. In reality, methane emissions may be affected by multiple factors such as natural disasters, political conditions, changes in O&G demand, and changes in O&G industry practices.

Oil and Gas Climate Initiative (2023) data on methane abatement to date for 12 major O&G companies indicate that methane emissions decreased 50% from 2017 to 2022; however, we cannot assume the rest of the O&G industry has made the same level of progress. 

left_text_column_width

Table 4. Adoption trend, 2011–2022.

Unit: Mt methane abated/yr

median (50th percentile) 0.35
Left Text Column Width
Adoption Ceiling

We found an adoption ceiling of 80.7 Mt/yr of methane based on the IEA’s (2025) estimate for total methane emissions from the O&G sector. We assumed that current O&G methane emissions would remain the same into the future with no changes in O&G production or demand. Table 5 shows the adoption ceiling for O&G methane abatement.

Even in the IEA’s (2023c) highest methane abatement energy scenario, only 93% of the methane emissions are reduced by 2050. This would still leave methane emissions being released into the atmosphere by the O&G sector. Reduced O&G production will reduce the amount of methane emissions produced by the O&G sector and consequently reduce the amount of methane that needs to be controlled with methane abatement. 

left_text_column_width

Table 5. Adoption ceiling.

Unit: Mt methane abated/yr

median (50th percentile) 80.7
Left Text Column Width
Achievable Adoption

Based on the limited data available for current adoption and adoption trend, we expect 3.26–8.84 Mt/yr of methane abated. The Achievable – Low value aligns with the IEA (2023c) baseline energy scenario (STEPS), in which partial methane abatement is used but not all technically possible methane is abated. The Achievable – High value aligns with the IEA (2023c) baseline scenario (STEPS), in which full methane abatement is employed (all technically possible methane is abated). We determined this range by taking the total methane abated in these scenarios and dividing by the difference between the target year and 2024 to determine an average amount of methane abated each year to reach the scenario target. Under both scenarios, reduced demand for O&G would reduce methane emissions produced and lower the adoption ceiling possible for methane abatement. Even in scenarios where there is reduced O&G demand, methane abatement would still be required to control fugitive methane emissions from O&G infrastructure and limit global climate change. 

The amount of methane that can be abated varies greatly depending on how much methane the O&G industry produces. If O&G production remains steady, cumulative methane abatement could be 21–81 Mt, according to the IEA energy scenarios. If O&G demand drops 80% (IEA’s Net Zero Emissions scenario), total methane emissions would decline to 18 Mt, and the use of methane abatement would reduce methane emissions further by 17 Mt, leaving only 1 Mt of methane emitted in 2050. 

There has been growing interest from governments and academia to more accurately identify methane emissions using technologies such as satellite sensing (MethaneSat, 2024); UNEP (2024) has set up a monitoring and operator’s alliance group that will share best practices among O&G producers. This alliance group has identified more than 1,200 methane releases, but only 15 responses from government or companies provided detail about the source of the emissions or whether any mitigation action was considered or taken. This shows there are still many opportunities to abate methane emissions. 

More than 150 countries (representing 50% of the world’s human-caused methane emissions) have joined the Global Methane Pledge to reduce methane emissions 30% from 2020 to 2030 (UNEP, 2021). The IEA (2023b) found that many governments already have announced or put into place measures to cut methane emissions, so we expect global methane abatement to grow. 

Conrad et al. (2023) found that the emission inventories reported by the Alberta, Canada, government underestimate the methane emissions from the O&G sector, with a large portion coming from venting. These sources of methane are relatively easier to address and can allow the O&G sector to quickly reduce methane emissions. Table 6 shows the statistical low and high achievable ranges for O&G methane abatement based on different sources for future uptake of O&G methane abatement.

left_text_column_width

Table 6. Achievable adoption.

Unit: Mt methane abated/yr

Current Adoption 0
Achievable – Low 3.26
Achievable – High 8.84
Adoption Ceiling 80.66
Left Text Column Width

We estimate that the O&G industry is currently abating approximately 0 Gt CO₂‑eq/yr on a 100-yr basis and 0 Gt CO₂‑eq/yr on a 20-yr basis using methane abatement strategies. 

As the O&G industry grows or shrinks its emissions, the amount of methane available to abate will change accordingly. If O&G demand and production stay constant to 2050, we estimate 0.09–0.25 Gt CO₂‑eq/yr of methane could be abated. 

However, if O&G demand drops, the methane abatement potential would drop because the O&G sector is producing less methane. This is projected in the different energy scenarios modeled by the IEA (2023). The range between the current O&G methane abatement and the adoption ceiling is shown in Table 7.

left_text_column_width

Table 7. Climate impact at different levels of adoption.

Unit: Gt CO₂‑eq/yr, 100-yr basis

Current Adoption 0
Achievable – Low 0.09
Achievable – High 0.25
Adoption Ceiling 2.25
Left Text Column Width
Additional Benefits

Air pollution and health

Methane reacts with other pollutants to create ground-level ozone (Mar et al., 2022), and incomplete combustion of methane releases CO₂, carbon monoxide, black carbon, and other pollutants such as volatile organic compounds (Fawole et al., 2016; Johnson and Coderre, 2012; Motte et al., 2021). These pollutants cause respiratory, reproductive, and neurological diseases; cancer; and premature death (Michanowicz et al., 2021; Motte et al., 2021; Tran et al., 2024), so reducing methane release can improve human health. Reducing or stopping flaring at a small number of the largest active sites can significantly reduce air pollution (Anejionu et al., 2015; Johnson and Coderre, 2012). Van Dingenen et al. (2018) estimate that ambitious methane reduction could prevent 70,000 to 130,000 ozone-related deaths worldwide each year.

left_text_column_width

Figure 2. Air pollutants emitted along the O&G life cycle (Moore et al., 2014). BTEX = benzene, toluene, ethylbenzene, xylene.

Image
Diagram listing air pollutants emitted along the oil and gas life cycle

Source: Moore, C. W., Zielinska, B., Pétron, G., & Jackson, R. B. (2014). Air impacts of increased natural gas acquisition, processing, and use: A critical review. Environmental Science & Technology48(15), 8349–8359. https://doi.org/10.1021/es4053472

Enable Download
On

Food security

Methane reacts with chemicals like VOCs to form tropospheric, or ground-level ozone (Fiore et al., 2002). Ground-level ozone has been linked to reduced crop growth and yields (Mills et al., 2018; Samperdo et al., 2023; Tai et al., 2021). Mitigating methane emissions from O&G could improve food security by reducing ground-level ozone and its harmful impacts on agricultural productivity (Tai et al., 2014; Ramya et al., 2023)

left_text_column_width
Risks

If natural gas prices drop there would be less economic reason for industries to voluntarily abate methane (IEA, 2021). Without policy support enforcing the use of methane abatement technologies, methane could continue to be released into the atmosphere. The use of methane abatement will be needed regardless of whether O&G demand remains the same or decreases over time because it has an immediate effect on reducing global temperature rise in the near term.

left_text_column_width
Interactions with Other Solutions

Reinforcing

Managing O&G methane can reinforce other solutions that reduce the amount of methane released to the atmosphere. The use of solutions such as applying changes to operations and maintenance; converting, replacing, and installing devices; and LDAR in the O&G industry can help demonstrate the effectiveness and economic case for methane abatement elsewhere and build momentum for adoption of methane abatement in other sectors. 

left_text_column_width

Competing

Managing O&G methane has the potential to compete with solutions that provide clean electricity and solutions that focus on fuel switching in transportation because this solution increases O&G supply and can reduce the cost of O&G products. As a result, it could prolong the use of fossil fuels and slow down the transition to clean electricity.

left_text_column_width
Dashboard

Solution Basics

Mt methane abated

tCO2-eq/unit
2.79×10⁷
units/yr
Current 03.268.84
Achievable (Low to High)

Climate Impact

GtCO2-eq/yr
Current 0 0.090.25
US$ per tCO2-eq
-6
Emergency Brake

CH₄

Trade-offs

Methane abatement could increase the use of O&G resources without a broader strategy to reduce reliance on O&G as an energy resource. The use of methane abatement strategies to extend the use of existing O&G infrastructure, or building new O&G infrastructure, will not result in a net decrease in emissions. Beck et al. (2020) found that more than 57% of the GHG emissions from the O&G supply chain are from methane emissions, while the rest is due to CO₂ emissions (15% from the extraction process and 28% from O&G energy use). Even with methane mitigation, continued use of O&G will generate CO₂ emissions and will contribute to global temperature rise. 

left_text_column_width
Mt CO2–eq
< 50
50–100
100–200
200–300
> 300
Refining
Production
Transport

Annual emissions from oil and gas sources, 2024

Globally, oil and gas sources (production, refining, and transport) are responsible for 78 of the 347 Mt of anthropogenic methane emissions in 2023. This is equivalent to 2,106 Mt CO2-eq based on a 100-year time scale. Methane emissions occur throughout the supply chain due to equipment imperfections, leaks, and intentional venting.

