These are the primary “Highly Recommended” climate solutions based on their effectiveness, scalability, and evidence of impact.

Deploy Silvopasture

Image
Image
Cows grazing among trees
Coming Soon
Off
Summary

We define the Deploy Silvopasture solution as the adoption of agroforestry practices that add trees to grazing land, including planted pastures and natural rangelands. (Note that this solution does NOT include creating forested grazing land by thinning existing forest; this is a form of deforestation and not desirable in terms of climate.) Some silvopastures are open savannas, while others are dense, mature tree plantations. The trees may be planted or managed to naturally regenerate. Some silvopasture systems have been practiced for thousands of years, while others have been recently developed. All provide shade to livestock; in some systems, the trees feed livestock, produce timber or crops for human consumption, or provide other benefits.

Overview

In silvopasture systems, trees are planted or allowed to naturally regenerate on existing pasture or rangeland. Tree density is generally low, allowing sunlight through for good forage growth.

Silvopasture has multiple climate impacts, though carbon sequestration is the only one which has been thoroughly studied across all climates and sub-practices.

Silvopasture sequesters carbon in both soil and woody biomass. Carbon sequestration rates are among the highest of any farming system (Toensmeier, 2017). The lifetime accumulation of carbon in both soils and biomass is higher than for managed grazing alone (Montagnini et al., 2019; Nair et al., 2012).

Silvopasture can also reduce GHG emissions, though not in every case. We do not include emissions reductions in this analysis.

Conversion from pasture to silvopasture slightly increases capture and storage of methane in soils (Bentrup and Shi, 2024). In addition, in fodder subtypes of silvopasture systems, ruminant livestock consume tree leaves or pods. Many, but not all, of the tree species used in these systems have tannin content that reduces emissions of methane from enteric fermentation (Jacobsen et al., 2019). 

Some subtypes of silvopasture reduce nitrous oxide emissions from manure and urine, as grasses and trees capture nitrogen that microbes would otherwise convert to nitrous oxide. There are also reductions to nitrous oxide emissions from soils: 76–95% in temperate silvopastures and 16–89% in tropical-intensive silvopastures (Ansari et al., 2023; Murguietio et al., 2016).

Many silvopasture systems increase productivity of milk and meat. Yield increases can reduce emissions from deforestation by growing more food on existing farmland, but in some cases can actually worsen emissions if farmers clear forests to adopt the profitable practice (Intergovernmental Panel on Climate Change [IPCC], 2019). The yield impact of silvopasture varies with tree density, climate, system type, and whether the yields of other products (e.g., timber) are counted as well (Rojas et al., 2022). 

References

Ansari, J., Udawatta, R. P., & Anderson, S. H. (2022). Soil nitrous oxide emission from agroforestry, rowcrop, grassland and forests in North America: a review. Agroforestry Systems97(8), 1465-1479. https://doi.org/10.1007/s10457-023-00870-y

Batcheler, M., Smith, M. M., Swanson, M. E., Ostrom, M., & Carpenter-Boggs, L. (2024). Assessing silvopasture management as a strategy to reduce fuel loads and mitigate wildfire risk. Scientific Reports14(1), 5954. https://doi.org/10.1038/s41598-024-56104-3

Bentrup, G. & Shi, X. (2024) Multifunctional buffers: Design guidelines for buffers, corridors and greenways. USDA Forest Service. 

Bostedt, G., Hörnell, A., & Nyberg, G. (2016). Agroforestry extension and dietary diversity–an analysis of the importance of fruit and vegetable consumption in West Pokot, Kenya. Food Security8, 271-284.

Briske, D. D., Vetter, S., Coetsee, C., & Turner, M. D. (2024). Rangeland afforestation is not a natural climate solution. Frontiers in Ecology and the Environmenthttps://doi.org/10.1002/fee.2727

Cadavid, Z., & BE, S. T. (2020). Sistemas silvopastoriles: aspectos teóricos y prácticos. CIPAV.

Cardinael, R., Umulisa, V., Toudert, A., Olivier, A., Bockel, L., & Bernoux, M. (2019). Revisiting IPCC Tier 1 coefficients for soil organic and biomass carbon storage in agroforestry systems. Environmental Research Letters13(12), 124020. 10.1088/1748-9326/aaeb5f

Chapman, M., Walker, W.S., Cook-Patton, S.C., Ellis, P.W., Farina, M., Griscom, B.W., & Baccani, A. (2019) Large climate mitigation potential from adding trees to agricultural lands Global Change Biology, 26 (80), 4357-4365. https://doi.org/10.1111/gcb.15121

