June 27, 2022

Project Drawdown updates world’s leading set of climate solutions—adding 11 new solutions for addressing the climate crisis

by Mary Hoff

insights-new-solutions-2022.jpg

Undersea kelp forests like this one off the coast of California are among the most productive ecosystems on Earth. Protecting and restoring these habitats enhances carbon sequestration in the deep sea.

iStock.com/fdastudillo

Five years ago Project Drawdown published a collection of “drawdown solutions,” technologies and practices that, if ambitiously implemented together, can achieve drawdown—the point in the future when levels of greenhouse gases in the atmosphere stop climbing and start to steadily decline, thereby stopping catastrophic climate change. A newly released update of this landmark analysis adds 11 new solutions and confirms with even more clarity and conviction that humanity has the solutions needed to reach drawdown quickly, safely, efficiently, and equitably.

The update lays the groundwork for Project Drawdown’s next major effort: developing and helping to activate strategies for implementing climate solutions that also benefit human well-being, biodiversity, and more. Businesses, funders, organizations, and individuals are encouraged to use the updated solutions set as a resource for making wise choices as to how to direct their climate solutions efforts.

Currently Available, Readily Scalable

To assess the possibilities for putting the brakes on climate change, experts in fields from oceanography to mechanical engineering and artificial intelligence modeled the greenhouse gas and economic impacts of adopting currently available and readily scalable technologies and practices under two levels of adoption that roughly correspond to limiting warming to 2°C and 1.5°C, respectively. They updated the existing solutions by incorporating new population growth models and new data for 16 of the solutions (all 13 Transportation sector solutions, Family Planning and Education, Plant-Rich Diets, and Reduced Food Waste). They also added 11 new solutions assessing strategies for reducing greenhouse gases related to ocean resources, food production, methane management, and materials manufacturing and use. 

All solutions are based on an extensive analysis of the scientific literature and sophisticated modeling and share six key traits that set them apart from other sets of climate mitigation strategies. They 1) are currently available, 2) are growing in scale, 3) are financially viable, 4) are able to reduce greenhouse gas concentrations in Earth’s atmosphere, 5) have a net positive impact, and 6) are quantifiable under different scenarios. 

New Solutions

The 11 new solutions are:

Seaweed Farming – Seaweed farming is one of the most sustainable types of aquaculture. Expanding seaweed farming enhances carbon sequestration and boosts production of biomass that can be used for biofuel, bioplastic, livestock feed, and human consumption.

Macroalgae Protection and Restoration – Macroalgae forests are among the most productive ecosystems on Earth. Protecting and restoring those habitats, enhances carbon sequestration in the deep sea. 

Improved Fisheries – Improved fisheries involves reforming and improving the management of wild-capture fisheries to reduce excess effort, overcapitalization, and overfishing. This can reduce fuel usage and rebuild fish populations. 

Improved Aquaculture – Aquaculture is one of the fastest-growing animal food sectors. Because some aquaculture systems are highly energy intensive, ensuring that part of the on-site energy consumption is based on renewable resources would reduce greenhouse gas emissions. 

Seafloor Protection – Vast amounts of carbon stored in seafloor sediments risk release by bottom-trawling fishing. Bottom-trawling bans and establishment of Marine Protected Areas can protect this important carbon sink.

Improved Cattle Feed – Optimizing cattle feeding strategies can lower the methane emissions produced within the ruminant digestive system. Nutrient-enriched diets of high-quality forages, additives, and supplements aim to improve animal health and productivity.

Improved Manure Management – Livestock manure produces methane, a potent greenhouse gas. Advanced technologies and practices for managing manure can reduce the adverse climate impact of animal agriculture.

Methane Leak Management – Methane, a potent greenhouse gas, is emitted during the production and transport of oil and natural gas. Managing methane emissions can reduce greenhouse gases in the atmosphere.

Recycled Metals – Metals are extracted from nonrenewable ores. Recycled metals capitalize on already extracted materials—making it possible to produce goods more efficiently, reduce the need to extract new resources, and cut down on energy and water use. 

Recycled Plastics – Recycling plastics requires less energy than producing new materials, saves landfill space, reduces environmental pollution, and decreases demand for fossil-fuel-based raw materials.