International Energy Agency. (2024). Methane tracker: Data tools. https://www.iea.org/data-and-statistics/data-tools/methane-tracker

Schmeisser, L., Tecza, A., Huffman, M., Bylsma, S., Delang, M., Stanger, J., Conway, TJ, and Gordon, D. (2024). Fossil fuel operations sector: Oil and gas production and transport emissions [Data set]. RMI, Climate TRACE Emissions Inventory. Retrieved April 18, 2025 from https://climatetrace.org

Wang, J., Fallurin, J., Peltier, M., Conway, TJ, and Gordon, D. (2024). Fossil fuel operations sector: Refining emissions [Data set]. RMI, Climate TRACE Emissions Inventory. Retrieved April 18, 2025 from https://climatetrace.org

Mt CO2–eq
< 50
50–100
100–200
200–300
> 300
Refining
Production
Transport

Annual emissions from oil and gas sources, 2024

Globally, oil and gas sources (production, refining, and transport) are responsible for 78 of the 347 Mt of anthropogenic methane emissions in 2023. This is equivalent to 2,106 Mt CO2-eq based on a 100-year time scale. Methane emissions occur throughout the supply chain due to equipment imperfections, leaks, and intentional venting.

International Energy Agency. (2024). Methane tracker: Data tools. https://www.iea.org/data-and-statistics/data-tools/methane-tracker

Schmeisser, L., Tecza, A., Huffman, M., Bylsma, S., Delang, M., Stanger, J., Conway, TJ, and Gordon, D. (2024). Fossil fuel operations sector: Oil and gas production and transport emissions [Data set]. RMI, Climate TRACE Emissions Inventory. Retrieved April 18, 2025 from https://climatetrace.org

Wang, J., Fallurin, J., Peltier, M., Conway, TJ, and Gordon, D. (2024). Fossil fuel operations sector: Refining emissions [Data set]. RMI, Climate TRACE Emissions Inventory. Retrieved April 18, 2025 from https://climatetrace.org

Geographic Guidance Introduction

Methane abatement is recommended for all oil and gas (O&G) production. The levels of achievable abatement can vary geographically, depending on the extraction technology used (i.e., conventional drilling versus hydraulic fracturing). The Middle East, Europe, Asia, and North America are among the largest O&G producers and have the highest related methane emissions, according to the IEA (2025). Research from Shindell et al. (2024) found that North America, Russia, and several countries in the Middle East and Africa have the most methane abatement potential in O&G. O&G methane abatement could be accelerated if technologies and strategies used in high-income countries are shared with other O&G producing countries.

Action Word
Manage
Solution Title
Oil & Gas Methane
Classification
Highly Recommended
Lawmakers and Policymakers
  • Hold well owners accountable for harm caused to the public and environment.
  • Introduce performance goals for emissions reductions.
  • Use economic measures such as taxes or financial incentives.
  • Regulate key aspects of abatement, such as the use of LDAR, and enforce existing regulations.
  • Utilize data-driven public information programs such as collecting and publishing monitoring and reporting data (“naming and shaming”).
  • Distribute information to operators, such as technology options that fit relevant regulations. 
Practitioners
  • Shift business models toward 100% renewable energy.
  • Detect and repair methane leaks.
  • Implement device conversion, replacement, and installation and LDAR.
  • Change operations and maintenance practices to reduce or recover vented methane.
  • Implement zero-tolerance policies for methane leaks.
  • Increase transparency on emissions and practices.
  • Join cross-company and industry coalitions that facilitate implementation.
Business Leaders
  • Eliminate major methane O&G emitters in your value chains or pressure them to improve performance.
  • Create a plan to transition to renewable energy.
  • Center methane in net-zero strategies, such as establishing internal methane pricing mechanisms and requiring suppliers to meet standards for monitoring and reducing methane emissions in your operations.
  • Identify technology partners that are monitoring and reducing methane emissions and make market commitments.
  • If your company is participating in the voluntary carbon market, look into funding projects that plug methane leaks.
  • Proactively collaborate with government and regulatory actors to support methane abatement policies.
  • Join or support transparency initiatives led by trusted third parties, such as the Oil and Gas Methane Partnership 2.0.
Nonprofit Leaders
  • Help with monitoring and reporting by, for example, utilizing satellite data.
  • Help design policies and regulations that support methane abatement.
  • Educate the public on the urgent need to abate methane.
  • Join or support efforts such as the Global Methane Alliance.
  • Encourage policymakers to create ambitious targets and regulations.
  • Pressure O&G companies to improve their practices.
  • Take or support legal action when companies do not follow relevant regulations.
  • Work with journalists and the media to support public education on the importance of methane abatement.
Investors
  • Pressure and influence portfolio companies to incorporate methane abatement into their operations, noting that this saves money and adds value for investors.
  • Provide capital for nascent methane abatement strategies and leak detection and monitoring instruments.
  • Invest in green bonds and other financial instruments that support methane abatement projects.
  • Seek impact investment opportunities such as sustainability-linked loans in entities that set methane abatement targets.
  • Invest in projects that plug methane leaks. 
Philanthropists and International Aid Agencies
  • Provide capital for methane monitoring, de-risking, and abatement in the early stages of implementation.
  • Support global, national, and local policies that reduce methane emissions.
  • Support accelerators or multilateral initiatives like the Global Methane Hub.
  • If working in a fossil fuel–producing nation, support sustainable developments in other sectors of the economy.
  • Explore opportunities to fund the plugging of abandoned oil or gas wells that leak methane.
  • Advance awareness of the public health and climate threats from the O&G industry. 
Thought Leaders
  • Provide technical assistance (e.g., monitoring and reporting) to businesses, government agencies, and other entities working to reduce methane emissions.
  • Help design policies and regulations that support methane abatement.
  • Analyze historical emissions patterns to identify and publicize successful programs.
  • Educate the public on the urgent need to abate methane.
  • Join or support joint efforts such as the Global Methane Alliance.
  • Advocate to policymakers for more ambitious targets and regulations.
  • Pressure O&G companies to improve their practices.
Technologists and Researchers
  • Develop new LDAR technologies that reduce cost and required capacity.
  • Develop new technologies for measuring and verifying emissions.
  • Conduct longitudinal studies to measure emissions against objectives or means of enforcement. 
Communities, Households, and Individuals
  • If you are impacted by harmful O&G methane management practices, document your experiences.
  • Reduce household consumption of fossil fuels by adopting clean energy sources, increasing energy efficiency, and replacing fossil fuel-powered equipment with electricity-powered equipment.
  • Share documentation of harmful practices and/or other key messages with policymakers, the press, and the public.
  • Encourage policymakers to improve regulations.
  • Support public education efforts on the urgency and need to address the issue.
Evidence Base

Consensus of effectiveness of abating methane emissions in the O&G sector: High

There is a high level of consensus about the effectiveness of methane abatement strategies. These strategies can be deployed cost effectively in many cases and have an immediate impact on reducing global temperature rise. 

Authoritative sources such as the IEA (2023d), UNEP (2021), and Global Methane Hub (2024) agree that reducing methane emissions can noticeably reduce the rate of global temperature rise. DeFabrizio et al. (2021) identified that methane abatement strategies such as LDAR, switching from natural gas fuel to electric power, using air for pneumatic devices, and using vapor recovery units could reduce O&G methane emissions by 40% by 2030 based on global 2017 O&G emissions. With methane being the second largest contributor to climate change after CO₂, reductions in methane emissions can quickly reduce global temperature rise.