Chatterjee, N., Nair, P. R., Chakraborty, S., & Nair, V. D. (2018). Changes in soil carbon stocks across the forest-agroforest-agriculture/pasture continuum in various agroecological regions: A meta-analysis. Agriculture, ecosystems & environment266, 55-67. https://doi.org/10.1016/j.agee.2018.07.014

Damania, Richard; Polasky, Stephen; Ruckelshaus, Mary; Russ, Jason; Amann, Markus; Chaplin-Kramer, Rebecca; Gerber, James; Hawthorne, Peter; Heger, Martin Philipp; Mamun, Saleh; Ruta, Giovanni; Schmitt, Rafael; Smith, Jeffrey; Vogl, Adrian; Wagner, Fabian; Zaveri, Esha. 2023. Nature's Frontiers: Achieving Sustainability, Efficiency, and Prosperity with Natural Capital. Environment and Sustainable Development series. Washington, DC: World Bank

de Sherbinin, A., VanWey, L. K., McSweeney, K., Aggarwal, R., Barbieri, A., Henry, S., Hunter, L. M., Twine, W., & Walker, R. (2008). Rural household demographics, livelihoods and the environment. Global Environmental Change, 18(1), 38–53. https://doi.org/10.1016/j.gloenvcha.2007.05.005

Den Herder, M., Moreno, G., Mosquera-Losada, R. M., Palma, J. H., Sidiropoulou, A., Freijanes, J. J. S., & Burgess, P. J. (2017). Current extent and stratification of agroforestry in the European Union. Agriculture, Ecosystems & Environment241, 121-132. https://doi.org/10.1016/j.agee.2017.03.005

Di Prima, S., Wright, E. P., Sharma, I. K., Syurina, E., & Broerse, J. E. W. (2022). Implementation and scale-up of nutrition-sensitive agriculture in low- and middle-income countries: A systematic review of what works, what doesn’t work and why. Global Food Security, 32, 100595. https://doi.org/10.1016/j.gfs.2021.100595

deStefano, A, & Jacobson, M.G. (2018) Soil carbon sequestration in agroforestry systems: A review. Agroforestry Systems, 92, 285-299. https://doi.org/10.1007/s13593-014-0212-y

Dudley, N., Eufemia, L., Fleckenstein, M., Periago, M. E., Petersen, I., & Timmers, J. F. (2020). Grasslands and savannahs in the UN Decade on Ecosystem Restoration. Restoration Ecology28(6), 1313-1317 https://doi.org/10.1111/rec.13272

Dupraz, C, and Liagre, F.(2011) Agroforesterie: Des Arbres et des Cultures. Editions France Agricole.

FAO Statistical Service (2024) FAOStat. https://www.fao.org/faostat/en/

Feliciano, D., Ledo, A., Hillier, J., & Nayak, D. R. (2018). Which agroforestry options give the greatest soil and above ground carbon benefits in different world regions?. Agriculture, ecosystems & environment254, 117-129. https://doi.org/10.1016/j.agee.2017.11.032

Frelat, R., Lopez-Ridaura, S., Giller, K. E., Herrero, M., Douxchamps, S., Djurfeldt, A. A., Erenstein, O., Henderson, B., Kassie, M., Paul, B. K., Rigolot, C., Ritzema, R. S., Rodriguez, D., Van Asten, P. J. A., & Van Wijk, M. T. (2016). Drivers of household food availability in sub-Saharan Africa based on big data from small farms. Proceedings of the National Academy of Sciences of the United States of America, 113(2), 458–463. https://doi.org/10.1073/pnas.1518384112

Garrett, H. E., Kerley, M. S., Ladyman, K. P., Walter, W. D., Godsey, L. D., Van Sambeek, J. W., & Brauer, D. K. (2004). Hardwood silvopasture management in North America. In New Vistas in Agroforestry: A Compendium for 1st World Congress of Agroforestry, 2004 (pp. 21-33). Springer Netherlands.

Goracci, J., & Camilli, F. (2024). Agroforestry and animal husbandry. IntechOpen. doi: 10.5772/intechopen.1006711

Government of Colombia 2020 Actualización de la Contribución Determinada a Nivel Nacional de Colombia. Government of Colombia.

Greene, H., Kazanski, C. E., Kaufman, J., Steinberg, E., Johnson, K., Cook-Patton, S. C., & Fargione, J. (2023). Silvopasture offers climate change mitigation and profit potential for farmers in the eastern United States. Frontiers in Sustainable Food Systems7, 1158459.