Reduced Plastics – Plastic production has grown tremendously over the past century, mainly for short-term use. Reducing the amount of plastic used in nondurable goods can significantly reduce both greenhouse gas emissions and plastic waste.

Highlights

Among the highlights of the update:

  • An initial investment of US$15.6 trillion (Scenario 1) would avoid or sequester more than 1,000 gigatons of carbon dioxide equivalent greenhouse gases between 2020 and 2050 and save nearly US$98 trillion in total operating costs over the lifetime of the solution. 
  • Bumping the investment up to US$23.6 trillion (Scenario 2) would avoid or sequester more than 1,600 gigatons of gases and save more than US$140 trillion in lifetime costs. 
  • Under Scenario 1, which aligns roughly with IPCC’s 2°C target, Food, Agriculture, and Land Use sector solutions have the greatest impact on greenhouse gases. Under Scenario 2, which aligns roughly with IPCC’s 1.5°C target, the Electricity sector jumps to the top for atmospheric greenhouse gas reductions. 
  • Updating the Family Planning and Education solution created changes across all solutions, since it replaces the previous projection of 2050 population with a lower number, creating a lower demand for the other solutions. Notably, nearly half (46 percent) of the impact of the lower population projection is attributable to more developed countries because of the higher per-capita contribution. The impact of education is hard to quantify because it affects many things besides reproductive choices (e.g., ability to implement other solutions).
  • In the Electricity and Buildings sectors, lower functional demand due to lower population projections means fewer emissions in the baseline (business as usual) scenario, which means it’s easier to achieve climate goals. 
  • Changes in the Transportation sector are mainly due to newer and better data. We’re seeing more potential for electrification, especially in freight and public transit. Small changes in adoption can result in big impacts due to the large number of passenger miles globally. 
  • There are lots of opportunities for improvement in the Industry sector. Small increases in adoption can make a big difference because of large volumes of materials. Shifting to low-emissions-intensity materials is the source of most of the gain. Some industries (e.g., steel) can show only modest gains in energy efficiency; the biggest opportunities are for switching to new materials instead. 
  • New data on emissions for 88 commodities made a big difference in the Food, Agriculture, and Land Use sector. Plant-Rich Diets and Reduced Food Waste are now at the top of the potential impact list in Scenario 1 and are right after Onshore Wind Turbines and Utility-Scale Solar Photovoltaics in Scenario 2. Even though population estimates declined, new diet and emissions factors more than made up for the savings. Potential reductions are likely even higher than what we’re seeing here.
  • Protecting intact coastal wetlands such as mangroves is the most effective solution in the Coastal and Ocean Sinks sector. Seaweed has high sequestration potential. Protection and restoration have many co-benefits. Fisheries improvements that increase fish stocks mean more fish die in the ocean and so more biomass is sequestered in the deep ocean.
  • Methane reduction is important because it can produce quick, measurable results critical for reaching net zero by 2050. Methane reduction provides big opportunities for greenhouse gas reductions at a relatively low cost. Eliminating leaks from the oil and gas production sector is cost-effective and simple. Landfill methane capture is a clear win.

In sum, we confirmed that the practices and technologies implemented to reduce greenhouse gas emissions will more than pay for themselves in lifetime savings. In addition, many of the solutions have bonus benefits for reducing poverty, increasing equity, and protecting endangered animals and ecosystems. So solving the climate crisis is both a life-saving and money-saving move for future generations.