Others (Marks Levi, 2022; DeFabrizio et al., 2021; Malley et al., 2023) have identified that many methane abatement strategies can use existing technologies, often at low cost. Dunsky (2023) found that implementing 24 of the least expensive abatement measures in the exploration and production phases of Canada’s O&G industry could help Canada achieve its 2030 methane target. The IEA (2023a) noted that the O&G industry was responsible for 80 Mt of methane in 2022 and had the largest potential for abatement in the near term. The O&G industry has the potential to abate 60 Mt of methane by 2030 using abatement strategies; 40% of that could be abated at no net cost based on average natural gas prices from 2017 to 2021 (IEA, 2023a).

The results presented in this document summarize findings from more than 15 reviews and meta-analyses and more than 10 original studies reflecting current evidence from two countries, primarily from the United States and Canada, and from global sources. We recognize this limited geographic scope creates bias, and hope this work inspires research and data-sharing on this topic in underrepresented regions.

left_text_column_width
Appendix

Data describing methane abatement potential in the O&G industry are often shown in marginal abatement cost curves (MACCs), which incorporate the initial cost, operating cost, revenue, and any extra costs per unit of emissions reduced as one value.

left_text_column_width

Figure A1. Marginal abatement cost curves (MACC) for methane abatement in the O&G industry (IEA, 2024).

Image
Cost curve chart.

Source: International Energy Agency (Global Methane Tracker 2024).

Enable Download
On

MACCs indicate a range of potential climate actions and show at a glance the magnitude of financial return or financial cost across that range. In Figure A1, for the blocks below the horizontal axis, the value received from the sale of the captured methane is greater than the cost of the solution employed. The width of a block shows the annual amount of emissions a technology can abate, with wider blocks abating more emissions than narrower blocks.

MACCs are useful for identifying which climate action could have the most impact at reducing emissions or which options have a net economic gain. However, they do not illustrate the intricacies that may be in play among different climate actions and can lead users to ignore hard-to-abate emissions. The World Bank (2023) identified that MACCs are useful to find which option will reduce emissions by a set percentage but less useful for reducing absolute emissions to near zero. 

left_text_column_width
Updated Date

Manage Coal Mine Methane

Sector
Other Energy
Image
Image
Worker in a coal mine
Coming Soon
Off
Summary

Managing coal mine methane (CMM) is the process of reducing methane emissions released from coal deposits and surrounding rock layers due to mining activities. CMM is naturally found in coal seams and released into the atmosphere when the coal seams are disturbed. Coal mines can continue to emit methane even after being closed or abandoned, which is known as abandoned mine methane (AMM). CMM and AMM can be captured and then utilized as a fuel source or destroyed before they reach the atmosphere [U.S. Environmental Protection Agency (EPA), 2024a].

Overview

CMM is released from coal mines before, during, and after active coal mining and from coal being transported (EPA, 2024a). Atmospheric methane has a GWP of 81 on a 20-yr basis and a GWP of 28 on a 100-yr basis (Intergovernmental Panel on Climate Change [IPCC], 2023). This means methane is 81 times more effective at trapping heat than CO₂. Because methane is a short-lived climate pollutant that has a much stronger warming effect than CO₂ over a given time period, abating methane from coal mines will have a powerful near-term impact on slowing global climate change. If capturing methane is not possible, destroying the methane by burning it is preferable to releasing it.

CMM comes from five major sources throughout the coal mine’s life cycle: 

  1. Degasification systems – pipes installed in the ground to move methane into the atmosphere before starting mining
  2. Ventilation air – air escaping from underground mines when fresh air is used to push out underground methane during mining
  3. Surface mines – exposed coal seams that emit methane directly into the atmosphere during mining
  4. Fugitive emissions – already mined coal that emits methane while being transported or stored
  5. Abandoned or closed mines – coal seams and rock strata that are exposed to air, allowing AMM to escape through existing vents or cracks after mine closure. 

Figure 1. Percent breakdown of CMM sources in the United States, 2021.

Source: U.S. Environmental Protection Agency (2024d). Sources of coal mine methane. Retrieved November 5, 2024. https://www.epa.gov/cmop/sources-coal-mine-methane

CMM management relies on several practices and technologies to reduce the amount of methane released into the atmosphere. The CMM that is captured can be used as a fuel at high concentrations and destroyed through flaring or oxidation at low concentrations. The methane captured from degasification systems typically has a high concentration while fugitive and ventilation methane sources are low concentration. CMM management also includes leak detection and repair using satellites, drones, or other technologies to prevent methane from escaping into the atmosphere.

Underground coal mines have more methane abatement strategies available due to higher average methane concentrations and relative ease of capture. Surface coal mines are exposed directly to the atmosphere and can cover large areas, making them more difficult to abate methane, though there are technologies that can reduce CMM emissions. See the Appendix for more details on the abatement technologies specific to underground and surface coal mines.

References

Assan, S., & Whittle, E. (2023). In the dark: Underreporting of coal mine methane is a major climate risk. Emberhttps://ember-energy.org/latest-insights/in-the-dark-underreporting-of-coal-mine-methane-is-a-major-climate-risk/#supporting-material 

Assan, S. (2024). Understanding the EU’s methane regulation for coal. Emberhttps://ember-energy.org/latest-insights/eumethane-reg-explained/ 

CNX. (2024, March 20). Jumpstarting coal mine methane capture projects for beneficial end use [PowerPoint slides].Global Methane Initiative. https://www.globalmethane.org/resources/details.aspx?resourceid=5386 

DeFabrizio, S., Glazener, W., Hart, C., Henderson, K., Kar, J., Katz, J., Pratt, M. P., Rogers, M., Ulanov, A., & Tryggestad, C. (2021). Curbing methane emissions: How five industries can counter a major climate threat. McKinsey Sustainabilityhttps://www.mckinsey.com/~/media/mckinsey/business%20functions/sustainability/our%20insights/curbing%20methane%20emissions%20how%20five%20industries%20can%20counter%20a%20major%20climate%20threat/curbing-methane-emissions-how-five-industries-can-counter-a-major-climate-threat-v4.pdf 

Domingo, N. G. G., Fiore, A. M., Lamarque, J.-F., Kinney, P. L., Jiang, L., Gasparrini, A., Breitner, S., Lavigne, E., Madureira, J., Masselot, P., das Neves Pereira da Silva, S., Sheng Ng, C. F., Kyselý, J., Guo, Y., Tong, S., Kan, H., Urban, A., Orru, H., Maasikmets, M., … Chen, K. (2024). Ozone-related acute excess mortality projected to increase in the absence of climate and air quality controls consistent with the Paris Agreement. One Earth (Cambridge, Mass.)7(2), 325–335. https://doi.org/10.1016/j.oneear.2024.01.001

Fiore, A. M., Jacob, D. J., & Field, B. D. (2002). Linking ozone pollution and climate change: The case for controlling methane. Geophysical Research Letters29(19), 182-197. https://doi.org/10.1029/2002GL015601 

Gajdzik, B., Tobór-Osadnik, K., Wolniak, R., & Grebski, W. W. (2024). European climate policy in the context of the problem of methane emissions from coal mines in Poland. Energies, 17(10), 2396. https://doi.org/10.3390/en17102396 

Global Energy Monitor (n.d.). Global coal mine tracker. Retrieved February 27, 2025 from https://globalenergymonitor.org/projects/global-coal-mine-tracker/ 

Global Methane Initiative. (2015). Coal mine methane country profiles. https://www.globalmethane.org/documents/toolsres_coal_overview_fullreport.pdf 

Global Methane Initiative (2018). Expert dialogue on ventilation air methane (VAM). https://www.globalmethane.org/documents/res_coal_VAM_Dialogue_Report_20181025.pdf 

Global Methane Initiative (2024a). 2023 Accomplishments in methane mitigation, recovery, and use through U.S.-supported international efforts. https://www.epa.gov/system/files/documents/2024-12/epa430r24009-fy23-accomplishments-report.pdf 

Global Methane Initiative (2024b). International coal mine methane project list. https://globalmethane.org/resources/details.aspx?resourceid=1981 