Hart, D.R.T, Yeo, S, Almaraz, M, Beillouin, D, Cardinael, R, Garcia, E, Kay, S, Lovell, S.T., Rosenstock, T.S., Sprenkle-Hyppolite, S, Stolle, F, Suber, M, Thapa, B, Wood, S & Cook-Patton, S.C (2023). “Priority science can accelerate agroforestry as a natural climate solution”. Nature Climate Change. https://doi.org/10.5281/zenodo.8209212

Husak, A. L., & Grado, S. C. (2002). Monetary benefits in a southern silvopastoral system. Southern Journal of Applied Forestry, 26(3), 159-164 https://doi.org/10.1093/sjaf/26.3.159

IPCC (2019). Climate Change and Land: an IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems [P.R. Shukla, J. Skea, E. Calvo Buendia, V. Masson-Delmotte, H.-O. Pörtner, D. C. Roberts, P. Zhai, R. Slade, S. Connors, R. van Diemen, M. Ferrat, E. Haughey, S. Luz, S. Neogi, M. Pathak, J. Petzold, J. Portugal Pereira, P. Vyas, E. Huntley, K. Kissick, M. Belkacemi, J. Malley, (eds.)]. 

IPCC AR6 WG3 (2022). Climate Change 2022: Mitigation of Climate Change. Contribution of Working Group III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [P.R. Shukla, J. Skea, R. Slade, A. Al Khourdajie, R. van Diemen, D. McCollum, M. Pathak, S. Some, P. Vyas, R. Fradera, M. Belkacemi, A. Hasija, G. Lisboa, S. Luz, J. Malley, (eds.)]. Cambridge University Press, Cambridge, UK and New York, NY, USA. doi: 10.1017/9781009157926

Jacobsen (2019) “Secondary metabolites in leaf hay as a mitigation option for enteric methane production in ruminants”. Aarhus University. 

Jose, S., & Dollinger, J. (2019). Silvopasture: a sustainable livestock production system. Agroforestry systems93, 1-9. https://doi.org/10.1007/s10457-019-00366-8

Lal, R., Smith, P., Jungkunst, H. F., Mitsch, W. J., Lehmann, J., Nair, P. R., & Ravindranath, N. H. (2018). The carbon sequestration potential of terrestrial ecosystems. Journal of soil and water conservation73(6), 145A-152A. https://doi.org/10.2489/jswc.73.6.145A

Lee, S., Bonatti, M, Löhe, K, Palacios, V., Lana, M.A., and Sieber, S (2020) “Adoption potentials and barriers of silvopastoral systems in Colombia: Case of Cundinamarca region” Cogent Environmental Science 6(1). https://doi.org/10.1080/23311843.2020.1823632

Lemes, A. P., Garcia, A. R., Pezzopane, J. R. M., Brandão, F. Z., Watanabe, Y. F., Cooke, R. F., ... & Gimenes, L. U. (2021). Silvopastoral system is an alternative to improve animal welfare and productive performance in meat production systems. Scientific Reports11(1), 14092. https://doi.org/10.1038/s41598-021-93609-7

Lorenz, K., & Lal, R. (2018). Carbon sequestration in agricultural ecosystems. Springer, Cham. 

Mehrabi, Z., Tong, K., Fortin, J., Stanimirova, R., Friedl, M., & Ramankutty, N. (2024). Global agricultural lands in the year 2015. Earth System Science Data Discussions2024, 1-44. https://doi.org/10.5194/essd-2024-279

Montagnini, F (2019). “Función de los sistemas agroforestales en la adaptación y mitigación del cambio climático”. Sistemas agroforestales: Funciones productivas, socioeconómicas y ambientales, 269-299.

Murgueitio, E., Uribe, F., Molina, C., Molina, E., Galindo, W., Chará, J., & González, J. (2016). Establecimiento y manejo de sistemas silvopastoriles intensivos con Leucaena. Editorial CIPAV, Cali, Colombia. 

Nair, P.K. R. (2012) “Climate change mitigation: A low-hanging fruit of agroforestry”. Agroforestry: The future of global land use, 31-69.

Ortiz, J., Neira, P., Panichini, M., Curaqueo, G., Stolpe, N. B., Zagal, E., & Gupta, S. R. (2023). Silvopastoral systems on degraded lands for soil carbon sequestration and climate change mitigation. Agroforestry for Sustainable Intensification of Agriculture in Asia and Africa, 207-242.

Pent, G. J. (2020). Over-yielding in temperate silvopastures: a meta-analysis. Agroforestry Systems94(5), 1741-1758. https://doi.org/10.1007/s10457-020-00494-6

Pezo, D., Ríos, N., Ibrahim, M., & Gómez, M. (2018). Silvopastoral systems for intensifying cattle production and enhancing forest cover: the case of Costa Rica. Washington, DC: World Bank.