Research Team

Fellows and staff who played key roles in the updates include Chad Frischmann, Mamta Mehra, Mahmoud Abdelhamid, Zak Accuardi, Mohammad Ahmadi Achachlouei, Raihan Ahmed, Carolyn Alkire, Ryan F. Allard, Jimena Alvarez, Chirjiv Anand, Jay H. Arehart, Senorpe Asem-Hiablie, Jay Barlow, Kevin Bayuk, Renilde Becqué, Erika Boeing, Jvani Cabiness, Johnnie Chamberlin, Delton Chen, Wu Chen, Kristina Colbert, Leonardo Covis, Susan Miller Davis, Tala Daya, Priyanka DeSouza, Barbara Rodriguez Droguett, Stefan Gary, Jai Kumar Gaurav, Anna Goldstein, Miranda R. Gorman, João Pedro Gouveia, Alisha Graves, Martina Grecequet, Karan Gupta, Zhen Han, Zeke Hausfather, Yuill Herbert, Amanda Hong, Ariel Horowitz, Ryan Hottle, Troy Hottle, Sarah Eichler, David Jaber, Marzieh Jafary, Mel De Jager, Dattakiran Jagu, Emilia Jankowska, Heather Jones, Daniel Kane, Kapilnarula, Sumedha Malaviya, Urmila Maldvakar, Ashok Mangotra, Alison Mason, Mihir Mathur, David Mead, Aven Satre-Meloy, Phil Metz, Ruth Metzel, Alex Michelko, Ida Midzic, Karthik Mukkavilli, Sarah Myhre, Amrita Namasivayam, Kapil Narula, Rob Newell, Demetrios Papaioannou, Michelle Pedraza, Robin Pelc, Noorie Rajvanshi, George Randolph, Abby Rubinson, Adrien Salazar, Aven Satre-Meloy, Jon Schroeder, Celina Scott-Buechler, Christine Shearer, David Siap, Kelly Siman, Leena Tähkämö, Ernesto Valero Thomas, Eric Toensmeier, Shahaboddin Sean H. Toroghi, Melanie Valencia, Andrew Wade, Marilyn Waite, Ariani Wartenberg, Charlotte Wheeler, Christopher W. Wright, Liang Yang, Daphne Yin, Abdulmutalib Yussuff, and Kenneth Zame.

Other Resources

Two of the studies behind the new results have been released in peer-reviewed journals. Emilia Jankowska, Robin Pelc, Jimena Alvarez, Mamta Mehra, and Chad Frischmann published a report on the six new ocean-related solutions in PNAS in June. Miranda Gorman, David Dzombak, and Chad Frischmann published an article on the metals recycling solution in the September 2022 Resources, Conservation and Recycling.

In addition to releasing the new solutions and updating existing ones, Project Drawdown put its research models—which help quantify the potential size and economics of different climate solutions—into the public domain. This process is still in the early stages, and many pieces of software are still under development. Interested individuals can check out the ongoing work on Github, where Python and Excel versions of the models are being worked on, along with user interfaces, data management tools, and other software tools. 