Hong, C., Mueller, N. D., Burney, J. A., Zhang, Y., AghaKouchak, A., Moore, F. C., Qin, Y., Tong, D., & Davis, S. J. (2020). Impacts of ozone and climate change on yields of perennial crops in California. Nature Food1(3), 166–172. https://doi.org/10.1038/s43016-020-0043-8 

Intergovernmental Panel on Climate Change (IPCC). (2023). In: Climate change 2023: Synthesis report. Contribution of working groups I, II and III to the sixth assessment report of the intergovernmental panel on climate change [core writing team, H. Lee and J. Romero (eds.)]. IPCC, Geneva, Switzerland, pp. 1–34, doi: 10.59327/IPCC/AR6-9789291691647.001 https://www.ipcc.ch/report/ar6/syr/ 

International Energy Agency. (2021). Global methane tracker 2021: Methane abatement and regulation. https://www.iea.org/reports/methane-tracker-2021/methane-abatement-and-regulation 

International Energy Agency. (2023a). Net zero roadmap: A global pathway to keep the 1.5℃ goal in reach - 2023 update. https://www.iea.org/reports/net-zero-roadmap-a-global-pathway-to-keep-the-15-0c-goal-in-reach 

International Energy Agency. (2023b). Strategies to reduce emissions from coal supply. Global Methane Tracker 2023. https://www.iea.org/reports/global-methane-tracker-2023/strategies-to-reduce-emissions-from-coal-supply 

International Energy Agency. (2023c). The imperative of cutting methane from fossil fuels. https://www.iea.org/reports/the-imperative-of-cutting-methane-from-fossil-fuels 

International Energy Agency. (2023d). Global methane tracker 2023: Overview. https://www.iea.org/reports/global-methane-tracker-2023/overview 

International Energy Agency. (2024a). Global methane tracker documentation 2024 version. https://iea.blob.core.windows.net/assets/d42fc095-f706-422a-9008-6b9e4e1ee616/GlobalMethaneTracker_Documentation.pdf 

International Energy Agency. (2024b). Methane tracker: Data tools. https://www.iea.org/data-and-statistics/data-tools/methane-tracker 

International Energy Agency. (2024c). World energy outlook 2024. https://www.iea.org/reports/world-energy-outlook-2024 

International Energy Agency. (2025). Global methane tracker documentation 2025 version. https://iea.blob.core.windows.net/assets/2c0cf2d5-3910-46bc-a271-1367edfed212/GlobalMethaneTracker2025.pdf 

Kholod, N., Evans, M., Pilcher, R. C., Roshchanka, V., Ruiz, F., Coté, M., & Collings, R. (2020). Global methane emissions from coal mining to continue growing even with declining coal production. Journal of Cleaner Production256https://doi.org/10.1016/j.jclepro.2020.120489 

Lewis, C., Tate, R.D., and Mei, D.L. (2024). Fuel operations sector: Coal mining emissions methodology [Data set]. WattTime and Global Energy Monitor, Climate TRACE Emissions Inventory. Retrieved April 18, 2025, from https://climatetrace.org 

Malley, C. S., Borgford-Parnell, N. Haeussling, S., Howard, L. C., Lefèvre E. N., & Kuylenstierna J. C. I. (2023). A roadmap to achieve the global methane pledge. Environmental Research: Climate, 2(1). https://doi.org/10.1088/2752-5295/acb4b4 

Mar, K. A., Unger, C., Walderdorff, L., & Butler, T. (2022). Beyond CO₂ equivalence: The impacts of methane on climate, ecosystems, and health. Environmental Science & Policy134, 127–136. https://doi.org/10.1016/j.envsci.2022.03.027 

MethaneSAT. (2024). Solving a crucial climate challenge. Retrieved September 2, 2024 https://www.methanesat.org/satellite/ 

Mills, G., Sharps, K., Simpson, D., Pleijel, H., Frei, M., Burkey, K., Emberson, L., Cuddling, J., Broberg, M., Feng, Z., Kobayashi, K. & Agrawal, M. (2018). Closing the global ozone yield gap: Quantification and cobenefits for multistress tolerance. Global Change Biology24(10), 4869–4893. https://doi.org/10.1111/gcb.14381 

Ocko, I. B., Sun, T., Shindell, D., Oppenheimer, M. Hristov, A. N., Pacala, S. W., Mauzerall, D. L., Xu, Y. & Hamburg, S. P. (2021). Acting rapidly to deploy readily available methane mitigation measures by sector can immediately slow global warming. Environmental Research, 16(5). https://doi.org/10.1088/1748-9326/abf9c8 

Ramya, A., Dhevagi, P., Poornima, R., Avudainayagam, S., Watanabe, M., & Agathokleous, E. (2023). Effect of ozone stress on crop productivity: A threat to food security. Environmental Research, 236(2), 116816. https://doi.org/10.1016/j.envres.2023.116816 

Roshchanka, V., Evans, M., Ruiz, F., & Kholod, N. (2017). A strategic approach to selecting policy mechanisms for addressing coal mine methane emissions: A case study on Kazakhstan. Environmental Science & Policy78, 185–192. https://doi.org/10.1016/j.envsci.2017.08.005 

Roshchanka, V., & Talkington, C. (2022). Effective monitoring, reporting and verification of methane emissions in the coal industry and the linkage to methane mitigation. https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4298409

Rystad Energy. (2023, October 18). Methane tracking technologies study [PowerPoint slides]. Environmental Defense Fund. https://www.edf.org/sites/default/files/documents/Methane%20Tracking%20Technologies%20Study%20Oct%2018%202023.pdf 

Sampedro, J., Waldhoff, S., Sarofim, M., & Van Dingenen, R. (2023). Marginal damage of methane emissions: Ozone impacts on agriculture. Environmental and Resource Economics84(4), 1095–1126. https://doi.org/10.1007/s10640-022-00750-6 

Setiawan, D. & Wright, C. (2024). The risks of ignoring methane emissions in coal mining. Emberhttps://ember-energy.org/latest-insights/the-risks-of-ignoring-methane-emissions-in-coal-mining/#supporting-material 

Shindell, D., Sadavarte, P., Aben, I., Bredariol, T. O., Dreyfus, G., Höglund-Isaksson, L., Poulter, B., Saunois, M., Schmidt, G. A., Szopa, S., Rentz, K., Parsons, L., Qu, Z., Faluvegi, G., & Maasakkers, J. D. (2024). The methane imperative. Frontiershttps://www.frontiersin.org/journals/science/articles/10.3389/fsci.2024.1349770/full

Silvia, F., Talia, V., & Di Matteo, M. (2021). Coal mining and policy responses: Are externalities appropriately addressed? A meta-analysis. Environmental Science & Policy126, 39–47. https://doi.org/10.1016/j.envsci.2021.09.013

Smith, C., Nicholls, Z. R. J., Armour, K., Collins, W., Forster, P., Meinshausen, M., Palmer, M. D., & Watanabe, M. (2021). The earth’s energy budget, climate feedbacks, and climate sensitivity supplementary material (climate change 2021: The physical science basis. Contribution of working group I to the sixth assessment report of the Intergovernmental Panel on Climate Change). Intergovernmental Panel on Climate Change (IPCC). https://www.ipcc.ch/ 

Tai, A. P., Sadiq, M., Pang, J. Y., Yung, D. H., & Feng, Z. (2021). Impacts of surface ozone pollution on global crop yields: comparing different ozone exposure metrics and incorporating co-effects of CO₂.  Frontiers in Sustainable Food Systems5, 534616. https://doi.org/10.3389/fsufs.2021.534616 

Tao, S., Chen, S., & Pan, Z. (2019). Current status, challenges, and policy suggestions for coalbed methane industry development in China: A review. Energy Science & Engineering7(4), 1059–1074. https://doi.org/10.1002/ese3.358

Tate, R. D., (2022). Bigger than oil or gas? Sizing up coal mine methane. Global Energy Monitorhttps://globalenergymonitor.org/wp-content/uploads/2022/03/GEM_CCM2022_final.pdf 