Poudel, S., Pent, G., & Fike, J. (2024). Silvopastures: Benefits, past efforts, challenges, and future prospects in the United States. Agronomy14(7), 1369.

Quandt, A, Neufeldt, G, & Gorman, K (2023). “Climate change adaptation through agroforestry: Opportunities and gaps”. Current Opinion in Environmental Sustainability. 60, 101244. https://doi.org/10.1016/j.cosust.2022.101244

Rivera, J. E., Serna, L., Arango, J., Barahona, R., Murgueitio, E., Torres, C. F., & Chará, J. (2023). Silvopastoral systems and their role in climate change mitigation and Nationally Determined Contributions in Latin America. In Silvopastoral systems of Meso America and Northern South America (pp. 25-53). Cham: Springer International Publishing.

Rojas, D, & Rodriguez Anido, N. (2022) Potential of silvopastoral systems for the mitigation of greenhouse gasses generated in the production of bovine meat. In Sistemas silvopastoriles: Hacia una diversificación sostenible. CIPAV.

Riset, J.Å., Tømmervik, H. & Forbes, B.C. (2019) “Sustainable and resilient reindeer herding”. In Reindeer Caribou Health Dis, (23–43). 

Shelton (2021) Leucaena: The productive and sustainable forage legume. University of Queensland.

Shi, L., Feng, W., Xu, J., & Kuzyakov, Y. (2018). Agroforestry systems: Meta‐analysis of soil carbon stocks, sequestration processes, and future potentials. Land Degradation & Development29(11), 3886-3897. https://doi.org/10.1002/ldr.3136

Smith, M. M., Bentrup, G., Kellerman, T., MacFarland, K., Straight, R., Ameyaw, L., & Stein, S. (2022). Silvopasture in the USA: A systematic review of natural resource professional and producer-reported benefits, challenges, and management activities. Agriculture, Ecosystems & Environment326, 107818. https://doi.org/10.1016/j.agee.2021.107818

Sprenkle-Hyppolite, S. Griscom, B., Griffey, V., Munshi, E., Chapman, M. (2024) “Maximizing tree carbon in cropland and grazing lands while sustaining yields”. Carbon Balance and Management 19:23. https://doi.org/10.1186/s13021-024-00268-y

Toensmeier, E. (2017). Perennial staple crops and agroforestry for climate change mitigation. Integrating landscapes: Agroforestry for biodiversity conservation and food sovereignty, 439-451.

Udawatta, R. P., Walter, D., & Jose, S. (2022). Carbon sequestration by forests and agroforests: A reality check for the United States. Carbon footprints1(8). 10.20517/cf.2022.06 

Zeppetello, L. R. V., Cook-Patton, S. C., Parsons, L. A., Wolff, N. H., Kroeger, T., Battisti, D. S., ... & Masuda, Y. J. (2022). Consistent cooling benefits of silvopasture in the tropics. Nature communications13(1), 708. https://doi.org/10.1038/s41467-022-28388-4

Credits

Lead Fellow

  • Eric Toensmeier

Contributors

  • Ruthie Burrows, Ph.D.

  • Yusuf Jameel, Ph.D.

  • Daniel Jasper

Internal Reviewers

  • Aiyana Bodi

  • Hannah Henkin

  • Ted Otte

  • Paul West, Ph.D.

Effectiveness

We found a median carbon sequestration rate of 9.81 t CO₂/ha/yr (Table 1). This is based on an above-ground biomass (tree trunks and branches) accumulation rate of 6.43 t CO₂/ha/yr and a below-ground biomass (roots) accumulation rate of 1.61 t CO₂/ha/yr using a root-to-shoot ratio of 0.25 (Cardinael et al., 2019). These are added to the soil organic carbon sequestration rate of 1.76 t CO₂/ha/yr to create the combined total.

left_text_column_width

Table 1. Carbon sequestration.

Unit: t CO-eq/ha/yr

25th percentile 4.91
mean 14.70
median (50th percentile) 9.81
75th percentile 20.45

100-yr basis

Left Text Column Width

Reductions in nitrous oxide and methane and sustainable intensification impacts are not yet quantifiable to the degree that they can be used in climate mitigation projections.

left_text_column_width
Cost

Because baseline grazing systems are already extensive and well established, we assumed there is no cost to establish new baseline grazing land. In the absence of global data sets on costs and revenues of grazing systems, we used a global average profit per hectare of grazing land of US$6.28 from Damnnia et al. (2023).

Establishment costs of silvopasture vary widely. We found the cost to establish one hectare of silvopasture to be US$1.06–4,825 (Dupraz & Liagre, 2011; Lee et al., 2011). Reasons for this wide range include the low cost of natural regeneration and the broad range in tree density depending on the type of system. We collected costs by region and used a weighted average to obtain a global net net cost value of US$424.20.