More Insights

September 19, 2022
Family planning gathering in Malawi
It’s time to advance climate change solutions and human well-being together
by Debbie Aung Din, Christina Kwauk, and Abiba Longwe
In the 50 years since the 1972 UN Conference on the Human Environment established the important link between the environment and poverty, we have seen remarkable action to protect the planet and improve people’s lives. Unfortunately, these efforts have often taken place independently of each other. Imagine how much more good we could do if the solutions being funded yielded benefits for both climate action and poverty alleviation, while boosting human well-being. Globally, public and private financing tend to focus on either climate action or improving human well-being—defined as people’s ability to access fundamental social, cultural, economic and natural/environmental resources critical for sustaining a decent living standard and living a life they value. However, addressing climate change without attention to human well-being threatens to cut back on years of development progress because of the impacts climate change has on human well-being. Those of us working to advance sustainable development are witnessing firsthand how rising temperatures, drought, flooding and extreme weather are rapidly rewinding hard-won progress in poverty eradication, human development and gender equality. For instance, heat waves and dry spells in Bangladesh are threatening natural resource–based rural livelihoods and creating economic insecurity, which can contribute to increased rates of child, early, and forced marriage and unions, speeding girls’ transitions to adulthood and ending their formal education. And In Malawi, where most people experience poverty and nearly one-third experience extreme poverty, climate change has exacerbated poverty, particularly for women, in recent decades as increasing temperatures and intense rain lead to both drought and flooding. Combined, these have resulted in shorter growing seasons, poor crop yields, food shortages, hunger and the spread of waterborne diseases. In addition, increasingly devastating seasonal flash floods disrupt learning for students as classrooms are used as shelters for displaced people. And intensified climate hazards often exacerbate child labor, especially for children from under-resourced families. We know that there are many readily available and financially viable technologies and practices that offer proven, substantial benefits not only for climate but also for livelihoods, health, food security, education, gender equality, and energy. Funders, philanthropies and decision-makers can help to ensure a brighter future for people and the planet by directing more financing to fund climate solutions that can also be transformational in alleviating poverty and increasing resilience, especially in frontline, climate-vulnerable countries and communities that have contributed the least to the climate crisis while being impacted the most. For example, improving agriculture and agroforestry could reduce global greenhouse gas emissions by a hefty 277.6 gigatons between 2020 and 2050. At the same time, it could improve food security and access to water and strengthen resilience to economic shocks. Similarly, fostering equality—specifically, rights-based, voluntary family planning and 12 years of high-quality, universal education—enables women to have more time, skills, and other resources to participate in climate solutions and to engage in productive, income-generating work, including in the green economy. Climate solutions that foster equality can advance human well-being in areas such as maternal and child health, nutrition, gender equality, and resilience. Estimates show that one outcome of fostering equality, slower population growth, could lead to a reduction of almost 70 gigatons of greenhouse gas emissions at a global level between 2020 and 2050. Climate financing needs to reflect the reality that climate change, poverty, and human well-being are interconnected by taking a systems approach and focusing on synergistic solutions. For example, support for the world’s 500 million smallholder farm families at the epicenter of poverty and climate change that makes soils, lands, trees, and water more productive could boost income and simultaneously sequester carbon. As practitioners who work to enhance human well-being, we see a growing nexus among climate mitigation, climate adaptation, and poverty reduction. We can make much more progress by investing in climate change solutions that do double duty as strategies for improving human well-being. And donors and innovative finance structures can better meet the needs of people in countries most impacted by the climate crisis by supporting low-carbon pathways to development that also boost human well-being. Debbie Aung Din. Christina Kwauk, and Abiba Longwe are members of the Drawdown Lift Advisory Council.
Read more
August 15, 2022
waves crashing onshore
Askov Finlayson, Etsy and Lyft join Drawdown Labs’ groundbreaking climate solutions consortium
Five new implementation partners—Doughnut Economics Action Lab, Evergreen Action, Rewiring America, Seneca Solar, and The Outdoor Policy Outfit—also join the effort to turn the tide on climate change San Francisco—Askov Finlayson, Etsy, and Lyft have joined a major climate solutions consortium led by Drawdown Labs—Project Drawdown’s private-sector testing ground for strategies to accelerate the safe and equitable adoption of climate solutions—as new business partners. Drawdown Labs business partners work to engage their employees in climate solutions and achieve a new bar for corporate climate leadership—meeting regularly, sharing insights, asking critical questions, and enjoying full access to Project Drawdown’s science-based resources and expertise. The three companies join Allbirds, Aspiration, Copia, General Mills, Google, IDEO, Impossible Foods, Intuit, Lime, LinkedIn, R&DE Stanford Dining, Trane Technologies, and Unity in Drawdown Labs’ signature initiative to mobilize the power of corporations to solve the climate crisis.  Five organizations have also signed onto the initiative as “implementation partners”—entities that will help businesses achieve their climate mitigation goals. They are Doughnut Economics Action Lab, Evergreen Action, Rewiring America, Seneca Solar, and The Outdoor Policy Outfit.  Implementation partners help Drawdown Labs work with its business partners and other businesses committed to helping the world achieve drawdown. Each is an expert in some aspect of Drawdown Labs’ work, such as advancing climate policy, shifting to climate-friendly investments and integrating climate justice into emissions reductions strategy. These new collaborators will bring their knowledge and operational capacity to help execute and enhance Drawdown Labs’ work to align the private sector with drawdown—the point in the future when levels of greenhouse gases in the atmosphere stop climbing and start to steadily decline, thereby stopping catastrophic climate change.  Drawdown Labs business partners commit to rigorous greenhouse gas emissions reduction targets; aspire to conform with the Drawdown-Aligned Business Framework; and pledge not to lobby against climate action, policy or science. They use their resources, influence, employees, community members, and customers to help the world reach drawdown. Implementation partners help Drawdown Labs business partners and the broader business community pull key climate leverage points and rapidly accelerate the deployment of climate solutions. They also collaborate on creating and promoting resources to elevate private-sector climate action. “Drawdown Labs partners are leading the transformation of their sectors—not simply playing at the edges of real change,” said Drawdown Labs Director Jamie Alexander in announcing the new partnerships. “They commit to challenge status-quo private sector leadership for faster, equitable climate action at unprecedented scale.” 
Read more