United Nations Economic Commission for Europe (UNECE). (2019). Best practice guidance for effective methane recovery and use from abandoned coal mines. https://unece.org/fileadmin/DAM/energy/images/CMM/CMM_CE/Best_Practice_Guidance_for_Effective_Methane_Recovery_and_Use_from_Abandoned_Coal_Mines_FINAL__with_covers_.pdf 

United Nations Economic Commission for Europe (UNECE). (2022). Best practice guidance for effective management of coal mine methane at national level: Monitoring, reporting, verification and mitigation. https://globalmethane.org/documents/Best%20Practice%20Guidance%20for%20Effective%20Management%20of%20Coal%20Mine%20Methane%20at%20National%20Level%20Monitoring,%20Reporting,%20Verification%20and%20Mitigation.pdf 

United Nations Environment Program. (2022). Coal mine methane science studies road map. https://www.unep.org/resources/other-evaluation-reportsdocuments/coal-mine-methane-science-studies-road-map 

U.S. Center for Disease Control and Prevention, (2024, September 25). Mining fires and explosionshttps://www.cdc.gov/niosh/mining/topics/fires-explosions.html 

U.S. Environmental Protection Agency (2019). Global non-CO₂ greenhouse gas emission projections & mitigation 2015 - 2050https://www.epa.gov/sites/default/files/2019-09/documents/epa_non-co2_greenhouse_gases_rpt-epa430r19010.pdf 

U.S. Environmental Protection Agency (2024a). About coal mine methane. Retrieved November 5, 2024. https://www.epa.gov/cmop/about-coal-mine-methane 

U.S. Environmental Protection Agency (2024b). Coalbed methane outreach program accomplishmentshttps://www.epa.gov/cmop/coalbed-methane-outreach-program-accomplishments 

U.S. Environmental Protection Agency (2024c). GHGRP underground coal mines. Retrieved November 5, 2024. https://www.epa.gov/ghgreporting/ghgrp-underground-coal-mines 

U.S. Environmental Protection Agency (2024d). Sources of coal mine methane. Retrieved November 5, 2024. https://www.epa.gov/cmop/sources-coal-mine-methane 

Ward, K., Mountain State Spotlight, Mierjeski, A. & Scott Pham. (2023). In the game of musical mines, environmental damage takes a back seat. ProPublicahttps://www.propublica.org/article/west-virginia-coal-blackjewel-bankruptcy-pollution 

Zhu, R., Khanna, N., Gordon, J., Dai, F., & Lin, J. (2023). Abandoned coal mine methane reduction. Berkeley Labhttps://ccci.berkeley.edu/sites/default/files/Abandonded%20Coal%20Mines_Final%20%28EN%29.pdf 

Credits

Lead Fellow

  • Jason Lam

Contributors

  • James Gerber, Ph.D.

  • Yusuf Jameel, Ph.D. 

  • Ruthie Burrows, Ph.D.

  • Daniel Jasper

  • Alex Sweeney

Internal Reviewers

  • Sarah Gleeson, Ph.D.

  • Aiyana Bodi

  • Hannah Henkin

  • Ted Otte

  • Amanda Smith, Ph.D.

  • Paul West, Ph.D.

Effectiveness

Each Mt of methane that is not emitted avoids 81.2 Mt CO₂‑eq on a 20-yr basis and 27.9 Mt CO₂‑eq on a 100-yr basis (Smith et al., 2021). The GWP of methane is shown in Table 1. If the methane is converted into CO₂ through burning the contribution to global climate change will still be less than if the methane were released into the atmosphere. Methane abatement can have a more immediate impact on future global temperature rise because it has a larger and faster warming effect than CO₂. Mitigating methane emissions in the near term can give us more time for reducing GHG emissions in hard to abate sectors.

left_text_column_width

Table 1. Effectiveness at reducing emissions.

Unit: t CO₂‑eq/Mt methane abated

100-yr GWP 27,900,000
20-yr GWP 81,200,000
Left Text Column Width
Cost

The cost of methane abatement will vary depending on the type of coal mine, the methane content of the coal seam, the strategies used, and the availability of financial support for methane abatement. For our analysis, we average the costs for various feasible abatement strategies under two general assumptions: sufficiently high methane content for any of the major abatement strategies to be applied (IEA, 2024a) and the ability to use the abated methane on-site or sell it to natural gas companies. The initial cost to abate 1 Mt of methane is US$1.5 billion, the operating cost is about US$130 million, revenue is about US$260 million and the overall net savings over a 30-yr amortization period is US$90 million. We were only able to find revenue information from the IEA (2023b, 2024a), meaning the net cost could be different than shown here due to the site specific nature of methane abatement strategies. 

We considered the baseline scenario to be coal mining practices without methane abatement; all cost estimates here are relative to that scenario.

Cost data were limited for this solution. The available costs for a specific abatement strategy were normalized according to the cost of abating one Mt of methane, and it was assumed that a single strategy abated all of the methane for the coal mine. This results in an overestimate of the effectiveness of any individual strategy. In reality, multiple strategies are likely to be used. The costs shown in Table 2 are for the global scale of coal methane abatement and not from the point of view of an individual coal producer. Many studies that look at global coal methane abatement put multiple abatement strategies together and do not go into detail about the individual technology costs. The IEA (2024a) included costs for individual CMM abatement strategies; however, the costs were only applicable for coal mines that produce enough methane for it to be economically feasible to deploy the specific abatement strategy. Flaring is an effective strategy for destroying captured methane, but will not create revenue in the absence of a carbon market. For more details on important aspects for coal methane abatement strategies, refer to the Appendix.

left_text_column_width

Table 2. Cost per unit climate impact.

Unit: 2023 US$/t CO₂‑eq, 100-yr basis

median -3.17
Left Text Column Width
Learning Curve

Many of the solutions for reducing methane emissions from coal mining are mature. Research from Rystad (2023) found that technologies for abating CMM emissions, such as drainage gas utilization, sealing and rerouting, and flaring, were considered mature in Australian coal mines. Regenerative thermal oxidation technology is in commercial use for destroying volatile organic compounds and can be used for destroying ventilation air methane (VAM), but the manufacturers have little interest in improving the technology for use in coal mines without confirmed markets (GMI, 2018; Rystad, 2023). We do not foresee the costs of implementing these solutions falling in the future. CMM regulations may encourage manufacturers to improve oxidation technology, but the technology is already used commercially, so there may not be large efficiency gains.

left_text_column_width
Speed of Action

Speed of action refers to how quickly a climate solution physically affects the atmosphere after it is deployed. This is different from speed of deployment, which is the pace at which solutions are adopted.

At Project Drawdown, we define the speed of action for each climate solution as gradualemergency brake, or delayed.

Manage Coal Mine Methane is an EMERGENCY BRAKE climate solution. It has the potential to deliver a more rapid impact than nominal and delayed solutions. Because emergency brake solutions can deliver their climate benefits quickly, they can help accelerate our efforts to address dangerous levels of climate change. For this reason, they are a high priority.

left_text_column_width
Caveats

CMM abatement consists of capturing methane that would otherwise be released into the atmosphere. If the methane is burned, CO₂ will be emitted as a byproduct; however, this provides a net climate benefit compared to the methane that would be emitted. CMM emissions management can be avoided by not extracting, transporting, or using coal in the first place. 

As coal demand drops, the number of closed or abandoned coal mines will increase. These mines will continue to release AMM into the atmosphere for many decades. Sealing underground mines can stop methane from being released, but seals have been known to fail and require ongoing monitoring to verify methane is not escaping (Kholod et al., 2020). Gas collection systems can be used to capture AMM, but the CO₂ produced will need to be captured for complete emission reductions. Flooding underground coal mines is very effective at stopping methane from being released; however, there are concerns about water contamination (McKinsey, 2021).

Our assessment does not include the impact of the CO₂ created from the destruction of methane.

left_text_column_width
Current Adoption

We estimated that the coal sector abated 0.59 Mt of methane in 2023 and released 40 Mt in 2024 (IEA, 2025). Reports from EPA (2022), and GMI (2023) estimated the amount of CMM abated to date, and the statistical ranges from the sources are shown in Table 3. However, most of the data focused on coal mines in the United States. The EPA (2024b) stated that 0.3 Mt of methane was captured in 2021 due to the Coalbed Methane Outreach Program. CMM is controlled at coal mines for health and safety reasons, but only in 2024 was regulation introduced for reducing methane emissions from the energy sector in the European Union (Assan, 2024).