Cost and revenue data for silvopasture were insufficient. However, data on the impact on revenues per hectare are abundant. Our analysis found a median 8.7% increase in per-hectare profits from silvopasture compared with conventional grazing, which we applied to the average grazing value to obtain a net profit of US$6.82/ha. This does not reflect the very high revenues of silvopasture systems in some countries.

We calculated cost per t CO₂‑eq sequestered by dividing net net cost/ha by total CO₂‑eq sequestered/ha.

left_text_column_width

Table 2. Cost per unit of climate impact.

Unit: 2023 US$/t CO-eq

median $43.25

100-yr basis & 20-yr basis are the same.

Left Text Column Width
Learning Curve

There is not enough information available to determine a learning curve for silvopasture. However, anecdotal evidence showed establishment costs decreasing as techniques for broadscale mechanized establishment were developed in Australia and Colombia (Murguietio et al., 2016; Shelton et al., 2021).

left_text_column_width
Speed of Action

Speed of action refers to how quickly a climate solution physically affects the atmosphere after it is deployed. This is different from speed of deployment, which is the pace at which solutions are adopted.

At Project Drawdown, we define the speed of action for each climate solution as gradualemergency brake, or delayed.

Deploy Silvopasture is a DELAYED climate solution. It works more slowly than nominal or emergency brake solutions. Delayed solutions can be robust climate solutions, but it’s important to recognize that they realize their full potential for some time.

left_text_column_width
Caveats

Permanence

Living biomass and soil organic matter only temporarily hold carbon (decades to centuries for soil organic matter, and for the life of the tree or any long-lived products made from its wood in the case of woody biomass). Sequestered carbon in both soils and biomass is vulnerable to fire, drought, long-term shifts to a drier precipitation regime, and other climate change impacts, as well as to a return to the previous farming or grazing practices. Such disturbances can cause carbon to be re-emitted to the atmosphere (Lorenz & Lal, 2018). 

Saturation

Like all upland, terrestrial agricultural systems, over the course of decades, silvopastures reach saturation and net sequestration slows to nearly nothing (Lorenz & Lal, 2018). 

left_text_column_width
Current Adoption

Lack of data on the current adoption of silvopasture is a major gap in our understanding of the potential of this solution. One satellite imaging study found 156 million ha of grazing land with over 10 t C/ha in above-ground biomass, which is the amount that indicates more than grass alone (Chapman et al., 2019). However, this area includes natural savannas, which are not necessarily silvopastures, and undercounts the existing 15.1 million ha of silvopasture known to be present in Europe (den Herder et al., 2017).

Sprenkle-Hippolite et al. (2024) estimated a current adoption of 141.4 Mha, or 6.0% of grazing land (Table 3). We have chosen this more recent figure as the best available estimate of current adoption.

left_text_column_width

Table 3. Current (2023) adoption level.

Unit: million ha

mean 141.4
Left Text Column Width
Adoption Trend

There is little quantifiable information reported about silvopasture adoption.

left_text_column_width
Adoption Ceiling

Grazing is the world’s largest land use at 2,986 million ha (Mehrabi et al., 2024). Much grazing land is too dry for trees, while other grasslands that were not historically forest or savanna should not be planted with trees in order to minimize water use and protect grassland habitat (Dudley et al., 2020). Three studies estimated the total potential area suitable for silvopasture (including current adoption). 

Lal et al. (2018) estimated the technical potential for silvopasture adoption at 550 Mha.

Chapman et al. (2019) estimated the suitable area for increased woody biomass on grazing land as 1,890 Mha. 

Sprenkle-Hippolite (2024) assessed the maximum area of grazing land to which trees could be added without reducing livestock productivity. They calculated a total of 1,589 Mha, or 67% of global grazing land (Table 4). To our knowledge, this is the most accurate estimate available. 

left_text_column_width

Table 4. Adoption ceiling.

Unit: ha installed

25th percentile 1,069,000,000
mean 1,343,000,000
median (50th percentile) 1,588,000,000
75th percentile 1,739,000,000

Unit: % of grazing land

25th percentile 45
mean 36
median (50th percentile) 53
75th percentile 58
Left Text Column Width
Achievable Adoption

In our Achievable – High scenario, global silvopasture starts at 141.4 million ha and grows at the Colombian Nationally Determined Contribution growth rate of 6.5%/yr. This would provide the high end of the achievable potential at 206.3 million ha by 2030, of which 64.9 million ha are newly adopted (Table 5). For the Achievable – Low scenario, we chose 1/10 of Colombia’s projected growth rate. This would provide 147.0 million ha of adoption by 2030, of which 5.6 million ha are new.