GMI (2024a) reports that 0.79 Mt of methane was abated from coal mines in 2023 among its member countries. The organization includes 48 GMI member countries but covers only 70% of human-caused methane emissions and does not track methane mitigation that has occurred outside of the group. GMI (2024b) currently lists more than 471 CMM abatement projects in 20 countries worldwide. According to Global Energy Monitor (n.d.), over 6,000 coal mines were active in more than 70 countries as of April 2024. With these data sources, we consider our analysis of the current adoption of CMM abatement as conservative. 

left_text_column_width

Table 3. Current (2023) adoption level.

Unit: Mt/yr of methane abated

25th percentile 0.49
mean 0.59
median (50th percentile) 0.59
75th percentile 0.69
Left Text Column Width
Adoption Trend

Although there are little data specifically quantifying the adoption trend of methane abatement strategies, we estimate the median adoption trend to be about 0.60 Mt/yr of methane abated.  Table 4 shows the adoption trend for CMM abatement.

GMI (2024) reported methane abatement staying relatively stable from 2016 to 2023 at about 0.8 Mt/yr, with a small increase to 1.0 Mt of methane in 2019–2022 before decreasing back to 0.8 Mt in 2023, causing the adoption trend to be higher than the current adoption value we state above. The EPA (2024a) Coalbed Methane Outreach Program showed fairly stable emission reductions of around 0.33 Mt/yr between 2016 and 2022. The annual methane emission abatement from this program gradually increased 2003–2011, followed by a continued trend of methane abatement at a slower rate 2011–2022. The IEA (2024b) found that almost 2.0 Mt of methane was emitted in 2023 by the United States coal industry, and 60% of those emissions could be abated.

left_text_column_width

Table 4. (2016–2023) adoption trend.

Unit: Mt/yr methane abated

25th percentile 0.46
mean 0.60
median (50th percentile) 0.60
75th percentile 0.73
Left Text Column Width
Adoption Ceiling

We found an adoption ceiling of about 40.3 Mt/yr of methane based on the IEA’s (2025) estimate for total methane emissions from the coal mine sector. We assumed that current CMM emissions would remain the same into the future with no changes in coal production or demand. Table 5 shows the adoption ceiling for coal mine methane abatement.

Even in the IEA’s (2023c) highest methane abatement energy scenario, only 93% of the methane emissions are reduced by 2050. This would still leave the coal sector releasing methane into the atmosphere. Reduced coal production will reduce the amount of methane emissions produced by the coal sector and consequently reduce the amount of methane that needs to be controlled with methane abatement. However, methane abatement will still be important for abating the remaining CMM emissions and the growing proportion of AMM emissions (IEA, 2023c, Kholod et al., 2020). 

left_text_column_width

Table 5. Adoption ceiling.

Unit: Mt/yr of methane abated

median (50th percentile) 40.30
Left Text Column Width
Achievable Adoption

The amount of methane that could be abated from CMM varies greatly depending on global coal demand. We estimate an achievable adoption range of 2.83–4.40 Mt/yr of methane abated.The Achievable – Low value aligns with the IEA (2023c) Announced Pledges scenario, in which all announced climate policies are met and full methane abatement is employed, but net-zero emissions are not achieved. This range of high and low values was determined by taking the total methane abated in these scenarios and dividing by the difference between the target year and 2024 to determine an average amount of methane abated each year to reach the scenario target. 

The Achievable – High value aligns with Ocko et al.(2021), where all economically and technically feasible methane abatement is employed by 2030. DeFabrizio et al. (2021) estimated that the degasification of underground mines and flaring would be the source of most methane abatement from coal mining, with degasification of surface mines abating a smaller proportion of methane over time. However, research from Kholod et al. (2020) suggested there will be an increase in AMM emissions as coal mines are closed. Methane emissions from AMM are not extensively monitored right now, and there is limited research on the topic. Methane abatement strategies will be needed to abate growing AMM emissions (Zhu et al, 2023). 

In addition, some research suggested CMM is being underestimated, with global emissions being as high as 67 Mt/yr (Assan & Whittle, 2023). If coal demand drops by 90%, as outlined in IEA’s Net Zero Emissions scenario, total coal methane emissions would decline to 3 Mt/yr, and the use of methane abatement would reduce emissions by 2 Mt/yr, leaving only 1 Mt/yr of CMM emitted in 2050. 

With growing interest and investment from governments and academia in identifying methane leaks using technologies such as satellite sensing (MethaneSAT, 2024), the opportunities for methane abatement will increase. Over 150 countries have joined the Global Methane Pledge (representing 50% of the world’s human-caused methane) to reduce methane emissions by 30% of 2020 emissions by 2030 (UNEP, 2021). The IEA (2023a) found that even in a baseline scenario, many governments have announced or put in place measures to cut methane emissions; we would expect a growing trend in global methane abatement to occur. The IEA (2024c) states that in all scenarios global coal demand will decrease. Table 6 shows the statistical low and high achievable ranges for CMM abatement based on different sources for future uptake of CMM abatement.

left_text_column_width

Table 6. Range of achievable adoption levels.

Unit: Mt/yr methane abated

Current Adoption 0.59
Achievable – Low 2.83
Achievable – High 4.40
Adoption Ceiling 40.30
Left Text Column Width

We estimate that the coal industry is currently abating approximately 0.02 Gt CO₂‑eq/yr on a 100-yr basis and 0.03 Gt CO₂‑eq/yr on a 20-yr basis using methane abatement strategies. This is about 1% of total methane emissions emitted in 2024 (IEA, 2025). 

As the coal industry opens or closes coal mines due to changing coal demand, the opportunities for CMM abatement projects will change along with it. If coal demand gradually drops by 2050, more than 0.12 Gt CO₂‑eq/yr of methane could be abated. However, if coal demand drops more quickly from the implementation of energy and climate policies, the methane abatement potential would drop because the coal sector is producing less methane. This is projected in the different energy scenarios modeled by the IEA (2023c). The range between the current CMM abatement and the adoption ceiling is shown in Table 7.

left_text_column_width

Table 7. Climate impact at different levels of adoption.

Unit: Gt CO₂‑eq/yr, 100-yr basis

Current Adoption 0.02
Achievable – Low 0.08
Achievable – High 0.12
Adoption Ceiling 1.12
Left Text Column Width
Additional Benefits

Air quality and health

Around 10% of anthropogenic methane comes from coal mines (IEA, 2024a). Methane released from coal mines contributes to ground-level ozone pollution, which can harm lung function, exacerbating conditions like asthma, bronchitis, and emphysema, and can contribute to premature mortality (Mar et al., 2022). Domingo et al. (2024) estimated that ground-level ozone accounted for about 6,600 excess deaths per year in about 400 cities globally. 

Methane released from coal mines also endangers workers’ safety in the mines, increasing the possibility of explosions, which are a significant source of fatalities and injuries (CDC, 2024). In the United States, from 2006 to 2011, mine explosions were responsible for about 25% of fatalities in the mining industry (CDC, 2024). While advances in methane mitigation technologies can prevent explosions and fatalities, mines across LMICs usually do not have methane mitigation protocols in place. Installing methane abatement strategies can potentially protect workers from such explosions (Tate, 2022).