Few estimates of the global adoption potential of silvopasture are available, and even those for the broader category of agroforestry are rare due to the lack of solid data on current adoption and growth rates (Shi et al., 2018; Hart et al., 2023). The IPCC estimates that, for agroforestry overall, 19.5% of the technical potential is economically achievable (IPCC AR6 WG3, 2022). Applying this rate to Sprenkle-Hippolite’s estimated 1,588 million ha technical potential yields an achievable potential of 310 million ha of convertible grazing land.

Our high adoption rate reaches 13% of the adoption ceiling by 2030. This suggests that silvopasture represents a large but relatively untapped potential that will require aggressive policy action and other incentives to spur scaling.

left_text_column_width

Table 5. Range of achievable adoption levels.

Unit: million ha

Current Adoption 141.4
Achievable – Low 147.0
Achievable – High 206.3
Adoption Ceiling 1,588.0

Unit: million ha

Current Adoption 0.00
Achievable – Low 5.6
Achievable – High 64.9
Adoption Ceiling 1,447.4
Left Text Column Width

Carbon sequestration continues only for a period of decades; because silvopasture is an ancient practice with some plantings centuries old, we could not assume that previously adopted hectares continue to sequester carbon indefinitely. Thus, we make the conservative choice to calculate carbon sequestration only for newly adopted hectares.

Carbon sequestration impact is 0.00 Gt CO₂‑eq/yr for current adoption, 0.05 for Achievable – Low, 0.64 for Achievable – High, and 14.20 for our Adoption Ceiling.

left_text_column_width

Table 6. Climate impact at different levels of adoption.

Unit: Gt CO-eq/yr

Current Adoption 0.00
Achievable – Low 0.05
Achievable – High 0.64
Adoption Ceiling 14.20

100-yr basis, New adoption only 

Left Text Column Width

Lal et al. (2018) estimated a technical global carbon sequestration potential of 0.3–1.0 Gt CO₂‑eq/yr. Sprenkle-Hyppolite et al. (2024) estimated a silvopasture technical potential of 1.4 Gt CO₂‑eq/yr, which assumes a tree density of 2–6 trees/ha, which is substantially lower than typical silvopasture. For agroforestry overall (including silvopasture and other practices), the IPCC estimates an achievable potential of 0.8 Gt CO₂‑eq/yr and a technical potential of 4.0 Gt CO₂‑eq/yr.

left_text_column_width
Additional Benefits

Food Security

While evidence on the impact of silvopasture on yields is mixed, this practice can improve food security by diversifying food production and income sources (Bostedt et al., 2016; Smith et al., 2022). In pastoralists in Kenya, Bostedt et al. (2016) found that agroforestry practices were associated with increased dietary diversity, an important aspect of food and nutrition security. Diverse income streams can mediate household food security during adverse conditions, such as droughts or floods, especially in low- and middle-income countries (de Sherbinin et al., 2007; Di Prima et al., 2022; Frelat et al., 2016). 

Income & Work 

Silvopasture can also increase and diversify farmer income. Tree fruit and timber often provide additional income for ranchers. A study in the southern United States showed that silvopasture systems generated 10% more income than standalone cattle production (Husak and Grado et al., 2002). A more comprehensive analysis across the eastern United States (Greene et al., 2023) found that virtually all silvopasture systems assessed had a positive 20- and 30-yr internal rate of return (IRR). For some systems, the 30-yr IRR can be >15% (Greene et al., 2023).

Animal Well-being

By providing shade, silvopasture systems reduce heat stress experienced by livestock. Heat stress for cattle begins at 30 °C or even lower in some circumstances (Garrett et al., 2004). In the tropics, the cooling effect of integrating trees into a pastoral system is 0.32–2.4 °C/t of woody carbon added/ha (Zeppetello et al., 2022). Heifers raised in silvopasture systems had higher body mass and more optimal body temperature than those raised in intensive rotational grazing systems (Lemes et al., 2021). Improvement in livestock physiological conditions probably results from access to additional forage, increased livestock comfort, and reduced heat stress in silvopastoral systems. Silvopasture is highly desirable for its improvements to animal welfare (Goracci & Camilli, 2024).

Nature Protection

Trees boost habitat availability, enhance landscape connectivity, and aid in forest regeneration and restoration. In most climates they provide a major boost to biodiversity compared with pasture alone (Smith et al., 2022; Pezo et al., 2018). 

Water Quality

Perennials in silvopasture systems could reduce runoff and increase water infiltration rates relative to open rangelands (Smith et al., 2022; Pezo et al., 2018). This increases the resilience of the system during drought and high heat. 

left_text_column_width
Risks

Some of the tree and forage species used in silvopastures are invasive in certain contexts. For example, river tamarind (Leucaena leucocephala) is a centerpiece in intensive silvopasture in Latin America, where it is native, but also in Australia, where it is not. Australian producers have developed practices to limit or prevent its spread (Shelton et al., 2021).

Livestock can damage or kill young trees during establishment. Protecting trees or excluding grazing animals during this period increases costs (Smith et al., 2022).

Poorly designed tree layout can make herding, haying, fencing, and other management activities more difficult. Tree densities that are too high can reduce livestock productivity (Cadavid et al., 2020).

left_text_column_width
Interactions with Other Solutions

Reinforcing

Silvopasture represents a way to produce some ruminant meat and dairy in a more climate-friendly way. This impact can contribute to addressing emissions from ruminant production, but only as part of a program that strongly emphasizes diet change and food waste reduction.

left_text_column_width

Forms of silvopasture that increase milk and meat yields can reduce pressure to convert undeveloped land to agriculture.

left_text_column_width

Silvopasture is a technique for restoring farmland.

left_text_column_width

Silvopasture is a form of savanna restoration.

left_text_column_width

Competing

Silvopasture and forest restoration can compete for the same land. 

left_text_column_width

Silvopasture is a kind of agroforestry, though in this iteration of Project Drawdown “Deploy Agroforestry” refers to crop production systems only. With that said, some agroforestry systems integrate both crops and livestock with the trees, such as the widespread parkland systems of the African Sahel.

left_text_column_width
Dashboard

Solution Basics

1 ha converted from grazing land to silvopasture

t CO₂-eq/unit/yr
9.81
units
Current 05.6×10⁶6.49×10⁷
Achievable (Low to High)

Climate Impact

Gt CO₂-eq/yr
Current 0 0.050.64
US$ per t CO₂-eq
43
Delayed

CO₂

Trade-offs

Solutions that improve ruminant production could undermine the argument for reducing ruminant protein consumption in wealthy countries. 

Certain silvopasture systems reduce per-hectare productivity of meat and milk, even if overall productivity increases when the yields of timber or food from the tree component are included. For example, silvopasture systems that are primarily focused on timber production, with high tree densities, will have lower livestock yields than pasture alone - though they will have high timber yields.

The costs of establishment are much higher than those of managed grazing. There is also a longer payback period (Smith et al., 2022). These limitations mean that secure land tenure is even more important than usual, to make adoption worthwhile (Poudel et al., 2024).

left_text_column_width
Geographic Guidance Introduction

Silvopasture is primarily appropriate for grazing land that receives sufficient rainfall to support tree growth. While it can be implemented on both cropland and grassland, if adopted on cropland, it will reduce food yield because livestock produce much less food per hectare than crops. In the humid tropics, a particularly productive and high-carbon variation called intensive silvopasture is an option. Ideally, graziers will have secure land tenure, though pastoralist commons have been used successfully.

Areas too dry to establish trees (<450 mm annual precipitation) are not suitable for silvopasture by tree planting, but regions that can support natural savanna may be suitable for managed natural regeneration.

Most silvopasture today appears in sub-Saharan Africa (Chapman et al., 2019), though this may reflect grazed natural savannas rather than intentional silvopasture. This finding neglects well-known systems in Latin America and Southern Europe. 

Chapman et al. (2019) listed world grasslands by their potential to add woody biomass. According to their analysis, the countries with the greatest potential to increase woody biomass carbon in grazing land are, in order: Australia, Kazakhstan, China, the United States, Mongolia, Iran, Argentina, South Africa, Sudan, Afghanistan, Russia, and Mexico. Tropical grazing land accounts for 73% of the potential in one study. Brazil, China, and Australia have the highest areas, collectively accounting for 37% of the potential area (Sprenkle-Hippolite 2024).

We do not present any maps for the silvopasture solution due to the uncertainties in identifying current areas where silvopasture is practiced, and in identifying current grasslands that were historically forest or savanna. 