Food security 

Methane reacts with chemicals like VOCs to form tropospheric, or ground-level ozone (Fiore et al., 2002). Ground-level ozone has been linked to reduced crop growth and yields (Mills et al., 2018; Samperdo et al., 2023; Tai et al., 2021). Mitigating methane emissions from coal mines could improve food security by reducing ground-level ozone and its harmful impacts on agricultural productivity (Tai et al., 2014; Ramya et al., 2023)

left_text_column_width
Risks

CMM abatement strategies could be implemented on a voluntary basis due to favorable natural gas prices, but if natural gas prices drop there is less economic incentive to abate methane (IEA, 2021). Without policy support enforcing methane abatement, emissions could continue, especially from VAM and AMM, which are more difficult to capture and use. Ensuring long-term monitoring and abatement of CMM can be challenging if coal mines are abandoned due to owners going bankrupt, leaving environmental damages unpaid for and remediation up to nearby communities or taxpayers (Ward et al., 2023). 

left_text_column_width
Interactions with Other Solutions

Reinforcing

Managing coal methane can have a positive impact on other solutions that reduce methane release to the atmosphere. The use of technologies such as degasification systems, methane destruction, and Leak Detection and Repair (LDAR) in the coal mine sector can demonstrate the effectiveness and economic case for employing methane abatement. This would build momentum for the widespread adoption of methane abatement because successes in the coal sector can be leveraged and applied to other sectors. In addition, LDAR is a key part in identifying where we can abate methane emissions and lessons learned from the coal sector can be applied to other sites, as well as identifying methane leaks in general. 

left_text_column_width

Competing

CMM management interacts negatively with solutions that provide clean electricity as this solution captures methane that can be used as an energy source, prolonging the use of natural gas infrastructure and reducing the cost of methane as a fuel source. 

left_text_column_width
Dashboard

Solution Basics

1 Mt of methane abated

tCO2-eq/unit
2.79×10⁷
units/yr
Current 0.592.834.4
Achievable (Low to High)

Climate Impact

GtCO2-eq/yr
Current 0.02 0.080.12
US$ per tCO2-eq
-3
Emergency Brake

CH₄

Trade-offs

Methane abatement strategies are a powerful tool to reduce methane emissions; however, providing a secondary source of revenue for coal mining could increase the profitability and longevity of some coal mines. A broad strategy to reduce reliance on coal as an energy resource is needed to reduce the amount of CMM generated. Even with methane abatement strategies in place, methane used as a fuel or destroyed through flaring will still emit GHGs and contribute to global climate change.

left_text_column_width
Mt CO2–eq
< 1
1–3
3–5
5–7
7–9
> 9

Annual emissions from coal mine sources, 2024

Globally, coal mines are responsible for 40 of the 347 Mt of anthropogenic methane emissions in 2023. This is equivalent to 1,080 Mt CO2–eq based on a 100-year time scale. Methane emissions occur throughout the life of a coal mine and can continue after mines are closed or abandoned.

Lewis, C., Tate, R.D., and Mei, D.L. (2024). Fuel operations sector: Coal mining emissions methodology [Data set]. WattTime and Global Energy Monitor, Climate TRACE Emissions Inventory. Retrieved April 18, 2025, from https://climatetrace.org

International Energy Agency. (2024). Methane tracker: Data tools. https://www.iea.org/data-and-statistics/data-tools/methane-tracker

Mt CO2–eq
< 1
1–3
3–5
5–7
7–9
> 9

Annual emissions from coal mine sources, 2024

Globally, coal mines are responsible for 40 of the 347 Mt of anthropogenic methane emissions in 2023. This is equivalent to 1,080 Mt CO2–eq based on a 100-year time scale. Methane emissions occur throughout the life of a coal mine and can continue after mines are closed or abandoned.

Lewis, C., Tate, R.D., and Mei, D.L. (2024). Fuel operations sector: Coal mining emissions methodology [Data set]. WattTime and Global Energy Monitor, Climate TRACE Emissions Inventory. Retrieved April 18, 2025, from https://climatetrace.org

International Energy Agency. (2024). Methane tracker: Data tools. https://www.iea.org/data-and-statistics/data-tools/methane-tracker

Geographic Guidance Introduction

Coal mine methane abatement is applicable in any area with coal mines. While China and the United States are the largest coal producers, Russia, Ukraine, Kazakhstan, and India also generated more than 10 Mt CO₂-eq (100–yr) from coal mines in 2015 (GMI, 2015).

Levels of methane emissions from coal mines can vary geographically. The greatest abatement potential is in China, Kazakhstan, Australia, and several countries in Eastern Europe and Africa (Shindell et al., 2024). However, methane abatement is recommended for all coal mining activities, and high-income countries are in a position to share supportive technologies and practices for coal mine methane abatement with other coal-producing countries to reduce methane emissions from active and abandoned or closed mines.

Action Word
Manage
Solution Title
Coal Mine Methane
Classification
Highly Recommended
Lawmakers and Policymakers
  • Create policies based on global best practices, such as the IEA’s roadmap to implementing CMM regulations.
  • Require all coal mines to measure and report on methane emissions.
  • Invest in monitoring, reporting, and verification technologies, such as satellites, and support low-income countries in monitoring emissions.
  • Provide financial incentives, such as reduced taxes, subsidies, grants, low-interest loans, and feed-in tariffs, for adopting drainage and capture technologies suitable for the region.
  • Require closed and abandoned mines to be sealed and monitored.
  • Compile or update global inventories of the status of abandoned and closed mines.
  • When possible, do not approve the construction of new coal mines.
  • Require low-emitting technologies for equipment, coal processing, storage, and transportation.
  • Develop infrastructure to use captured CMM, including gas processing, grid connections, and industry capacity.
  • Establish clear resource rights to methane emitted from active and abandoned mines.
  • Include CMM recovery in Nationally Determined Contributions and other international reporting instruments.
  • Provide educational resources to industry leaders, including potential reduction options, workshops, actionable reports, direct engagements, and demonstrations.
  • Join, support, or create public initiatives such as the Global Methane Initiative, Global Methane Pledge, or Global Methane Hub.
Practitioners
  • Utilize or destroy CMM to the maximum extent.
  • Work with policymakers to create policies based on global best practices, such as the IEA’s roadmap to implementing CMM regulations.
  • Measure and report on methane emissions.
  • Invest in monitoring, reporting, and verification technologies, such as satellites, and support low-income countries to monitor emissions.
  • Take advantage of any financial incentives, such as reduced taxes, subsidies, grants, low-interest loans, and feed-in tariffs, to adopt drainage and capture technologies suitable for the region.
  • Ensure abandoned and closed mines are sealed and monitored.
  • Compile or update global inventories of the status of abandoned and closed mines.
  • When possible, do not approve the construction of new coal mines.
  • Develop infrastructure to use captured CMM, including gas processing, grid connections, and industry capacity.
  • Assist policymakers in establishing clear resource rights to methane emitted from active and abandoned mines.
  • Use existing drainage systems for gas capture, utilization, and sale.
  • Improve technologies, such as thermal oxidizers, for the purposes of VAM destruction.
  • Partner with carbon markets that are linked to CMM abatement.
  • Improve CMM emissions modeling and monitoring, including satellites and on-the-ground methods.
  • Invest in R&D to improve extraction, capture, storage, transportation, and utilization technologies.
  • Join, support, or create public initiatives such as the Global Methane Initiative, Global Methane Pledge, or Global Methane Hub.
  • Utilize educational resources to industry leaders, including potential reduction options, workshops, actionable reports, direct engagements, and demonstrations.
Business Leaders
  • Ensure that operations or investments that include coal mines utilize or destroy methane emissions.
  • Do not invest, plan to use, or create agreements with new coal mines.
  • Invest in high-integrity carbon markets that are linked to CMM abatement.
  • Invest in R&D to improve the efficiency of extraction, capture, storage, transportation, and utilization technologies.
  • Develop infrastructure to use captured CMM, including gas processing, grid connections, and industry capacity.
  • Utilize existing data sets such as the UN’s International Methane Emissions Observatory to inform current and future decisions.
  • Join, support, or create public initiatives such as the Global Methane Initiative, Global Methane Pledge, or Global Methane Hub.
Nonprofit Leaders
  • Advocate for regulating CMM emissions and local policies based on global best practices, such as the IEA’s roadmap to implementing CMM regulations.
  • Assist coal mines in measuring and reporting or conducting independent studies on CMM emissions.
  • Advocate for financial incentives, such as reduced taxes, subsidies, grants, low-interest loans, and feed-in tariffs, for the adoption of drainage and capture technologies suitable for the region.
  • Advocate to stop the construction of new coal mines.
  • Compile or update global inventories of the status of abandoned and closed mines.
  • Help create high-integrity carbon markets that are linked to CMM abatement.
  • Provide educational resources to industry leaders, including potential reduction options, workshops, actionable reports, direct engagements, and demonstrations.
  • Join, support, or create public initiatives such as the Global Methane Initiative, Global Methane Pledge, or Global Methane Hub.
Investors
  • Invest in monitoring, reporting, and verification technologies, such as satellites, and support low-income countries to monitor emissions.
  • Provide financial support through low-interest loans or green bonds to adopt drainage and capture technologies suitable for the region.
  • Do not invest in constructing new coal mines and require any existing investments to provide transparent emissions data and time-based reduction strategies.
  • Invest in R&D to improve the efficiency of extraction, capture, storage, transportation, and utilization technologies.
  • Develop infrastructure to use captured CMM, including gas processing, grid connections, and industry capacity.
  • Invest in high-integrity carbon markets that are linked to CMM abatement.
  • Join, support, or create public initiatives such as the Global Methane Initiative, Global Methane Pledge, or Global Methane Hub.
Philanthropists and International Aid Agencies
  • Invest in monitoring, reporting, and verification technologies, such as satellites, and support low-income countries to monitor emissions.
  • Provide financial support to adopt drainage and capture technologies suitable for the region.
  • Invest in R&D to improve the efficiency of extraction, capture, storage, transportation, and utilization technologies.
  • Assist in establishing clear resource rights to methane emitted from active and abandoned mines.
  • Help create high-integrity carbon markets that are linked to CMM abatement.
  • Join, support, or create public initiatives such as the Global Methane Initiative, Global Methane Pledge, or Global Methane Hub.
  • Provide educational resources to industry leaders, including potential reduction options, workshops, actionable reports, direct engagements, and demonstrations.
  • Advocate for regulating CMM emissions and local policies based on global best practices, such as the IEA’s roadmap to implementing CMM regulations.
  • Compile or update global inventories of the status of abandoned and closed mines.
Thought Leaders
  • Advocate for regulating CMM emissions and local policies based on global best practices, such as the IEA’s roadmap to implementing CMM regulations.
  • Assist coal mines in measuring and reporting or conducting independent studies on CMM emissions.
  • Advocate for financial incentives, such as reduced taxes, subsidies, grants, low-interest loans, and feed-in tariffs, for adopting drainage and capture technologies suitable for the region.
  • Assist in establishing clear resource rights to methane emitted from active and abandoned mines.
  • Advocate to stop the construction of new coal mines.
  • Compile or update global inventories of the status of abandoned and closed mines.
  • Help create high-integrity carbon markets that are linked to CMM abatement.
  • Provide educational resources to industry leaders, including potential reduction options, workshops, actionable reports, direct engagements, and demonstrations.
  • Join, support, or create public initiatives such as the Global Methane Initiative, Global Methane Pledge, or Global Methane Hub.
Technologists and Researchers
  • Improve CMM emissions modeling and monitoring, including satellites and on-the-ground methods.
  • Compile or update global inventories of the status of abandoned and closed mines.
  • Develop infrastructure to use captured CMM, including gas processing, grid connections, and industry capacity.
  • Discover ways to utilize existing drainage systems for gas capture, utilization, and sale.
  • Improve technologies, such as thermal oxidizers, for the purposes of VAM destruction.
  • Develop new ways to improve extraction, capture, storage, transportation, and utilization technologies.
  • Develop verifiable carbon credits using technology such as blockchain to improve the integrity of carbon markets.
  • Improve the efficiency of mining equipment to reduce maintenance requirements and costs.
Communities, Households, and Individuals
  • Advocate for regulating CMM emissions and local policies based on global best practices, such as the IEA’s roadmap to implementing CMM regulations.
  • Advocate for financial incentives, such as reduced taxes, subsidies, grants, low-interest loans, and feed-in tariffs, for the adoption of drainage and capture technologies suitable for the region.
  • Advocate to stop the construction of new coal mines.
  • Assist coal mines in measuring and reporting or conducting independent studies on CMM emissions.
  • Provide educational resources to industry leaders, including potential reduction options, workshops, actionable reports, direct engagements, and demonstrations.
  • Join, support, or create public initiatives such as the Global Methane Initiative, Global Methane Pledge, or Global Methane Hub.
Evidence Base

Consensus of effectiveness of abating methane emissions from coal mines: High

There is a high level of consensus about the effectiveness of methane abatement strategies. These strategies can be deployed cost effectively in many cases and have an immediate impact on reducing global temperature rise. 

Authoritative sources such as the IEA (2024c) and UNEP (2021) agree that reducing methane emissions can noticeably slow global climate change. Methane is a short-lived climate pollutant that has a much stronger warming effect than CO₂ over a given time period. IEA (2023d) identified that close to 55% (22 Mt) of CMM emissions could be abated with existing technologies. However, there are significant challenges in measuring and recovering methane emissions in the coal sector. Analysis from Assan & Whittle (2023) found that global CMM emissions could be significantly higher than reported, 38–67 Mt/yr compared with the 40 Mt/yr reported by the IEA (2025).

The IEA (2023a) noted that more than half of CMM emissions could be abated through utilization, flaring, or oxidation technologies, with abatement being more practical for underground mines. Many studies (DeFabrizio et al., 2021; Malley et al., 2023; Shindell et al., 2024) have shown that methane abatement strategies can use existing technologies, often at low cost. In some countries, coal operators already identify the location and sources of CMM to meet health and safety regulations (Assan & Whittle, 2023); Setiawan & Wright (2024) noted that existing technologies such as pre-mine drainage and VAM mitigation have been proven in various places around the world over the past 25 years. According to UNEP (2021), coal methane abatement could reduce emissions by 12–25 Mt/yr, with up to 98% of the measures implemented at low cost. However, costs may vary significantly based on the available infrastructure and characteristics of an individual coal mine.

The results presented in this document summarize findings from 21 reviews and meta-analyses and 20 original studies reflecting current evidence from three countries (Australia, China, and the United States) as well as from sources examining global CMM emissions. We recognize this limited geographic scope creates bias, and hope this work inspires research and data sharing on this topic in underrepresented regions.

left_text_column_width
Appendix

CMM abatement strategy constraints:

The type of coal mine, the amount of methane produced, and the available infrastructure greatly affect which abatement strategies are economical. Underground coal mines often produce more CMM and are likely to capture CMM using degasification systems and use it for productive purposes such as electricity generation or selling captured methane. However, VAM, which is a major part of CMM emissions, can be challenging to use for productive purposes due to the low methane concentrations. VAM requires regenerative thermal oxidation technology to effectively destroy and with more gassy coal mines. According to the IEA (2023b), technologies such as flaring and drained CMM can be used at less gassy mines with lower initial capital cost. Capturing methane for destruction has the disadvantage of not creating a source of revenue to offset the capital cost of methane abatement without a form of carbon markets in place. 

More than 60% of methane-related emissions from coal mining are from the ventilation of underground coal mines. Large amounts of fresh air are used to lower the concentration of methane and reduce the risk of explosions in underground mines. This makes it challenging to destroy or use the low concentrations of VAM (UNEP, 2022). It is also challenging to capture methane from surface mines because the coal is in direct contact with the atmosphere and over a larger surface area. However, thermal oxidation systems have been used to destroy VAM (U.S. EPA, 2019) and there have been examples of degasification systems used for surface mines as well (IEA, 2023b). Methane emissions from AMM can be dealt with by flooding underground mines with water (Kholod et al., 2020) or by sealing and using capture and utilization projects (Zhu et al., 2023). 

Technologies for reducing methane emissions can be divided between underground and surface coal mines:

Underground mines
  • Predainage prior to mining
  • VAM capture and utilization
  • Capture of abandoned mine gas
  • Sealing or flooding of abandoned mines 
Surface mines
  • Degasification of surface mines
  • Predrainage of surface mines

Appendix References

CNX. (2024, March 20). Jumpstarting coal mine methane capture projects for beneficial end use [PowerPoint slides].Global Methane Initiative. https://www.globalmethane.org/resources/details.aspx?resourceid=5386 

United Nations Economic Commission for Europe (UNECE). (2019). Best practice guidance for effective methane recovery and use from abandoned coal mines. https://unece.org/fileadmin/DAM/energy/images/CMM/CMM_CE/Best_Practice_Guidance_for_Effective_Methane_Recovery_and_Use_from_Abandoned_Coal_Mines_FINAL__with_covers_.pdf 

left_text_column_width
Updated Date
Subscribe to Other Energy