Action Word
Deploy
Solution Title
Silvopasture
Classification
Highly Recommended
Lawmakers and Policymakers
  • Lower the risk for farmers transitioning from other pastoral systems.
  • Increase understanding of silvopasture.
  • Reduce technical and bureaucratic complexity.
  • Establish or expand technical assistance programs.
  • Simplify incentive programs.
  • Ensure an appropriate and adequate selection of tree species are eligible for incentives.
  • Establish a silvopasture certification program.
  • Create demonstration farms.
  • Strengthen land tenure laws.
  • Incentivize lease structures to facilitate silvopasture transitions on rented land.
Practitioners
  • Seek support from technical assistance programs and extension services.
  • Seek out networks of adopters to share information, resources, best practices, and collective marketing.
  • If available, leverage incentive programs such as subsidies, tax rebates, grants, and carbon credits.
  • Negotiate new lease agreements to accommodate silvopasture techniques or advocate for public incentives to reform lease structures.
Business Leaders
  • Prioritize suppliers and source from farmers who use silvopasture.
  • Provide innovative financial mechanisms to encourage adoption.
  • Participate in and help create high-quality carbon credit programs.
  • Incentivize silvopasture transitions in lease agreements.
  • Support the creation of a certification system to increase the marketability of silvopasture products.
  • Join coalitions with other purchasers to grow demand.
  • Collaborate with public and private agricultural organizations on education and training programs. 
Nonprofit Leaders
  • Educate farmers and those who work in the food industry about the benefits of silvopasture.
  • Communicate any government incentives for farmers to transition to silvopasture.
  • Explain how to take advantage of incentives.
  • Provide training material and/or work with extension services to support farmers transitioning to silvopasture, such as administering certification programs.
  • Advocate to policymakers for improved incentives for farmers, stronger land tenure laws, and flexible lease agreements.
Investors
  • Use capital like low-interest or favorable loans to support farmers and farmer cooperatives exploring silvopasture projects.
  • Invest in credible, high-quality carbon reduction silvopasture projects.
  • Invest in silvopasture products (e.g., fruits, berries, and other tree products)
  • Encourage favorable lease agreements between landowners or offer favorable costs and benefit-sharing structures.
  • Consider banking through community development financial institutions or other institutions that support farmers. 
Philanthropists and International Aid Agencies
  • Provide grants and loans for establishing silvopasture and support farmland restoration projects that include silvopasture.
  • Support capacity-building, market access, education, and training opportunities for smallholder farmers – especially those historically underserved – through activities like farmer cooperatives, demonstration farms, and communal tree nurseries.
  • Consider banking through Community Development Financial Institutions or other institutions that support farmers. 
Thought Leaders
  • Use your platform to build awareness of silvopasture and its benefits, incentive programs, and regulatory standards.
  • Provide technical information to practitioners.
  • Host community dialogues such as Edible Connections to engage the public about silvopasture and other climate-friendly farming practices.
Technologists and Researchers
  • Improve the affordability and equipment needed to plant and manage trees.
  • Refine satellite tools to improve silvopasture detection.
  • Develop ways to monitor changes in soil and biomass.
  • Standardize data collection protocols.
  • Create a framework for transparent reporting and reliable verification.
  • Fill gaps in data, such as quantifying the global adoption potential of silvopasture and regional analysis of revenue and operating costs/hectare. 
Communities, Households, and Individuals
  • Purchase silvopasture products and support farmers who use the practice.
  • Request silvopasture products at local markets.
  • Encourage policymakers to help farmers transition.
  • Encourage livestock farmers to adopt the practice.
  • Host community dialogues such as Edible Connections to engage the public about silvopasture and other climate-friendly farming practices.
Evidence Base

Carbon Sequestration: mixed to high consensus

There is a high level of consensus about the carbon biosequestration impacts of silvopasture, including for the higher per-hectare sequestration rates relative to improved grazing systems alone. A handful of reviews, expert estimations, and meta-analyses have been published on the subject. These include:

Cardinael et al. (2018) assembled data by climate and region for use in the national calculations and reporting. 

Chatterjee et al. (2018) found that converting from pasture to silvopasture increases carbon stocks. 

Lal et al. ( 2018) estimated the technical adoption and mitigation potential of silvopasture and other practices.

Udawatta et al. (2022) provided an up- to date meta-analysis for temperate North America. 

The results presented in this document summarize findings from two reviews, two meta-analyses, one expert opinion and three original studies reflecting current evidence from a global scale. We recognize this limited geographic scope creates bias, and hope this work inspires research and data sharing on this topic in underrepresented regions.

Other climate impacts: low consensus

There is low consensus on the reduction of methane from enteric emissions, nitrous oxide from manure, and CO₂ from avoided deforestation due to increased productivity. We do not include these climate impacts in our calculations.

Adoption potential: low consensus

Until recently there was little understanding of the current adoption of silvopasture. Sprenkle-Hyppolite et al. (2024) used Delphi expert estimation to determine current adoption and technical potential. Rates of adoption and achievable potential are still largely unreported or uninvestigated. See the Adoption section for details.

left_text_column_width
Updated Date
Subscribe to Highly Recommended